Computation

• Computation uses a well defined series of actions to compute a new result from some input.

• We perform computation all the time

\[
\begin{array}{c}
348 \\
+ 213
\end{array}
\quad \begin{array}{c}
1 \\
348 \\
+ 213
\end{array}
\quad \begin{array}{c}
0 \quad 1 \\
348 \\
+ 213
\end{array}
\quad \begin{array}{c}
0 \quad 1 \\
348 \\
+ 213
\end{array}
\[
\begin{array}{c}
\hline
\hline
1
\hline
61
\hline
561
\end{array}
\]
Properties

• As computer scientists we know Computation
 – Can be carried out by machines
 – Can be broken into sub-pieces
 – Can be paused
 – Can be resumed
 – Can be expressed using many equivalent systems

• The study of computation includes computability
 – what can be computed by different kinds of systems
Binary adders

- B
- A
- Carry In

- Carry Out
- A + B mod 2
Ripple Carry Adder
Languages and Computation

• There are many ways to compute the sum of two binary numbers.
• One historically interesting way is to use the notion of a language as a view of computation.
Language = A set of strings

• A language over an alphabet \(\Sigma \) is any subset of \(\Sigma^* \). That is, any set of strings over \(\Sigma \).

• A language can be finite or infinite.

• Some languages over \{0,1\}:
 – \{\Lambda,01,0011,000111, ... \}
 – The set of all binary representations of prime numbers: \{10,11,101,111,1011, ... \}

• Some languages over ASCII:
 – The set of all English words
 – The set of all C programs
Language Representation

• Languages can be described in many ways
 – For a finite language we can write down all elements in the set of strings \{“1”, “5” , “8”\}
 – We can describe a property that is true of all the elements in the set of strings \{ x | |x| = 1 \}
 – Design a machine that answers yes or no for every possible string.
 – We can write a generator that enumerates all the strings (it might run forever)
A language for even numbers written in base 3

<table>
<thead>
<tr>
<th>Base 10</th>
<th>Base 3</th>
<th>The language</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 0</td>
<td>• 0</td>
<td>{ 0, 2, 11, 20, 22, ...}</td>
</tr>
<tr>
<td>• 1</td>
<td>• 1</td>
<td></td>
</tr>
<tr>
<td>• 2</td>
<td>• 2</td>
<td></td>
</tr>
<tr>
<td>• 3</td>
<td>• 10</td>
<td></td>
</tr>
<tr>
<td>• 4</td>
<td>• 11</td>
<td></td>
</tr>
<tr>
<td>• 5</td>
<td>• 12</td>
<td></td>
</tr>
<tr>
<td>• 6</td>
<td>• 20</td>
<td></td>
</tr>
<tr>
<td>• 7</td>
<td>• 21</td>
<td></td>
</tr>
<tr>
<td>• 8</td>
<td>• 22</td>
<td></td>
</tr>
</tbody>
</table>

There is an infinite number of them, we can write them all down. We’ll need to use another mechanism.
A machine that answers yes or no for every even number written in base 3.

\{ 0, 2, 11, 20, 22, \ldots \}
DFA Formal Definition

- A DFA is a quintuple $A = (Q, \Sigma, s, F, \delta)$, where

- Q is a set of states
- Σ is the alphabet of input symbols (A in Hein)
- s is an element of Q --- the initial state
- F is a subset of Q --- the set of final states
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
Example

- $Q = \{\text{Yes, No}\}$
- $\Sigma = \{0, 1, 2\}$
- $S = \text{Yes}$ (the initial state)
- $F = \{\text{Yes}\}$ (final states are labeled in blue)
- $\delta: Q \times \Sigma \rightarrow Q$
 - $\delta(\text{Yes}, 0) = \text{Yes}$
 - $\delta(\text{Yes}, 2) = \text{Yes}$
 - $\delta(\text{Yes}, 1) = \text{No}$
 - $\delta(\text{No}, 0) = \text{No}$
 - $\delta(\text{No}, 1) = \text{Yes}$
 - $\delta(\text{No}, 2) = \text{No}$
Properties

• DFAs are easy to present pictorially:

They are directed graphs whose nodes are states and whose arcs are labeled by one or more symbols from some alphabet Σ. Here Σ is \{0,1\}.
• One state is *initial* (denoted by a short incoming arrow), and several are *final/accepting* (denoted by a double circle in the text, but by being labeled blue in some of my notes). For every symbol \(a \in \Sigma \) there is an arc labeled \(a \) emanating from every state.

• Automata are string processing devices. The arc from \(q_1 \) to \(q_2 \) labeled 0 shows that when the automaton is in the state \(q_1 \) and receives the input symbol 0, its next state will be \(q_2 \).
• Every path in the graph spells out a string over S. Moreover, for every string $w \in \Sigma^*$ there is a unique path in the graph labelled w. (Every string can be processed.) The set of all strings whose corresponding paths end in a final state is the language of the automaton.

• In this example, the language of the automaton consists of strings over \{0,1\} containing at least two occurrences of 0. In the base 3 example, the language is the even base three numbers.
What can DFA’s compute

• DFAs can express a wide variety of computations
 1. Parity properties (even, odd, mod n) for languages expressed in base m
 2. Addition (we’ll see this in a few slides)
 3. Many pattern matching problems (grep)
• But, not everything.
 – E.g. Can’t compute \{ x \mid x \text{ is a palindrome} \}
Are they good for things other than computation?

• We can use DFAs to compute if a string is a member of some languages.
• But a DFA is mathematical structure ($A = (Q, \Sigma, s, F, \delta)$)
• It is itself an object of study
• We can analyze it and determine some of its properties
Prove

- $Q = \{\text{Yes, No}\}$
- $\Sigma = \{0, 1, 2\}$
- $S = \text{Yes}$ (the initial state)
- $F = \{\text{Yes}\}$ (final states are labeled in blue)
- δ: $Q \times \Sigma \rightarrow Q$
 - $\delta(\text{Yes}, 0) = \text{Yes}$
 - $\delta(\text{Yes}, 2) = \text{Yes}$
 - $\delta(\text{Yes}, 1) = \text{No}$
 - $\delta(\text{No}, 0) = \text{No}$
 - $\delta(\text{No}, 1) = \text{Yes}$
 - $\delta(\text{No}, 2) = \text{No}$

parity(Yes) = 0
parity(No) = 1

Let $s \in Q$, $d \in \Sigma$
$\Delta(s, d) = \text{parity}^{-1}((3 \times (\text{parity } s) + d) \mod 2)$
Six cases

1. delta Yes 0 = Yes \(\text{parity}^{-1} ((3 \times (\text{parity Yes}) + 0) \mod 2) \)
2. delta Yes 2 = Yes \(\text{parity}^{-1} ((3 \times (\text{parity Yes}) + 2) \mod 2) \)
3. delta Yes 1 = No \(\text{parity}^{-1} ((3 \times (\text{parity Yes}) + 1) \mod 2) \)
4. delta No 0 = No \(\text{parity}^{-1} ((3 \times (\text{parity No}) + 0) \mod 2) \)
5. delta No 1 = Yes \(\text{parity}^{-1} ((3 \times (\text{parity No}) + 1) \mod 2) \)
6. delta No 2 = No \(\text{parity}^{-1} ((3 \times (\text{parity No}) + 2) \mod 2) \)

\(\text{parity}(Yes) = 0 \)
\(\text{parity}(No) = 1 \)
Addition as a language

- Let A,B,C be elements of $\{0,1\}^n$ i.e. binary numbers of some fixed length n
- Consider the language $L = \{ ABC \mid A+B=C \}$
- E.g. Let $n=4$ bits wide
 - 0000 0000 0000 is in L
 - 0010 0001 0011 is in L
 - 1111 0001 0000 is not in L
How can we encode this as a DFA?

• Change of representation

• Let a string of 3 binary numbers, such as “0010 0001 0011” be encoded as a string of 3-tuples such as “(0,0,0) (0,0,0) (1,01) (0,1,1)”

• Why can we do this? Nothing says the alphabet can’t be a set of triples!

• Now lets reverse the order of the triples in the string “(0,1,1) (1,01) (0,0,0) (0,0,0)”
 – Least significant bit first.
Encode as follows
Mealy Machine

- A Mealy is a 6-tuple \(A = (Q, \Sigma, O, s, \delta, \text{emit}) \), where

 - \(Q \) is a set of states
 - \(\Sigma \) is the alphabet of input symbols (\(A \) in Hein)
 - \(O \) is the alphabet of the output
 - \(s \) is an element of \(Q \) --- the initial state
 - \(\delta: Q \times \Sigma \rightarrow Q \) is the transition function
 - \(\text{emit}: Q \times \Sigma \rightarrow O \) is the emission function
The Big Picture

• Computer Science is about computation
• A computational system describes a certain kind of computation in a precise and formal way (DFA, Mealy machines).
 – What can it compute?
 – How much does it cost?
 – How is it related to other systems?
 – Can more than one system describe exactly the same computations?
History

• The first computational systems were all based on languages.
• This led to a view of computation that was language related.
 – E.g. which strings are in the language.
 – Is one language a subset (or superset) of another.
 – Can we decide?
 – If we can decide, what is the worst case cost?
 – Are there languages for which the membership predicate cannot be computed?
A Tour of this class

• Languages as computation
 – A hierarchy of languages
 • Regular languages
 • Context Free languages
 • Turing machines
 – A Plethora of systems
 • Regular expressions, DFAs, NFAs, context free grammars, push down automata, Mealy machines, Turing machines, Post systems, and more.

• Computability
 – What can be computed
 – Self applicability (Lisp self interpretor)
 – The Halting Problem
Take aways

• A computational system is like a programming language.
 – A program describes a computation.
 – Different languages have different properties.
 – A language can be analyzed
 • A formal computational system is just data (DFA is a 5-tuple)
 • The structure can be used to prove things about the system
 – What properties hold of all programs?
 – What can never happen?

• A program can be analyzed
 • A program is just data
 • What does this program do?
 • Does it do the same as another?
 • What is its cost?
 • Is it hard understand?
Why is this important?

- Languages are everywhere
- Many technologies are based upon languages
 - Parsing, grep, transition systems.
- The historical record has a beauty that is worth studying in its own right.
- Reasoning about computation is the basis for modern computing.
 - What do programs do? What can we say about what they don’t do? What do they cost? What systems makes writing certain class of programs easier?
- Computational Systems and Programs are just data.
- Knowing what is possible, and what isn’t.