Accepting Strings
Regular Languages

• A Regular Language is a set of Strings
• Two ways to describe sets of strings S
 – Enumerate the strings: \(S = \{s_1, s_2, s_3, \ldots\} \)
 – Write a predicate \(p: p(x)=\text{True if } x \text{ is in the set } S \)

• Problems
 – Enumeration is hard if set is infinite
 – Writing predicate varies depending upon how the set S is described (RegExp, DFA, NFA, etc)
Enumeration

• Enumeration is easy to write.
• For infinite Sets, effective enumeration is only an approximation.

```haskell
meaning:: Ord a => Int -> (RegExp a) -> Set [a]
meaning n (One x) = {x}
meaning n Lambda = {""}
meaning n Empty = {}
meaning n (Union x y) = union (meaning n x) (meaning n y)
meaning n (Cat x y) = cat (meaning n x) (meaning n y)
meaning n (Star x) = starN n (meaning n x)
```
Approximating Star

\[
\begin{align*}
\text{starN } 0 \ x & = \{""\} \\
\text{starN } 1 \ x & = x \\
\text{starN } n \ x & = \\
& \quad \text{union } \{""\} \\
& \quad (\text{union } x \\
& \quad \quad (\text{cat } x \\
& \quad \quad \quad (\text{starN } (n-1) \ x)))
\end{align*}
\]
Approximate acceptance of RegExp

accept :: Ord a => [a] -> RegExp a -> Bool
accept s r = setElem s (meaning 3 r)
Equivalences and translation

• Since we know that DFA, NFA, NFAe, GenNFA, and RegExp all describe the same languages,
• And, we have algorithms that translate between them,
• We can translate to one and use algorithms for that one.
• Which description has the most direct acceptance algorithm?
data DFA q s =
 DFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> q,
 start :: q,
 final :: [q] }

data NFA q s =
 NFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> [q],
 start :: q,
 final :: [q] }

data NFAe q s =
 NFAe { states :: [q],
 symbols :: [s],
 delta :: q -> Maybe s -> [q],
 start :: q,
 final :: [q] }

data RegExp a =
 Lambda
 | Empty
 | One a
 | Union (RegExp a) (RegExp a)
 | Cat (RegExp a) (RegExp a)
 | Star (RegExp a)

data GNFA q s =
 GNFA { states :: [q],
 symbols :: [s],
 delta :: q -> q -> RegExp s,
 start :: q,
 final :: q }

Lift delta fun

Subset Construction

via GenNFA by
RegExp
decomposition

State
Elimination

Delta fun lifting

ε-removal
DFA Acceptance

data DFA q s = DFA { states :: [q],
 symbols :: [s],
 delta :: q -> s -> q,
 start :: q,
 final :: [q]}

trans :: (q -> s -> q) -> q -> [s] -> q
trans d q [] = q
trans d q (s:ss) = trans d (d q s) ss

accept :: (Eq q) => DFA q s -> [s] -> Bool
accept m@(DFA {delta = d, start = q0, final = f}) w = elem (trans d q0 w) f
Costs of translation

• What is the cost of translating from one specification form (RegExp, DFA, NFA, etc.) to another specification form?
Regular Expressions can be analyzed

• We saw earlier that a regular expression can be analyzed to translate it into an Λ-NFA

• Can we use a similar analysis to encode acceptance of a string by a regular expression directly, without translating into another equivalent form (DFA, NFA, etc).
Exact RegExp Acceptance

• We can write an exact RegExp acceptance function.
• It depends upon two functions of RegExp

emptyString:: RegExp sigma -> Bool
 – Can the input accept the empty string?

derivative:: RegExp s -> s -> RegExp s
 – If a RegExp can accept a string that starts with s, then what regular expression would accept everything but s?
Derivative

• if “abd...” element of the set denoted by R
• Then what regular expression R’ has the property that
• “bd...” element the set denoted by R’

• We call R’ the derivative of R with respect to ‘a’
<table>
<thead>
<tr>
<th>string</th>
<th>reg-exp</th>
<th>derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>"xabbc"</td>
<td>x(a+d)b*c</td>
<td>(a+d)b*c</td>
</tr>
<tr>
<td>"abbc"</td>
<td>(a+d)b*c</td>
<td>b*c</td>
</tr>
<tr>
<td>"bbbc"</td>
<td>b*c</td>
<td>b*c</td>
</tr>
<tr>
<td>"bc"</td>
<td>b*c</td>
<td>b*c</td>
</tr>
<tr>
<td>"c"</td>
<td>b*c</td>
<td>Λ</td>
</tr>
</tbody>
</table>
emptyString:: RegExp a -> Bool
emptyString Lambda = True
emptyString Empty = False
emptyString (One a) = False
emptyString (Union x y) = emptyString x || emptyString y
emptyString (Star _) = True
emptyString (Cat x y) = emptyString x && emptyString y
derivative

deriv :: Ord a => RegExp a -> a -> RegExp a
deriv (One a) b = if a==b then Lambda else Empty
deriv (One a) b = Empty
deriv Empty a = Empty
deriv Lambda a = Empty
deriv (Cat x y) a | not(emptyString x) = Cat (deriv x a) y
deriv (Cat x y) a =
 Union (catOpt (deriv x a) y) (deriv y a)
deriv (Union x y) a = Union (deriv x a) (deriv y a)
deriv (Star x) a = Cat (deriv x a) (Star x)
Exact Acceptance

\[
\text{recog}:: \ [a] \rightarrow \text{RegExp} \ a \rightarrow \text{Bool}
\]

\[
\text{recog} \ s \ \text{Empty} = \text{False}
\]

\[
\text{recog} \ [] \ r = \text{emptyString} \ r
\]

\[
\text{recog} \ (x:xs) \ r = \text{recog} \ xs \ (\text{deriv} \ r \ x)
\]