NFA defined
NFA

• A Non-deterministic Finite-state Automata (NFA) is a language recognizing system similar to a DFA.
• It supports a level of non-determinism. I.e. At some points in time it is possible for the machine to take on many next-states.
• Non-determinism makes it easier to express certain kinds of languages.
Nondeterministic Finite Automata (NFA)

• When an NFA receives an input symbol a, it can make a transition to zero, one, two, or even more states.
 – each state can have multiple edges labeled with the same symbol.

• An NFA accepts a string w iff there exists a path labeled w from the initial state to one of the final states.
 – In fact, because of the non-determinism, there may be many states labeled with w
Example N1

- The language of the following NFA consists of all strings over \(\{0, 1\} \) whose 3\(^{rd}\) symbol from the right is 0.

\[Q_0 \xrightarrow{0} Q_1 \xrightarrow{01} Q_2 \xrightarrow{01} Q_3 \]

- Note \(Q_0 \) has multiple transitions on 0
Example N2

• The NFA N_2 accepts strings beginning with 0.

• Note Q_0 has no transition on 1
 – It is acceptable for the transition function to be undefined on some input elements for some states.
Suppose N_1 receives the input string 0011. There are three possible execution sequences:

- $q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_0$
- $q_0 \rightarrow q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3$
- $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3$

Only the second finishes in an accept state. The third even gets stuck (cannot even read the fourth symbol).

As long as there is at least one path to an accepting state, then the string is accepted.
Implementation

• Implementation of NFAs has to be deterministic, using some form of backtracking to go through all possible executions.

• Any thoughts on how this might be accomplished?
Formal Definiton

• An NFA is a quintuple $A = (Q, \Sigma, s, F, T)$, where the first four components are as in a DFA, and the transition function takes values in $P(Q)$ (the power set of Q) instead of Q. Thus $T: Q \times \Sigma \rightarrow P(Q)$ note that T returns a set of states

• A NFA $A = (Q, \Sigma, s, F, T)$, accepts a string $x_1x_2 \ldots x_n$ (an element of Σ^*) iff there exists a sequence of states $q_1q_2 \ldots q_nq_{n+1}$ such that
 • $q_1 = s$
 • $q_{i+1} \in T(q_i, x_i)$
 • $Q_{n+1} \cap F \neq \emptyset$

Compare with

A DFA $A = (Q, \Sigma, s, F, T)$, accepts a string $x_1x_2 \ldots x_n$ (an element of Σ^*) iff

There exists a sequence of states $q_1q_2 \ldots q_nq_{n+1}$ such that

1. $q_1 = s$
2. $q_{i+1} = T(q_i, x_i)$
3. Q_{n+1} is an element of F
The extension of the transition function

- Let an NFA \(A = (Q, \Sigma, s, F, \delta) \)

- The extension \(\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q) \) extends \(\delta \) so that it is defined over a string of input symbols, rather than a single symbol. It is defined by

\[
\begin{align*}
\hat{\delta}(q, \varepsilon) &= \{ q \} \\
\hat{\delta}(q, ua) &= \bigcup_{p \in \delta(q, u)} \delta(p, a),
\end{align*}
\]

Compute this by taking the union of the sets \(\hat{\delta}(p, a) \), where \(p \) varies over all states in the set \(\hat{\delta}(q, u) \)

- First compute \(\hat{\delta}(q, u) \), this is a set, call it \(S \).
- for each element, \(p \) in \(S \), compute \(\delta(p, a) \),
- Union all these sets together.
Another NFA Acceptance Definition

• An NFA accepts a string w iff $\delta(s, w)$ contains a final state. The language of an NFA N is the set $L(N)$ of accepted strings:

$$L(N) = \{ w \mid \delta(s, w) \cap F \neq \emptyset \}$$

• Compare this with the 2 definitions of DFA acceptance in last weeks lecture.

A DFA $A = (Q, \Sigma, s, F, T)$, accepts a string $x_1x_2\ldots x_n$ (an element of Σ^*) iff there exists a sequence of states $q_1q_2\ldots q_nq_{n+1}$ such that

1. $q_1 = s$
2. $q_{i+1} = T(q_i, x_i)$
3. q_{n+1} is an element of F

$L(A) = \{ w \mid T(s, w) \in F \}$
compute $\delta(q_0, 000)$

- $\delta(q, ua) = \bigcup_{p \in \delta(q, u)} \delta(p, a)$

\[\begin{align*}
\delta(q_0, 000) &= \bigcup_{x \in \delta(q_0, 00)} \delta(x, 0) \\
\delta(q_0, 00) &= \bigcup_{y \in \delta(q_0, 0)} \delta(y, 0) \\
\delta(q_0, 0) &= \delta(q_0, 0) = \{q_0, q_1\} \\
\delta(q_0, 00) &= \bigcup_{y \in \{q_0, q_1\}} \delta(y, 0) \\
\delta(q_0, 00) &= \{q_0, q_1\} \cup \{q_2\} = \{q_0, q_1, q_2\} \\
\delta(q_0, 000) &= \bigcup_{x \in \{q_0, q_1, q_2\}} \delta(x, 0) \\
\delta(q_0, 000) &= \{q_0, q_1\} \cup \{q_2\} \cup \{q_3\} \\
\delta(q_0, 000) &= \{q_0, q_1, q_2, q_3\}
\end{align*}\]
Intuition

• At any point in the walk over a string, such as “000” the machine can be in a set of states.

• To take the next step, on a character ‘c’, we create a new set of states. Those reachable from the old set on a single ‘c’
<table>
<thead>
<tr>
<th>States</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Q0}</td>
<td>{Q0, Q1}</td>
<td>{Q0}</td>
</tr>
<tr>
<td>{Q0, Q1}</td>
<td>{Q0, Q1, Q2}</td>
<td>{Q0, Q2}</td>
</tr>
<tr>
<td>{Q0, Q2}</td>
<td>{Q0, Q1, Q3}</td>
<td>{Q0, Q3}</td>
</tr>
<tr>
<td>{Q0, Q1, Q3}</td>
<td>{Q0, Q1, Q2}</td>
<td>{Q0, Q2}</td>
</tr>
<tr>
<td>{Q0, Q3}</td>
<td>{Q0, Q1}</td>
<td>{Q0}</td>
</tr>
<tr>
<td>{Q0, Q1, Q2}</td>
<td>{Q0, Q1, Q2, Q3}</td>
<td>{Q0, Q2, Q3}</td>
</tr>
<tr>
<td>{Q0, Q1, Q2, Q3}</td>
<td>{Q0, Q1, Q2, Q3}</td>
<td>{Q0, Q2, Q3}</td>
</tr>
<tr>
<td>{Q0, Q2, Q3}</td>
<td>{Q0, Q1, Q3}</td>
<td>{Q0, Q3}</td>
</tr>
</tbody>
</table>