
Advanced Functional Programming

Tim Sheard 1 Lecture 8

Advanced Functional
Programming

Tim Sheard

•Polymorphism

•Hindley-Milner Polymorphism

•Rank 2 polymorphism

Advanced Functional Programming

Tim Sheard 2 Lecture 8

Polymorphism

• A function is polymorphic if it can work on
any kind of argument.

f x = (x,x)

Main> :t f

f :: a -> (a,a)

• In essence it makes no reference to the
value of its argument, it only manipulates
it abstractly.

Advanced Functional Programming

Tim Sheard 3 Lecture 8

Local Polymorphism

Polymorphism can be scoped.

g x = let f = \ y -> (x,y)

 w1 = f "z"

 w2 = f True

 in (x,f)

Main> :t g

g :: a -> (a,b -> (a,b))

What type does f have?
forall b . b -> (a,b)

Advanced Functional Programming

Tim Sheard 4 Lecture 8

Let as function application

Let is often defined in terms of application
let x = e in y == (\ x -> y) e

But there are difference in how let is typed.

g x = (\ f -> let w1 = f "z"

 w2 = f True

 in (x,f))

 (\ y -> (x,y))

ERROR " (line 12): Type error in application

*** Expression : f True

*** Term : True

*** Type : Bool

*** Does not match : [Char]

g x = let f = \ y -> (x,y)

 w1 = f "z"

 w2 = f True

 in (x,f)

Advanced Functional Programming

Tim Sheard 5 Lecture 8

Let polymorphism

Let-bound functions can be polymorphic,
but lambda-bound arguments cannot.

This is the essence of Hindley-Milner
polymorphism.

This means
no function can be defined to take an argument

which must be polymorphic
No argument can ever be used in more than

none polymorphic context.
All types have the forall on the outermost
 forall a . (x -> (a -> b) -> (x,b))
as opposed to
 x -> (forall a . a -> b) -> (x,b)

Advanced Functional Programming

Tim Sheard 6 Lecture 8

Example

h f x = let w1 = f "z"

 w2 = f True

 in (w1,w2)

ERROR (line 18): Type error in application

*** Expression : f True

*** Term : True

*** Type : Bool

*** Does not match : [Char]

Advanced Functional Programming

Tim Sheard 7 Lecture 8

Rank 2 polymorphism

Rank 2 polymorphism relaxes some of this
restriction.

h :: (forall a . a -> a) -> x -> (x,Bool)

h f x = let w1 = f x

 w2 = f True

 in (w1,w2)

forall's can be in the back-end of an arrow,
but never the front end.

(forall ...) -> ((forall ...) -> z)

Advanced Functional Programming

Tim Sheard 8 Lecture 8

Type inference

Type inference of polymorphic arguments is
undecidable.

If we want rank 2 polymorphism, we must
use type annotations. Type-checking of
rank 2 polymorphism is decidable

What kind of annotations must we give?
The answer to this is hard to find.
Giving the full signature of every function is

enough.
Is there any compromise using less

information?

Advanced Functional Programming

Tim Sheard 9 Lecture 8

Full application

In order to do type checking, rank 2 functions
must be fully applied. That is all polymorphic
arguments must be supplied.
ex2 = (4,h)
(line 28): Use of h requires at least 1 argument

Arguments to rank 2 functions must really be
polymorphic.
ex4 = h id 5 Main> :t ex4
 ex4 :: (Integer,Bool)

ex3 = h (\ x -> 1) 5
ERROR (line 33): Cannot justify constraints in
application

*** Expression : \x -> 1
*** Type : b -> b
*** Given context : ()
*** Constraints : Num b

Advanced Functional Programming

Tim Sheard 10 Lecture 8

Rank 2 Data Constructors

Data Constructors with polymorphic
components give enough information to
do type inference.

data Test x = C (forall a . a -> x -> (a,x)) x

ex5 = C (\ a x -> (a,x+1)) 3

ex6 = C (\ a x -> (a,not x)) True

f3 (C h n) w = h "z" w

What is the type of ex5, ex6, and f3 ?

Advanced Functional Programming

Tim Sheard 11 Lecture 8

Church Numerals

Recognize the data type definition for natural
numbers
data Nat = Z | S Nat

The catamorphism for Nat is the natural recursion
pattern for Nat (sometimes called the fold)
cataNat zobj sfun Z = zobj
cataNat zobj sfun (S x) =
 sfun (cataNat zobj sfun x)

Many functions on Nat can be defined in terms of
cataNat
plus x y = cataNat y S x
ex7 = plus (S Z) (S (S Z))
Main> ex7
S (S (S Z))

Advanced Functional Programming

Tim Sheard 12 Lecture 8

CataNat for multiplication

times x y = cataNat Z (plus x) y

one = S Z

two = S one

three = S two

ex8 = times two three

Main> ex8

S (S (S (S (S (S Z)))))

Advanced Functional Programming

Tim Sheard 13 Lecture 8

Nat as a rank 2 function
data N = N (forall z . z -> (z -> z) -> z)

cataN zobj sfun (N f) = f zobj sfun

n0 = N(\ z s -> z)

n1 = N(\ z s -> s z)

n2 = N(\ z s -> s(s z))

n3 = N(\ z s -> s(s(s z)))

n4 = N(\ z s -> s(s(s(s z))))

n2Int n = cataN 0 (+1) n

ex9 = n2Int n3

Main> ex9

3

Advanced Functional Programming

Tim Sheard 14 Lecture 8

Plus in data type N

--plus x y = cataNat y S x

succN :: N -> N

succN (N f) = N(\ z s -> s(f z s))

plusN :: N -> N -> N

plusN x y = cataN y succN x

ex10 = n2Int (plusN n2 n3)

Main> ex10

5

Advanced Functional Programming

Tim Sheard 15 Lecture 8

Church Numerals for List

data L1 a = L1 (forall b . b -> (a -> b -> b) -> b)

-- [1,2,3,4]
ex1 = L1 (\ n c -> c 1 (c 2 (c 3 (c 4 n))))

toList (L1 f) = f [] (:)

ex11 = toList ex1

Main> :t ex11
ex11 :: [Integer]
Main> ex11
[1,2,3,4]

Advanced Functional Programming

Tim Sheard 16 Lecture 8

Append in "church numeral" lists
cataList nobj cfun [] = nobj

cataList nobj cfun (x:xs) =

 cfun x (cataList nobj cfun)

cataL nobj cfun (L1 f) = f nobj cfun

cons x (L1 f) = L1(\ n c -> c x (f n c))

app x y = cataL y cons x

ex12 = app ex1 ex1

ex13 = toList ex12

Main> ex13

[1,2,3,4,1,2,3,4]

Advanced Functional Programming

Tim Sheard 17 Lecture 8

lists, fusion, and rank 2 polymorphism

• This form of rank 2 polymorphism has
been exploited to justify fusion or
deforestation.

• Consider
sum(map (+1) (upto 3))
sum(map (+1) [1,2,3])
sum[2,3,4]
9

• Produces, then consumes a bunch of
intermediate lists, which never needed to
be produced at all

Advanced Functional Programming

Tim Sheard 18 Lecture 8

Discovering fusion

How can we take an arbitrary expression about
lists like:
sum(map (+1) (upto 3))

and discover an equivalent expression that
does not build the intermediate lists?

Answer: write functions in terms of abstract
recursion patterns, and rank-2
representations of lists.
cata : b -> (a -> b -> b) -> [a] -> b
build: (forall b . b -> (a -> b -> b) -> b) -> [a]

with the law: cata n c (build f) == f n c

Advanced Functional Programming

Tim Sheard 19 Lecture 8

build :: (forall b . b -> (a -> b -> b) -> b) -> [a]

build f = f [] (:)

cata nobj cfun [] = nobj

cata nobj cfun (x:xs) = cfun x (cata nobj cfun xs)

upto x =

 build(\ n c ->

 let h m = if m>x

 then n

 else c m (h (m+1))

 in h 1)

mapX f x =

 build(\ n c -> cata n (\ y ys -> c (f y) ys) x)

sumX xs = cata 0 (+) xs

Advanced Functional Programming

Tim Sheard 20 Lecture 8

sum(map (+1) (upto 3)) ==

sum(map (+1)

 (build(\ n c ->

 let h m = if m>3

 then n

 else c m (h (m+1))

 in h 1) ==

sum(build(\ n c ->

 cata n (\ y ys -> c (f y) ys)

 (build(\ n c ->

 let h m = if m>3

 then n

 else c m (h (m+1))

 in h 1))) ==

Advanced Functional Programming

Tim Sheard 21 Lecture 8

sum(build(\ n c ->

 let h m = if m>3

 then n

 else c (f m) (h (m+1))

 in h 1)) ==

cata 0 (+)

 (build(\ n c ->

 let h m = if m>3

 then n

 else c (f m) (h (m+1))

 in h 1)) ==

let h m = if m>3

 then 0

 else (f m) + (h (m+1))]

in h 1 == sum(map (+1) (upto 3)

Advanced Functional Programming

Tim Sheard 22 Lecture 8

We can encode this as such

data List a
 = Nil
 | Cons a (List a)
 | Build (forall b . b -> (a -> b -> b) -> b)

cataZ nobj cfun Nil = nobj
cataZ nobj cfun (Cons y ys) = cfun y (cataZ nobj cfun ys)
cataZ nobj cfun (Build f) = f nobj cfun

uptoZ x =
 Build(\ n c -> let h m = if m>x
 then n
 else c m (h (m+1))
 in h 1)
mapZ f x =
 Build(\ n c -> cataZ n (\ y ys -> c (f y) ys) x)
sumZ xs = cataZ 0 (+) xs

Advanced Functional Programming

Tim Sheard 23 Lecture 8

Results

ex14 = sumZ(mapZ (+1) (uptoZ 3))

ex15 = sum(map (+1) ([1..3]))

Main> ex14

9

(81 reductions, 177 cells)

Main> ex15

9

(111 reductions, 197 cells)

Advanced Functional Programming

Tim Sheard 24 Lecture 8

Type inference and Hindley-Milner

How is type inference done?
– Structural recursion over a term.
– Uses an environment which maps variables to

their types
– Returns a computation in a monad
– type infer :: Exp -> Env -> M Type

• What does the Env look like
– partial function from Name -> Scheme
– Scheme is an encoding of a Hindley-Milner

polymorphic type. All the forall's to the
outermost position.

– Often implemented as a list

Advanced Functional Programming

Tim Sheard 25 Lecture 8

How is Env used

g x = let f = \ y -> (x,y)

 w1 = f "z"

 w2 = f True

 in (x,f)

Every instance of a variable is given a new
instance of its type.

Let Capital letters (A,B,C,A1,B1,C1, ...)
indicate new fresh type variables.

In the box
suppose f:: forall a . a -> (x,a)

Advanced Functional Programming

Tim Sheard 26 Lecture 8

Instantiation

g x = let f = \ y -> (x,y)

 w1 = f "z"
 w2 = f True
 in (x,f)

the f in (f "z")
 A1 -> (x,A1) A1 gets "bound" to String

the f in (f True)
 A2 -> (x,A2) A2 gets "bound" to Bool

the f in (x,f)
 A3 -> (x,A3) A3 remains "unbound"

Advanced Functional Programming

Tim Sheard 27 Lecture 8

Binding Introduction

g x = let f = \ y -> (x,y)

 w1 = f "z"
 w2 = f True
 in (x,f)

Every Bound program variable is assigned a
new fresh type variable
{g::E1}
{g::E1, x::A1}
{g::E1, x::A1, f::B1, y::C1 }
{g::E1, x::A1, f::B1, w1::D1}
{g::E1, x::A1, f::B1, w1::D1, w2::F1}

Advanced Functional Programming

Tim Sheard 28 Lecture 8

Type inference

g x = let f = \ y -> (x,y)

 w1 = f "z"

 w2 = f True

 in (x,f)

{g::E1, x::A1, f::B1}

As type inference proceeds type variables
become "bound", thus the type of
(\ y -> (x,y))

becomes
C1 -> (A1,C1)
Since f = (\ y -> (x,y))
the type variable B1 could be bound to
C1 -> (A1,C1)

Advanced Functional Programming

Tim Sheard 29 Lecture 8

Generalization

But the rules of Hindley-Milner type inference say for
every let-bound variable generalize it on all the type
variables not in the current scope.

g x = let f = ((\ y -> (x,y)) :: C1 -> (A1,C1))
 w1 = f "z"

 w2 = f True

 in (x,f)

{g::E1, x::A1, f::B1}

Since C1 does not appear in the types of the current
scope, it is generalized and the type of f (B1)
becomes polymorphic.

{g::E1, x::A1, f::forall c . c -> (A1,c)}

Advanced Functional Programming

Tim Sheard 30 Lecture 8

The monad of Type Inference

Methods required

unify:: Type -> Type -> M ()

lambdaExt :: Name -> Env -> M(Env,Type)

letExt:: Name -> Env -> M(Env,Scheme)

lookup:: Name -> Env -> Scheme

instantiate:: Scheme -> M Type

generalize:: Type -> Env -> M Scheme

freshTypeVar:: M Type

Advanced Functional Programming

Tim Sheard 31 Lecture 8

Rank 2 polymorphism

• The Type of runSt is a rank 2 polymorphic
type
– runST :: ∀a . (∀s . ST s a) -> a

• The forall is not all the way to the outside.
• There are other uses of rank 2 types.

	Advanced Functional Programming
	Polymorphism
	Local Polymorphism
	Let as function application
	Let polymorphism
	Example
	Rank 2 polymorphism
	Type inference
	Full application
	Rank 2 Data Constructors
	Church Numerals
	CataNat for multiplication
	Nat as a rank 2 function
	Plus in data type N
	Church Numerals for List
	Append in "church numeral" lists
	lists, fusion, and rank 2 polymorphism
	Discovering fusion
	Slide Number 19
	Slide Number 20
	Slide Number 21
	We can encode this as such
	Results
	Type inference and Hindley-Milner
	How is Env used
	Instantiation
	Binding Introduction
	Type inference
	Generalization
	The monad of Type Inference
	Rank 2 polymorphism

