
Accepting Strings

Regular Languages

• A Regular Language is a set of Strings
• Two ways to describe sets of strings S

– Enumerate the strings: S = {s1, s2, s3, …}
– Write a predicate – p: p(x)=True if x is in the set S

• Problems

– Enumeration is hard if set is infinite
– Writing predicate varies depending upon how the

set S is described (RegExp, DFA, NFA, etc)

Enumeration

• Enumeration is easy to write.
• For infinite Sets, effective enumeration is only

an approximation.

meaning:: Ord a => Int -> (RegExp a) -> Set [a]
meaning n (One x) = {x}
meaning n Lambda = {“”}
meaning n Empty = {}
meaning n (Union x y) = union (meaning n x) (meaning n y)
meaning n (Cat x y) = cat (meaning n x) (meaning n y)
meaning n (Star x) = starN n (meaning n x)

Approximating Star
starN 0 x = {””}
starN 1 x = x
starN n x =
 union {””}
 (union x
 (cat x
 (starN (n-1) x)))

Approximate acceptance of RegExp

accept:: Ord a => [a] -> RegExp a -> Bool
accept s r = setElem s (meaning 3 r)

Equivalences and translation

• Since we know that DFA, NFA, NFAe, GenNFA,
and RegExp all describe the same languages,

• And, we have algorithms that translate
between them,

• We can translate to one and use algorithms
for that one.

• Which description has the most direct
acceptance algorithm?

DFA

NFA

εNFA

RegExp

Lift delta fun

Subset
Construction

Via GenNFA by
RegExp
decompostion

State
Elimination

GenNFA

Delta fun lifting

ε-removal

data DFA q s =
 DFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> q,
 start :: q,
 final :: [q]} data NFA q s =

 NFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> [q],
 start :: q,
 final :: [q]}

data NFAe q s =
 NFAe { states :: [q],
 symbols :: [s],
 delta :: q -> Maybe s -> [q],
 start :: q,
 final :: [q]}

data RegExp a
 = Lambda
 | Empty
 | One a
 | Union (RegExp a) (RegExp a)
 | Cat (RegExp a) (RegExp a)
 | Star (RegExp a)

data GNFA q s =
 GNFA { states :: [q],
 symbols :: [s],
 delta :: q -> q -> RegExp s,
 start :: q,
 final :: q }

DFA Acceptance
data DFA q s = DFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> q,
 start :: q,
 final :: [q]}

trans :: (q -> s -> q) -> q -> [s] -> q
trans d q [] = q
trans d q (s:ss) = trans d (d q s) ss

accept :: (Eq q) => DFA q s -> [s] -> Bool
accept m@(DFA {delta = d, start = q0, final = f}) w = elem (trans d q0 w) f

This is δ

Costs of translation

• Whats the cost of translating from one
specification form (RegExp, DFA, NFA, etc.) to
another specification form.

DFA

NFA

εNFA

RegExp

Lift delta
fun

Subset
Construct
ion

Via GenNFA by
RegExp
decompostion

State Elimination

GenNFA

Delta fun
lifting

ε-removal

Regular Expressions can be analyzed

• We saw earlier that a regular expression can
be analyzed to translate it into an Λ-NFA

• Can we use a similar analysis to encode
acceptance of a string by a regular expression
directly, without translating into another
equivalent form (DFA, NFA, etc).

Exact RegExp Acceptance

• We can write an exact RegExp acceptance function.
• It depends upon two functions of RegExp

emptyString:: RegExp sigma -> Bool

– Can the input accept the empty string?

derivative:: RegExp s -> s -> RegExp s
– If a RegExp can accept a string that starts with s, then

what regular expression would accept everything but s?

Derivative

• if “abd…” element of the set denoted by R
• Then what regular expression R’ has the

property that
• “bd…” element the set denoted by R’

• We call R’ the derivative of R with respect to

‘a’

string reg-exp derivative

"xabbc“ x(a+d)b*c (a+d)b*c
"abbc“ (a+d)b*c b*c
"bbc“ b*c b*c
"bc" b*c b*c
"c“ b*c Λ

emptystring

emptyString:: RegExp a -> Bool
emptyString Lambda = True
emptyString Empty = False
emptyString (One a) = False
emptyString (Union x y) = emptyString x || emptyString y
emptyString (Star _) = True
emptyString (Cat x y) = emptyString x && emptyString y

derivative
deriv :: Ord a => RegExp a -> a -> RegExp a
deriv (One a) b = if a==b then Lambda else Empty
deriv (One a) b = Empty
deriv Empty a = Empty
deriv Lambda a = Empty
deriv (Cat x y) a | not(emptyString x) = Cat (deriv x a) y
deriv (Cat x y) a =
 Union (catOpt (deriv x a) y) (deriv y a)
deriv (Union x y) a = Union (deriv x a) (deriv y a)
deriv (Star x) a = Cat (deriv x a) (Star x)

Exact Acceptance

recog:: [a] -> RegExp a -> Bool

recog s Empty = False
recog [] r = emptyString r
recog (x:xs) r = recog xs (deriv r x)

	Accepting Strings
	Regular Languages
	Enumeration
	Approximating Star
	Approximate acceptance of RegExp
	Equivalences and translation
	Slide Number 7
	DFA Acceptance
	Costs of translation
	Regular Expressions can be analyzed
	Exact RegExp Acceptance
	Derivative
	Slide Number 13
	emptystring
	derivative
	Exact Acceptance

