
The Induction Principle 

To prove that a statement S(n) is true for every 
natural number n, it suffices to: 

  

1. Base Case: Prove that the statement S(0) is 
true; 

2. Induction Step: Assuming S(n) is true, prove 
that S(n+1) is true.  

  

When proving the induction step, the assumption 
S(n) is called the induction hypothesis. 

  

Often we need to prove that a statement S(n) is 
true not exactly for every n, but for every n 
starting from a given number k. The base case is 
then S(k); the induction step is the same. 

 



Example 1 

Problem. Prove that the sum of first n odd numbers 
is equal to n2. 

Proof.  The statement S(n) is: 
  1 + 3 +  ...  + (2n-1) = n2 ,  
 I.e. (          ) and we want to prove it is true for 

every n ≥ 1.  
 Base Case. S(1) is the statement 1=1. 
 Induction Step. Assume the induction hypothesis  
       1 + 3 +  ...  + (2n-1) = n2 

The goal is to prove  
       1 + 3 +  ...  + (2n-1)+(2n+1) = (n+1)2 

Using the IH, the goal can be rewritten as 
       n2 + (2n+1) = (n+1)2, 
which is directly verified.  
qed  
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Complete (Strong) Induction 

To prove that a statement S(n) is true for 
every natural number n, it suffices to: 

  
1. Base Case: Prove that the statement 

S(0) is true. 
2. Induction Step:  Assuming n>0 and that 

S(k) is true for all numbers k smaller 
than n, prove that S(n) is true. 

  
 



Example 2 
Problem. Let f : N → Ν  be defined recursively by 
 
 
 
 
 
Prove that f(n)=n for every n. 
Proof.   
Base Case.  f(0)=0; true by definition of f. 
Induction Step. Suppose n>0 and f(k)=k for all k<n. To 

derive f(n)=n, we consider separately the cases when n is 
even and odd.  

  
• If n is even, we have f(n/2) = (n/2) by IH (note (n/2)<n). 

Therefore, f(n) = 2f(n/2) = 2 ∗ (n/2) = n.  
• If n is odd, the IH gives us f(n-1)=n-1, so we get  
      f(n) = f(n-1)+1=(n-1)+1=n.  
qed 
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Example 3 

 Problem.  Suppose two strings u and v satisfy the 
relation uv=vu. Prove that u and v are powers of 
the same string. 

Proof.  Induction on |u|+|v|  Strictly speaking, the 
statement S(n) is this: If uv=vu and |u|+|v|=n 
then u and v are powers of the same string. 

 Base Case. |u|+|v|=0. This implies u=v=ε, and 
the statement is true. 

Induction Step.  We're arguing by complete 
induction. Suppose |u|+|v|= n and n>0 and 
suppose that the statement is true for every u',v' 
such that |u'|+|v'|<n. 

 



Proof continued 

If |u|=|v|, the statement is true. Assume |u|<|v|. 
(The third case |u|>|v| is symmetric and does 
not need to be considered separately.) 

 
Then v=uw for some w and we have uuw=uwu. 

This implies uw=wu. Since |w|<|v|, we have 
|u|+|w|<|u|+|v| and the IH applies giving us 
that u and w are powers of the same string z.  

Clearly then, v=uw is also a power of z.  
 
qed 



Structural Induction 

 A method for proving properties of objects (trees, 
expressions,  etc.) defined recursively. Such 
recursive definitions have a number of base 
cases defining the simplest objects and a number 
of rules telling how a bigger object is build from 
smaller ones.  

To prove that a statement S(x) is true for every 
object it suffices to prove: 

 Base Case:  S(x) is true for the basic objects. 
 Induction Step:  For every rule telling us how to 

build a bigger object x from smaller objects x1, … 
xk, prove that S(x) is true, assuming as the IH 
that S(x1) , … , S(xk) are true. 

 
Structural induction is induction on the size of the object.  
 



Example: Balanced Parentheses  

Parenthesis expressions (pexps) are defined 
recursively by the following rules: 

[1.] The empty string ε is a pexp. 
[2.] If w is a pexp, then (w) is a pexp. 
[3.] If u and v are pexps, then uv is a pexp. 
 

  
Note: pexps define a language over the alphabet 

Σ={ ( , ) }. 
  
Problem 1. Every pexp has equal number of left 

and right parentheses. 
  
 



Pexp proof 

Problem 1.  Every pexp has equal number of left 
and right parentheses. 

For a string x over the alphabet Σ={(,)}, let  E(x) 
denote the property “x has equal number of left 
and right parentheses”. 

Proof.   
1. x=ε.    True for ε.  
2. x = (v) .  Assume v has the same number of left 

and right parentheses, The induction hypothesis. 
Then the same is true of  (v) 

3. x= uv. Assume u and v both have equal number 
of left and right parentheses. Then the same 
holds for uv.  (  E(u) and  E(v) ⇒  E(uv)  ) 

 
qed 



Problem 2 

Problem 2.  If x is a pexp, then every prefix of x 
has at least as many left as right parentheses.  

 Proof. Let S(x) stand for “every prefix of x has at 
least as many left as right parentheses”.  

  
1. x=ε.   S(ε) is true. 
2. x= (w).  If S(w) (the i.h.) is true, then S((w)) is 

true. 
3. x=uv. If S(u) and S(v) are true, then S(uv) is 

true.  
qed 
   
  
 



Problem 3 
Problem. If a string w satisfies both S(w) and 

E(w) then w is a pexp. 
 Proof.  Complete induction on |w|.  

 

Base case. |w|=0 is OK because then we have 
w=ε, and ε is a pexp. 

  

Induction step. Assume that w satisfies S(w) and 
E(w), that |w|>0, and (the IH) that all strings u 
shorter than w and satisfying S(u) and E(u) are 
pexps. 

  

There are two possibilities for w:  
  (1) all its prefixes except ε and w itself have 

strictly greater number of ('s than )'s; (2) there 
exist a prefix u of w such that u≠ ε, u≠  w, and u 
has equal number of ('s and )'s. 



Case analysis 

Case (1). w must be of the form w=(u) for some u. 
Clearly, E(u) is true. But S(u) must be true as 
well (why?). The IH implies that u is a pexp. 
Then, referring to the second rule for building 
pexps, we can conclude that w is a pexp. 

  
Case (2). We can write w=uv. It follows that both u 

and v satisfy the properties E and S (why?). 
Since both u and v are shorter than w, the IH 
applies to them, so u and v are pexps. The third 
rule for building pexps implies finally that w is a 
pexp.   

 
qed 
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