Advanced Functional Programming

Tim Sheard

-Polymorphism
-Hindley-Milner Polymorphism
-Rank 2 polymorphism

Polymorphism

- A function is polymorphic if it can work on any kind of argument.
$f x=(x, x)$
Main> :t f
f :: a -> (a,a)
- In essence it makes no reference to the value of its argument, it only manipulates it abstractly.

Advanced Functional Programming
 Local Polymorphism

Polymorphism can be scoped.
What type does f have? forall b. b -> (alb)

$$
g \text { x = let f = }
$$

wi = f "z"
wa = f True

$$
\text { in }(x, f)
$$

Main> :t g
g :: a -> (abb -> (abb))

Let as function application

Let is often defined in terms of application

let $\mathrm{x}=\mathrm{e}$ in $\mathrm{y}==(\backslash \mathrm{x}->\mathrm{y}) \mathrm{e}$
But there are difference in how let is typed.

$$
\begin{gathered}
g \times=(\backslash f->\text { let } w 1=f \text { "z" } \\
w 2=f \text { True } \\
\text { in }(x, f)) \\
(\backslash y->(x, y))
\end{gathered}
$$

$$
\begin{gathered}
\hline g \times=\text { let } f=\backslash y->(x, y) \\
w 1=f \text { " } z " \\
w 2=f \text { True } \\
\text { in }(x, f)
\end{gathered}
$$

ERROR " (line 12): Type error in application
*** Expression
*** Term
*** Type
*** Does not match : [Char]
: f True
: True
: Bool

Let polymorphism

Let-bound functions can be polymorphic, but lambda-bound arguments cannot.
This is the essence of Hindley-Milner polymorphism.

This means

no function can be defined to take an argument which must be polymorphic
No argument can ever be used in more than none polymorphic context.
All types have the forall on the outermost forall a. ($x->(a->b)->(x, b))$
as opposed to
x -> (forall a . a -> b) -> (x,b)

Example

$$
\begin{aligned}
& \text { hf x = let wi = f "z" } \\
& \text { w2 = f True } \\
& \qquad \begin{array}{l}
\text { in (w1,w2) }
\end{array} \\
& \begin{array}{ll}
\text { ERROR (line 18): Type error in application } \\
\text { *** Expression } & \text { : f True } \\
\text { *** Term } & \text { : True } \\
\text { *** Type } & \text { : Sol } \\
\text { *** Does not match : [Char] }
\end{array}
\end{aligned}
$$

Rank 2 polymorphism

Rank 2 polymorphism relaxes some of this restriction.

$$
\begin{gathered}
\mathrm{h}::(\text { forall a . a }->\mathrm{a})->\mathrm{x}-\mathrm{l}(\mathrm{x}, \text { Bool) } \\
\mathrm{h} \mathrm{f} x=\text { let } \mathrm{w} 1=\mathrm{f} x \\
\mathrm{w} 2=\mathrm{f} \text { True } \\
\text { in }(\mathrm{w} 1, \mathrm{w} 2)
\end{gathered}
$$

forall's can be in the back-end of an arrow, but never the front end.
(forall ...) -> ((forall ...) -> z)

Type inference

Type inference of polymorphic arguments is undecidable.
If we want rank 2 polymorphism, we must use type annotations. Type-checking of rank 2 polymorphism is decidable
What kind of annotations must we give?
The answer to this is hard to find.
Giving the full signature of every function is enough.
Is there any compromise using less information?

Full application

In order to do type checking, rank 2 functions must be fully applied. That is all polymorphic arguments must be supplied.

```
ex2 = (4,h)
(line 28): Use of \(h\) requires at least 1 argument
```

Arguments to rank 2 functions must really be polymorphic.

```
ex4 = h id 5
Main> :t ex4
    ex4 :: (Integer,Bool)
ex3 = h ( \ x -> 1) 5
ERROR (line 33): Cannot justify constraints in
    application
*** Expression : \x -> 1
*** Type : b -> b
*** Given context : ()
*** Constraints : Num b
```


Advanced Functional Programming
 Rank 2 Data Constructors

Data Constructors with polymorphic components give enough information to do type inference.
data Test $x=C(f o r a l l a \operatorname{a}->x->(a, x)) x$
ex5 = C ($\backslash \mathrm{a}$ x -> (a, $\mathrm{x}+1$)) 3
ex6 = C ($\backslash \mathrm{a} x$-> (a, not x)) True
f3 (C h n) w = h "z" w
What is the type of ex5, ex6, and f3?

Church Numerals

Recognize the data type definition for natural numbers

data Nat = Z | S Nat

The catamorphism for Nat is the natural recursion pattern for Nat (sometimes called the fold)
cataNat zobj sfun $\mathrm{Z}=$ zobj
cataNat zobj sfun ($\mathrm{S} \times$) =

$$
\text { sfun (cataNat zobj sfun } x \text {) }
$$

Many functions on Nat can be defined in terms of cataNat

$$
\begin{aligned}
& \text { plus x y }=\text { cataNat y } S x \\
& \text { ex7 }=p l u s \quad(S Z) \quad(S(S Z)) \\
& M a i n>\operatorname{ex7} \\
& S(S \quad(S Z))
\end{aligned}
$$

Advanced Functional Programming
 CataNat for multiplication

times x y = cataNat $Z(p l u s x) y$
one = S Z
two = S one
three = S two
ex8 = times two three

Main> ex8
S (S (S (S (S (S Z)))))

Nat as a rank 2 function

cataN zobj sfun (N f) = f zobj sfun
$\mathrm{n} 0=\mathrm{N}(\backslash \mathrm{z}$ s -> z)
$\mathrm{n} 1=\mathrm{N}(\backslash \mathrm{z}$ s $->\mathrm{s} z)$
n2 $=N(\backslash z$ s $->s(s z))$
n3 $=N(\backslash z$ s -> s(s(s z)))
$\mathrm{n} 4=\mathrm{N}(\backslash \mathrm{z}$ s $->\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s} z))))$
n2Int $\mathrm{n}=$ cataN $0(+1) \mathrm{n}$
ex9 = n2Int n3

Main> ex9
3

Plus in data type \mathbf{N}

--plus x y = cataNat y S x
succN :: N -> N
$\operatorname{succN}(N \mathrm{f})=N(\backslash \mathrm{z}$ s -> s(f z s))
plusN :: N -> N -> N
plusN x y = cataN y succN x
ex10 = n2Int (plusN n2 n3)

Main> ex10
5

Church Numerals for List

```
data L1 a = L1 (forall b . b -> (a -> b -> b) -> b)
-- [1,2,3,4]
ex1 = L1 (\ n c -> c 1 (c 2 (c 3 (c 4 n))))
toList (L1 f) = f [] (:)
ex11 = toList ex1
Main> :t ex11
ex11 :: [Integer]
Main> ex11
[1, 2, 3, 4]
```


Append in "church numeral" lists

cataList nobj cfun [] = nobj
cataList nobj cfun (x:xs) = cfun x (cataList nobj cfun)
cataL nobj cfun (L1 f) = f nobj cfun
cons $x(L 1 f)=L 1(\backslash n c->c x(f n c))$
app $\mathrm{x} y=$ cataL y cons x
ex12 = app ex1 ex1
ex13 = toList ex12

Main> ex13
$[1,2,3,4,1,2,3,4]$

lists, fusion, and rank 2 polymorphism

- This form of rank 2 polymorphism has been exploited to justify fusion or deforestation.
- Consider

```
sum(map (+1) (upto 3))
sum(map (+1) [1,2,3])
sum[2,3,4]
9
```

- Produces, then consumes a bunch of intermediate lists, which never needed to be produced at all

Discovering fusion

How can we take an arbitrary expression about lists like:
sum(map (+1) (upto 3))
and discover an equivalent expression that does not build the intermediate lists?
Answer: write functions in terms of abstract recursion patterns, and rank-2 representations of lists.
cata : b -> (a -> b -> b) -> [a] -> b
build: (forall $b, b->(a->b->b)->b)->$ [a]
with the law: cata n c (build f) $==\mathrm{f} \mathrm{n} \mathrm{c}$

```
build :: (forall b . b -> (a -> b -> b) -> b) -> [a]
build f = f [] (:)
cata nobj cfun [] = nobj
cata nobj cfun (x:xs) = cfun x (cata nobj cfun xs)
upto x =
    build(\ n c ->
        let h m = if m>x
                                then n
                                else c m (h (m+1))
    in h 1)
mapX f x =
        build(\ n c -> cata n (\ y ys -> c (f y) ys) x)
sumX xs = cata 0 (+) xs
```

$$
\begin{aligned}
& \text { sum(map (+1) (upto 3)) == } \\
& \text { sum(map (+1) } \\
& \text { (build(\n c -> } \\
& \text { let } h \mathrm{~m}=\text { if } \mathrm{m}>3 \\
& \text { then } n \\
& \text { else c m (h (m+1)) } \\
& \text { in h 1) == } \\
& \text { sum(build(\n c -> } \\
& \text { cata } n(\backslash y \text { ys }->c(f y) y s) \\
& \text { (build(\ n c -> } \\
& \text { let } \begin{aligned}
h m=\text { if } & m>3 \\
& \text { then } n
\end{aligned} \\
& \text { else c m (h (m+1)) } \\
& \text { in h 1)) = }
\end{aligned}
$$

```
sum(build(\ n c ->
let h m = if m>3
                        then n
                            else c (f m) (h (m+1))
    in h 1)) ==
cata 0 (+)
    (build(\ n c ->
    let h m = if m>3
                                    then n
                                    else c (f m) (h (m+1))
    in h 1)) ==
let h m = if m>3
        then 0
        else (f m) + (h (m+1))]
in h 1 == sum(map (+1) (upto 3)
```

Advanced Functional Programming

We can encode this as such

```
data List a
    = Nil
    | Cons a (List a)
    | Build (forall b . b -> (a -> b -> b) -> b)
cataZ nobj cfun Nil = nobj
cataz nobj cfun (Cons y ys) = cfun y (cataZ nobj cfun ys)
cataZ nobj cfun (Build f) = f nobj cfun
uptoz x =
    Build(\ n c -> let h m = if m>x
                                then n
                                else c m (h (m+1))
        in h 1)
mapz f x =
    Build(\ n c -> cataZ n (\ y ys -> c (f y) ys) x)
sumZ xs = cataZ 0 (+) xs
```


Results

```
ex14 = sumZ(mapZ (+1) (uptoZ 3))
ex15 = sum(map (+1) ([1..3]))
```

Main> ex14
9
(81 reductions, 177 cells)
Main> ex15
9
(111 reductions, 197 cells)

Type inference and Hindley-Milner

How is type inference done?

- Structural recursion over a term.
- Uses an environment which maps variables to their types
- Returns a computation in a monad
- type infer :: Exp -> Env -> M Type
- What does the Env look like
- partial function from Name -> Scheme
- Scheme is an encoding of a Hindley-Milner polymorphic type. All the forall's to the outermost position.
- Often implemented as a list

How is Env used

$g \mathrm{x}=$ let $\mathrm{f}=1 \mathrm{y}$-> (x, y)

$$
\begin{aligned}
\text { w1 }=f \text { "z" } \\
\text { w2 }=f \text { True } \\
\text { in }(x, f)
\end{aligned}
$$

Every instance of a variable is given a new instance of its type.
Let Capital letters (A,B,C,A1, B1,C1, ...) indicate new fresh type variables.
In the box
suppose f:: forall a . a -> (x,a)

Instantiation

$$
\begin{aligned}
& g \mathrm{x}=\mathrm{let} \mathrm{f}=\backslash \mathrm{y}->(\mathrm{x}, \mathrm{y}) \\
& \mathrm{w} 1=\mathrm{f} \text { " } \mathrm{z} \text { " } \\
& \mathrm{w} 2=\mathrm{f} \text { True } \\
& \text { in }(\mathrm{x}, \mathrm{f})
\end{aligned}
$$

Binding I ntroduction

$$
\begin{aligned}
& g x=\text { let } f=\backslash y \rightarrow(x, y) \\
& w 1=f \text { "z" } \\
& w 2=f \text { True } \\
& \text { in (} x, f \text {) }
\end{aligned}
$$

Every Bound program variable is assigned a new fresh type variable
口 \{g::E1\}
\square \{g::E1, $x:: A 1\}$
\square \{g::E1, x::A1, f::B1, y::C1 \}
ㅁ \{g::E1, x::A1, f::B1, w1::D1\}
\square \{g::E1, $x:: A 1, f:: B 1, ~ w 1:: D 1, ~ w 2:: F 1\}$

Type inference

$$
\begin{gathered}
g x=\text { let } f=\backslash y->(x, y) \\
w 1=f \text { "z" } \\
w 2=f \text { True } \\
\text { in }(x, f)
\end{gathered}
$$

\{g::E1, x::A1, f::B1\}
As type inference proceeds type variables become "bound", thus the type of

$$
\text { (\y -> }(x, y))
$$

becomes
$C 1->(A 1, C 1)$
Since $f=(\backslash y->(x, y))$
the type variable B1 could be bound to C1 -> (A1, C1)

Generalization

But the rules of Hindley-Milner type inference say for every let-bound variable generalize it on all the type variables not in the current scope.

$$
\begin{gathered}
g x=\text { let } f=((\backslash y->(x, y)):: C 1->(A 1, C 1)) \\
w 1=f \text { "z" } \\
w 2=f \text { True } \\
\text { in }(x, f) \\
\{g:: E 1, x:: A 1, f:: B 1\}
\end{gathered}
$$

Since ci does not appear in the types of the current scope, it is generalized and the type of f (B 1) becomes polymorphic.
\{g::E1, x::A1, f::forall c . c -> (A1, c) \}

The monad of Type I nference

Methods required

unify:: Type -> Type -> M ()
lambdaExt :: Name -> Env -> M(Env,Type)
letExt:: Name -> Env -> M(Env,Scheme)
lookup:: Name -> Env -> Scheme instantiate:: Scheme -> M Type generalize:: Type -> Env -> M Scheme freshTypeVar:: M Type

Advanced Functional Programming
 Rank 2 polymorphism

- The Type of runSt is a rank 2 polymorphic type

-runST :: $\forall a$. ($\forall \mathrm{s} . \mathrm{ST} \mathrm{s}$ a) -> a

- The forall is not all the way to the outside.
- There are other uses of rank 2 types.

