
Accepting Strings 



Regular Languages 

• A Regular Language is a set of Strings 
• Two ways to describe sets of strings S 

– Enumerate the strings:  S = {s1, s2, s3, …} 
– Write a predicate – p:  p(x)=True if x is in the set S 

 
• Problems 

– Enumeration is hard if set is infinite 
– Writing predicate varies depending upon how the 

set S is described (RegExp, DFA, NFA, etc) 



Enumeration 

• Enumeration is easy to write. 
• For infinite Sets,  effective enumeration is only 

an approximation. 
 
meaning:: Ord a => Int -> (RegExp a) -> Set [a] 
meaning n (One x) = {x} 
meaning n Lambda = {“”} 
meaning n Empty = {} 
meaning n (Union x y) = union (meaning n x) (meaning n y) 
meaning n (Cat x y) = cat (meaning n x) (meaning n y) 
meaning n (Star x) = starN n (meaning n x) 

 



Approximating Star 
starN 0 x = {””} 
starN 1 x = x 
starN n x =  
    union {””} 
          (union x  
                (cat x  
                     (starN (n-1) x))) 



Approximate acceptance of RegExp 

accept:: Ord a => [a] -> RegExp a -> Bool 
accept s r = setElem s (meaning 3 r) 



Equivalences and translation 

• Since we know that DFA, NFA, NFAe, GenNFA, 
and RegExp all  describe the same languages, 

• And, we have algorithms that translate 
between them, 

• We can translate to one and use algorithms 
for that one. 

• Which description has the most direct 
acceptance algorithm? 
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data DFA q s =  
   DFA { states :: [q], 
              symbols :: [s], 
              delta :: q -> s -> q, 
              start :: q, 
             final :: [q]} data NFA q s =  

   NFA { states :: [q], 
              symbols :: [s], 
              delta :: q -> s -> [q], 
              start :: q, 
               final :: [q]} 

data NFAe q s =  
   NFAe { states :: [q], 
                symbols :: [s], 
                delta :: q -> Maybe s -> [q], 
                start :: q, 
                final :: [q]} 

data RegExp a 
   = Lambda           
   | Empty                         
   | One a    
   | Union (RegExp a) (RegExp a)  
   | Cat (RegExp a) (RegExp a)  
   | Star (RegExp a) 

data GNFA q s =  
   GNFA { states :: [q], 
                 symbols :: [s], 
                 delta :: q -> q -> RegExp s, 
                 start :: q, 
                 final :: q } 



DFA Acceptance 
data DFA q s = DFA { states :: [q], 
                     symbols :: [s], 
                     delta :: q -> s -> q, 
                     start :: q, 
                     final :: [q]} 
 
trans :: (q -> s -> q) -> q -> [s] -> q 
trans d q [] = q 
trans d q (s:ss) = trans d (d q s) ss 
 
accept :: (Eq q) => DFA q s -> [s] -> Bool 
accept m@(DFA {delta = d, start = q0, final = f}) w = elem (trans d q0 w) f 
 

This is δ 



Costs of translation 

• Whats the cost of translating from one 
specification form (RegExp, DFA, NFA, etc.) to 
another specification form. 
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Regular Expressions can be analyzed 

• We saw earlier that a regular expression can 
be analyzed to translate it into an Λ-NFA 
 

• Can we use a similar analysis to encode 
acceptance of a string by a regular expression 
directly, without translating into another 
equivalent form (DFA, NFA, etc). 



Exact RegExp Acceptance 

• We can write an exact RegExp acceptance function. 
• It depends upon two functions of  RegExp 

 
emptyString:: RegExp sigma -> Bool 

– Can the input accept the empty string? 
 

derivative:: RegExp s -> s -> RegExp s 
– If  a RegExp can accept a string that starts with s, then 

what regular expression would accept everything but s? 
 
 



Derivative 

•  if    “abd…”    element of  the set denoted by R 
• Then what regular expression R’ has the 

property that 
• “bd…” element the set denoted by R’ 

 
• We call R’ the derivative of R with respect to 

‘a’ 



string  reg-exp   derivative 
 
"xabbc“   x(a+d)b*c   (a+d)b*c 
"abbc“   (a+d)b*c    b*c 
"bbc“   b*c     b*c 
"bc"    b*c     b*c 
"c“    b*c     Λ 



emptystring 
 
emptyString:: RegExp a -> Bool 
emptyString Lambda = True 
emptyString Empty = False 
emptyString (One a) = False 
emptyString (Union x y) = emptyString x || emptyString y 
emptyString (Star _) = True 
emptyString (Cat x y) = emptyString x && emptyString y 



derivative 
deriv :: Ord a => RegExp a -> a -> RegExp a  
deriv (One a) b = if a==b then Lambda else Empty 
deriv (One a) b = Empty 
deriv Empty a = Empty 
deriv Lambda a = Empty 
deriv (Cat x y) a | not(emptyString x) = Cat (deriv x a) y 
deriv (Cat x y) a =  
   Union (catOpt (deriv x a) y)  (deriv y a) 
deriv (Union x y) a = Union (deriv x a) (deriv y a) 
deriv (Star x) a = Cat (deriv x a) (Star x) 



Exact Acceptance 

 
recog:: [a] -> RegExp a -> Bool 
 
recog s Empty = False 
recog [] r = emptyString r 
recog (x:xs) r = recog xs (deriv r x)  
  


	Accepting Strings
	Regular Languages
	Enumeration
	Approximating Star
	Approximate acceptance of RegExp
	Equivalences and translation
	Slide Number 7
	DFA Acceptance
	Costs of translation
	Regular Expressions can be analyzed
	Exact RegExp Acceptance
	Derivative
	Slide Number 13
	emptystring
	derivative
	Exact Acceptance

