A new Computation System

• DFAs, NFs, Λ-NFAs all describe a language in an operational manner. They describe a machine that one can execute in order to recognize a string.

• An alternate method of describing a set of strings is to describe the properties it should have.

• Regular-Expressions are based upon the closure properties we have studied.
Regular Expressions

• Fix an alphabet Σ. We define now regular expressions and how each of them specifies a language.

• **Definition.** The set of regular expressions (with respect to Σ) is defined inductively by the following rules:
 1. The symbols \emptyset and Λ are regular expressions.
 2. Every symbol $\alpha \in \Sigma$ is a regular expression.
 3. If E and F are regular expressions, then (E^*), (EF) and $(E+F)$ are regular expressions.

Note how the closure properties are used here.
Computation system as Data

• We have made a big point that computation systems are just data, regular expressions are no exception.
• We can represent them as data. Here we use Haskell as an example.

```haskell
data RegExp a
    = Lambda
    | Empty
    | One a
    | Union (RegExp a) (RegExp a)
    | Cat (RegExp a) (RegExp a)
    | Star (RegExp a)
```

• How would you represent regular expressions in your favorite language.
Regular Expressions as Languages

- **Definition.** For every regular expression E, there is an associated language \(L(E) \), defined inductively as follows:

 1. \(L(\emptyset) = \emptyset \) and \(L(\Lambda) = \{\Lambda\} \)
 2. \(L(a) = \{a\} \)
 3. Inductive cases
 1. \(L(E^*) = (L(E))^* \)
 2. \(L(\text{EF}) = L(E) \ L(F) \)
 3. \(L(E+F) = L(E) \cup L(F) \)

- **Definition.** A language is *regular* if it is of the form \(L(E) \) for some regular expression E.

Recall \(x^* = \Lambda \cup x \cup x\bullet x \cup x\bullet x\bullet x \cup \cdots \)

Recall implicit use of dot \(L(E) \bullet L(F) \)
Equivalence

1. We say that regular expressions E and F are equivalent iff \(L(E) = L(F) \).
2. We treat equivalent expressions as equal (just as we do with arithmetic expressions; (e.g., \(5+7 = 7+5 \)).
3. Equivalences \((E+F)+G = E+(F+G) \) and \((EF)G = E(FG) \) allow us to omit many parentheses when writing regular expressions.
4. Even more parentheses can be omitted when we declare the precedence ordering of the three operators:
 1. star (binds tightest)
 2. concatenation
 3. union (binds least of all)
RE’s over \{0,1\}

- Fill in the blank

- \(E_1 = 0+11\) then \(L(E_1) = \)_____
- \(E_2 = (00+01+10+11)^*\) then \(L(E_2) = \)_____
- \(E_3 = 0^*+1^*\) then \(L(E_3) = \)_____
- \(E_4 = (00^*+11^*)^*\) then \(L(E_4) = \)_____
- \(E_5 = (1+\Lambda)(01)^*(0+\Lambda)\) then \(L(E_5) = \)_____

•
Computing a language

- We can compute a language by using the definition of the meaning of a regular expression
 \[L(a+b.c^*) = L(a) \cup L(bc^*) \]
 \[L(a+b.c^*) = L(a) \cup (L(b).L(c^*)) \]
 \[L(a+b.c^*) = \{a\} \cup (\{b\}.\{c\}^*) \]
 \[L(a+b.c^*) = \{a\} \cup (\{b\}.\{\Lambda, c, cc, ccc, \ldots, c^n\}) \]
 \[L(a+b.c^*) = \{a\} \cup (\{b, bc, bcc, bccc, \ldots, bc^n\}) \]
 \[L(a+b.c^*) = \{a, b, bc, bcc, bccc, \ldots, bc^n\} \]
Laws about Regular expressions

• The regular expressions form an algebra
• There are many laws (just as there are laws about arithmetic) $(5+2)=(2+5)$
Laws about +

1. \(R + T = T + R \)
2. \(R + \emptyset = \emptyset + R = R \)
3. \(R + R = R \)
4. \(R + (S + T) = (R + S) + T \)
Laws about .

1. \(R \cdot \emptyset = \emptyset \cdot R = \emptyset \)
2. \(R \cdot \Lambda = \Lambda \cdot R = R \)
3. \((R \cdot S) \cdot T = R \cdot (S \cdot T) \)

• With Implicit .

1. \(R \emptyset = \emptyset R = \emptyset \)
2. \(R \Lambda = \Lambda R = R \)
3. \((R \cdot S) \cdot T = R \cdot (S \cdot T) \)
Distributive Properties

1. $R(S + T) = RS + RT$
2. $(S + T)R = SR + TR$
Closure Properties *

1. $\emptyset^* = \Lambda^* = \Lambda$
2. $R^* = R^*R^* = (R^*)^* = R + R^*$
3. $R^* = \Lambda + R^* = (\Lambda + R)^* = (\Lambda + R)R^* = \Lambda + RR^*$
4. $R^* = (\Lambda + \ldots + R^k)^* \text{ for all } k \geq 1$
5. $R^* = \Lambda + R + \ldots + R^{(k-1)} + R^kR^* \text{ for all } k \geq 1$
6. $RR^* = R^*R$
7. $R(SR)^* = (RS)^*R$
8. $(R^*S)^* = \Lambda + (R + S)^*S$
9. $(RS^*)^* = \Lambda + R(R + S)^*$
Next time

• We will study how to make recognizers from regular expressions
• We will prove that RE and DFAs describe the same class of languages.