Context Free Pumping Lemma



CFL Pumping Lemma

e A CFL pump consists of two non-overlapping
substrings that can be pumped
simultaneously while staying in the language.

* Precisely, two substrings u and v constitute a
CFL pump for a string w of L when

1. uv # A (which means that at least one of u or v is not empty)

2. And we can write w=xuyvz, so that for everyi>
0

3. xu'yv'z e L



Pumping Lemma

e Let L be a CFL. Then there exists a number n
(depending on L) such that every string win L
of length greater than n contains a CFL pump.

 Moreover, there exists a CFL pump such that
(with the notation as above), |uyv|< n.

e For example, take L={0'1' | i = 0 }: there are no
(RE) pumps in any of its strings, but there are
plenty of CFL pumps.



The pumping Lemma Game

We want to prove L is not context-free. For a proof, it suffices
to give a winning strategy for this game.

The demon first plays n.
We respond with w € L such that |w| >n.

The demon factors w into five substrings, w=xuyvz, with the
proviso that uv # A and |uyv| <n

Finally, we play an integer i > 0, and we win if xu'yviz ¢ L.



Example 1

We prove that L= {0'1'2' | i > 0} is not context-free.
In response to the demon's n, we play w=0"1"2",

The middle segment uyv of the demon's factorization of w = xuyvz,
cannot have an occurrence of both 0 and 2 ( because we can

assume |uyv| <n).

Suppose 2 does not occur in uyv (the other case is similar).

1. Wenplayi=0.

2. Then the total number of 0's and 1's in w,=xyz will be smaller than 2n,
3. while the number of 2's in w, will be n.

4. Thus, w, ¢ L.



Example 2

e Letl be the set of all strings over {0,1}
whose length is a perfect square.

1. The demon plays n
We respond with w = 0""?

3. The demon plays a factorization 0""2 = xuyvz
with 1< |uyv]| <n.

4. We play i=2.

5. The length of the resulting string w, = xu?yv?z
is between n?+1 and n%+n.

6. Inthatinterval, there are no perfect squares,
sow, & L.

N



Proof of the pumping lemma

e Strategy in several steps

Define fanout
Define height yield

Prove a lemma about height yield

> w e

. Apply the lemma to prove pumping lemma



Fanout

e Let fanout(G) denote the maximal length of
the rhs of any production in the grammar G.

e E.g.Forthe Grammar
— S—>SS
— S—>(S)
— S—>¢

e The fanoutis 3



Height Yield

The proof of Pump|n§ Lemma depends on
this simple fact about parse trees.

The he/%ht of a tree is the maximal length of
any path from the root to any leaf.

The yield of a parse tree |s the strin f%
represents (the terminals from a left-to-
right in-order walk)

Lemma. If aJoarse tree of G has helg(ht h{
than its yield has size at most fanout(

Proof. Induction on h
ged



The actual Proof

The constant n for the grammar G is fanout(G)!V! where V is
the set of variables of G.

Suppose w € L(G) and |w]| >n.

Take a parse tree of w with the smallest possible number of
nodes.

By the Height-Yield Lemma, any parse tree of w must have
height > |V].

Therefore, there must be two occurrences of the same
variable on a path from root to a leaf.

Consider the last two occurrences of the same variable (say A)
on that path.

They determine a factorization of the yield w=xuyvz as in the
picture on the next slide



Diagram
We have
S =% xAz

:>>x<
:>>x<

so clearly S =* xu'yv'z
foranyi=>0.



We also need to check that uv # A. Indeed, if uv= A, we can
get a smaller parse tree for the same w by ignoring the
productions “between the two As”. But we have chosen the
smallest possible parse tree for w! Which leads to a
Contradiction.

Finally, we need to check that |uyv| < n. This follows from the
Height-Yield Lemma because the nodes on our chosen path
from the first depicted occurrence of A, onward, are labeled
with necessarily distinct variables.

ged
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