
Staging in Haskell  
 

What is Staging 
What does it Mean 

Using Template Haskell 



Example reduction 

–(power 2)  
•  unfold the definition  

 
–(fn x => if 2=0 then 1 else x * (power (2-1) x))  

•   perform the if, under the lambda  
 

–(fn x => x * (power (2-1) x))  
•   unfold power again  

 
–(fn x => x * ((fn x => if 1=0  
–                          then 1  
–                          else x * (power (1-1) x)) 
–              x)) 

• use the beta rule to apply the explicit lambda to x  



Example (cont.) 

–(fn x => x * (if 1=0 then 1 else x * (power (1-1) x)))  
•  perform the if  

 
–(fn x => x * (x * (power (1-1) x)))  

• unfold power again 
•   

–(fn x => x * (x * ((fn x => if 0=0  
–                              then 1  
–                              else x * (power (0-1) x))) 
–                  x))  

• use the beta rule to apply the explicit lambda to x  
 

–(fn x => x * (x * (if 0=0 then 1  
–                          else x * (power (0-1) x))))  

• perform the if  
–(fn x => x * (x * 1)) 



Theory 

• Develop a theory 
• See how it applies in practice 
• How does it work in Template Haskell? 



Solution - Use richer annotations 

• Brackets:   [| e |] 
• no reductions allowed in  e 
• delay computation 
• if  e:t  then [|e|] : [|t|]    (pronounced code of t) 

• Escape:     $ e 
• relax the no reduction rule of brackets above 
• Escape may only occur inside Brackets 
• splice code together to build larger code 

• Run:         run e 
• remove outermost brackets 
• force computations which have been delayed 



Calculus 

• A calculus describes equivalences between program 
fragments. 

• The rules of a calculus can be applied in any order. 
• An implementation applies the rules in some fixed 

order. 
 

• Traditional rules 
– beta  –   (\  x -> e) v            e[v/x] 
– if      –    if true then x else y   x 
–         –    if false then x else y  y 
– delta –   5 + 2                       7 

 



 Rules for code 
• Introduction rule for code 

–[| e |] 
 

•1st elimination rule for code (escape-bracket elim) 
–[| … $[|e|] … |]   --->   [| … e … |] 
• $[|e|]  must appear inside enclosing brackets 
• e must be escape free 
• [|e|] must be at level 0 

 
•2nd elimination rule for code (run-bracket elim) 

–run [|e|] ---> e 
• provided e has no escapes 
• the whole expression is at level 0 



Power example revisited 

power ::  int -> [|int|] -> [|int|]  
power n  x =  
          if n=0  
              then [|1|]  
             else [| $x * $(power (n-1) x) |] 
 
 
ans ::  [| int -> int |]   
ans = [| \ z -> $(power 2 [|z|]) |]; 
 



[|  \ z -> $ (power 2 [|z|]) |] 

[|  \ z ->  

      $(if 2=0  

         then [|1|]  

         else [| $[|z|] * $(power (2-1) [|z|]) |])|] 

[|  \ z -> $[| $[|z|] * $(power (2-1) [|z|])  |] |])  

[|  \ z -> $[| z * $(power (2-1) [|z|]) |]|])  

[|  \ z -> 
   $[| z * $(if 1=0  
               then [|1|]  
               else [| $[|z|] *  
                       $(power (1-1) [|z|]) |]) |]|]) 



[|  \ z -> $[| z * $[| $[|z|] *  

                       $(power (1-1) [|z|]) |]|]|] 

[|  \ z -> $[| z * $[| z *  

                       $(power (1-1) [|z|]) |]|]|] 

[|  \ z -> $[| z * $[| z *  

                       $(power 0 [|z|]) |]|]|] 

[|  \ z -> $[| z * $[| z * $[|1|] |]|]|] 

[|  \ z -> $[| z * $[| z * 1 |]|]|] 

[|  \ z -> $[| z * z * 1 |]|] 

[|  \ z -> z * z * 1|] 



Meta-programming 

• Programs that write programs 
• What Infrastructure is possible in a language designed to help support the 

algorithmic construction of other programs? 

• Advantages of meta-programs 
• capture knowledge 
• efficient solutions 
• design ideas can be communicated and shared 



Staging 
inc x = x + 1 
c1a = [| 4 + 3 |] 
 
c2a = [| \ x -> x + $c1a |] 
 
 
c3 = [| let f x = y - 1  
             where y = 3 * x  
        in f 4 + 3 |] 
c4 = [| inc 3 |] 
c5 = [| [| 3 |] |] 
c6 = [| \ x -> x |] 

brackets build code 

The escape $, splices 
previously existing code 

(c1a) into the hole in 
the brackets marked by 

$c1a 



An example 

• count 0 = [] 
• count n = n: count (n-1) 

 
• count' 0 = [| [] |] 
• count' n = [| $(lift n) : $(count' (n-1)) |] 



Exercise 18 
• The traditional staged function is the power function. The term (power 

3 x) returns x to the third power. The unstaged power function can be 
written as: 

  
power:: Int -> Int -> Int 
power 0 x = 1 
power n x = x * power (n-1) x 
  
Write a staged power function:  
    pow:: Int -> [| Int |] -> [| Int |] 
such that (pow 3 [|99|]) evaluates to 
                 [| 99 * 99 * 99 * 99 * 1 |]. 
This can be written simply by placing staging annotations in the unstaged 

version. 
 



A simple object-language 
data Exp:: * where 
  Variable:: String  -> Exp 
  Constant:: Int -> Exp 
  Plus:: Exp 
  Less:: Exp 
  Apply:: Exp -> Exp -> Exp 
  Tuple:: [Exp] -> Exp  
 
-- exp1  represents “x+y” 
exp1 = Apply Plus  
            (Tuple [Variable "x"  
                   ,Variable "y"]) 
 



A simple value domain 

data Value :: * where 
  IntV:: Int -> Value 
  BoolV:: Bool -> Value 
  FunV:: (Value -> Value) -> Value 
  TupleV :: [Value] -> Value 
 

Values are a disjoint sum of many different semantic 
things, so they will all have the same type. We say 
the values are tagged. 



A simple semantic mapping 
eval:: (String -> Value) -> Exp -> Value 
eval env (Variable s) = env s 
eval env (Constant n) = IntV n 
eval env Plus = FunV plus 
  where plus (TupleV[IntV n ,IntV m]) = IntV(n+m) 
eval env Less = FunV less 
  where less (TupleV[IntV n ,IntV m]) = BoolV(n < m)  
eval env (Apply f x) =  
  case eval env f of 
    FunV g -> g (eval env x) 
eval env (Tuple xs) = TupleV(map (eval env) xs)  
 
Compared to a compiler, a mapping has two forms of overhead 

– Interpretive overhead 
– tagging overhead 



Removing Interpretive overhead 

• We can remove the interpretive overhead by 
the use of staging. 

• I.e. for a given program, we generate a meta 
language program (here that is Template 
Haskell) that when executed will produce the 
same result. 

• Staged programs often run 2-10 times faster 
than un-staged ones. 



A staged semantic mapping 
-- operations on values 
plus (TupleV[IntV n ,IntV m]) = IntV(n+m) 
less (TupleV[IntV n ,IntV m]) = BoolV(n < m) 
apply (FunV g) x = g x 
 
stagedEval:: (String -> [| Value |]) -> Exp -> [| Value |] 
 
stagedEval env (Variable s) = env s 
stagedEval env (Constant n) = lift(IntV n) 
stagedEval env Plus = [| FunV plus |] 
stagedEval env Less = [| FunV less |] 
stagedEval env (Apply f x) =  
   [| apply $(stagedEval env f) $(stagedEval env x) |] 
stagedEval env (Tuple xs) =  
   [| TupleV $(mapLift (stagedEval env) xs) |] 
 where mapLift f [] = lift [] 
       mapLift f (x:xs) = [| $(f x) : $(mapLift f xs) |] 
  



Observe 

ans = stagedEval f exp1  
  where f "x" = lift(IntV 3) 
        f "y" = lift(IntV 4) 
         
 
[| %apply (%FunV %plus)  
          (%TupleV [IntV 3,IntV 4]) 
|] : [| Value |] 
 



Removing tagging 

• Consider the residual program 
[| %apply (%FunV %plus)  
          (%TupleV [IntV 3,IntV 4]) 
|] 
 

The FunV, TupleV and IntV are tags. 
They make it possible for integers, tuples, and functions 

to have the same type (Value) 
But, in a well typed object-language program they are 

superfluous. 



Typed object languages 
• We will create an indexed term of the object language. 
• The index will state the type of the object-language term being 

represented. 
 

data Term:: * -> * where 
  Const :: Int -> Term Int               -- 5 
  Add:: Term ((Int,Int) -> Int)          -- (+) 
  LT:: Term ((Int,Int) -> Bool)          -- (<) 
  Ap:: Term(a -> b) -> Term a -> Term b  -- (+) (x,y) 
  Pair:: Term a -> Term b -> Term(a,b)   -- (x,y) 
 
• Note there are no variables in this object language 
 



The value domain 

• The value domain is just a subset of Haskell 
values. 

• No tags are necessary. 



A tag less interpreter 

evalTerm :: Term a -> a 
evalTerm (Const x) = x 
evalTerm Add = \ (x,y) -> x+y 
evalTerm LT = \ (x,y) -> x < y 
evalTerm (Ap f x) =  
    evalTerm f (evalTerm x) 
evalTerm (Pair x y) =  
    (evalTerm x,evalTerm y) 



Exercise 1 
• In the object-languages we have seen so far, there are no variables. One way to add variables to a typed 

object language is to add a variable constructor tagged by a name and a type. A singleton type 
representing all the possible types of a program term is necessary. For example, we may add a  Var 
constructor as follows (where the Rep is similar to the Rep type from Exercise 9). 
 

data Term:: * -> * where 
  Var:: String -> Rep t -> Term t        -- x 
  Const :: Int -> Term Int               -- 5 
 . . 
• Write a GADT for Rep. Now the evaluation function for Term needs an environment that can store 

many different types. One possibility is use existentially quantified types in the environment as we did in 
Exercise 21. Something like: 

  
data Env where 
  Empty :: Env 
  Extend :: String -> Rep t -> t -> Env -> Env 
 
eval:: Term t -> Env -> t 
  
• Write the evaluation function for the Term type extended with variables. You will need a function akin to 

test from the lecture on GADTs,  recall it has  type:  test:: Rep a -> Rep b -> Maybe(Equal 
a b). 
 



Typed Representations  
for languages with binding. 

• The type (Term a) tells us it represents an object-
language term with type a 

• If our language has variables, what type would (Var 
“x”) have? 

• It depends upon the context. 
• We need to reflect the type of the variables in a 

term, in an index of the term, as well as the type of 
the whole term itself. 

• E.g.  t :: Term {`a=Int,`b=Bool} Int 



Exercise  
• A common use of labels is to name variables in a data structure used to 

represent some object language as data. Consider the GADT and an 
evaluation function over that object type. 
 
data Expr:: * where 
  VarExpr :: Label t -> Expr 
  PlusExpr:: Expr -> Expr -> Expr 
 
valueOf:: Expr -> [exists t .(Label t,Int)] -> Int 
valueOf (VarExpr v) env = lookup v env 
valueOf (PlusExpr x y) env =  
    valueOf x env + valueOf y env 
 

• Write the function: 
 lookup:: Label v -> [exists t .(Label t,Int)] -> Int 
hint: don’t forget the use of “Ex” . 

 



Languages with binding 
data Lam:: Row Tag * -> * -> *  where 
  Var      :: Label s -> Lam (RCons s t env) t 
  Shift    :: Lam env t -> Lam (RCons s q env) t 
  Abstract :: Label a ->  
              Lam (RCons a s env) t ->  
              Lam env (s -> t) 
  App      :: Lam env (s -> t) ->  
              Lam env s ->  
              Lam env t 
 



A tag-less interpreter 
data Record :: Row Tag * -> * where 
 RecNil :: Record RNil 
 RecCons :: Label a -> b -> 
            Record r -> Record (RCons a b r) 
 

eval:: (Lam e t) -> Record e -> t 
eval (Var s) (RecCons u x env) = x 
eval (Shift exp) (RecCons u x env) =  
   eval exp env 
eval (Abstract s body) env =  
   \ v -> eval body (RecCons s v env) 
eval (App f x) env = eval f env (eval x env) 
 



Exercise  
• Another way to add variables to a typed object language is to reflect the name  and type of 

variables in the meta-level types of the terms in which they occur. Consider the GADTs: 
  
data VNum:: Tag -> * -> Row Tag * -> * where 
  Zv:: VNum l t (RCons l t row) 
  Sv:: VNum l t (RCons a b row) ->  
                VNum l t (RCons x y (RCons a b row)) 
 deriving Nat(u)  -- 0u = Zv,  1u = Sv Zv,  2u = Sv(Sv Zv), etc 
  
data Exp2:: Row Tag * -> * -> * where 
  Var:: Label v -> VNum v t e -> Exp2 e t 
  Less:: Exp2 e Int -> Exp2 e Int -> Exp2 e Bool 
  Add:: Exp2 e Int -> Exp2 e Int -> Exp2 e Int 
  If:: Exp2 e Bool -> Exp2 e t -> Exp2 e t -> Exp2 e t 

 
• What are the types of the terms (Var `x 0u), (Var `x 1u), and (Var `x 

2u), Now the evaluation function for Exp2 needs an environment that stores both 
integers and booleans. Write a datatype declaration for the environment, and then write the 
evaluation function. One way to approach this is to use existentially quantified types in the 
environment as we did in the previous exercise. Better mechanisms exist. Can you think of 
one? 



A compiler = A staged, tag-less interpreter 

data SymTab:: Row Tag * -> * where 
  Insert :: Label a -> [| b |] -> SymTab e -> 
            SymTab (RCons a b e) 
  Empty :: SymTab RNil 
 
compile:: (Lam e t) -> SymTab e -> Code t 
compile (Var s) (Insert u x env) = x 
compile (Shift exp) (Insert u x env) =  
   compile exp env 
compile (Abstract s body) env = 
   [| \ v -> $(compile body (Insert s [|v|] env)) |] 
compile (App f x) env =  
   [| $(compile f env) $(compile x env) |] 
 



Exercise 
• A staged evaluator is a simple compiler. Many compilers have an optimization 

phase. Consider the term language with variables from a previous Exercise. 
 

data Term:: * -> * where 
  Var:: String -> Rep t -> Term t 
  Const :: Int -> Term Int               -- 5 
  Add:: Term ((Int,Int) -> Int)          -- (+) 
  LT:: Term ((Int,Int) -> Bool)          -- ([|) 
  Ap:: Term(a -> b) -> Term a -> Term b  -- (+) (x,y) 
  Pair:: Term a -> Term b -> Term(a,b)   -- (x,y) 
  
• Can you write a well-typed staged evaluator the performs optimizations like 

constant folding, and applies laws like (x+0) = x before generating code? 



Template Haskell 

• All this is fine, but how do we do it in Haskell 
• The notes above are done in Omega (very 

similar) to Haskell. 
• Relating the notes to Template Haskell 



Template Haskell is not Typed 

• The type [| t |]    i.e.   Code of t, does not exist 
 

• Instead we use a monad, Q, called the quoting 
monad, that respects scoping but not types. 
 

• Q Exp  is essentially equivalent to [| t |] 
– Note the type information has been lost. 

 



Example 

data Nat = Zero | Succ Nat 
 
 
-- nat :: Int -> [| Nat |] 
nat :: Int -> Q Exp 
nat 0 = [e| Zero |] 
nat n = [e| Succ $(nat (n-1)) |] 
 



Inspecting generated code 
class PPr  t where 
  ppr:: t -> Doc 
 
sh:: Ppr a => Q a -> IO () 
sh x =  
  do str <- runQ(do { a <- x 
                    ; return(show(ppr a))}) 
     putStrLn str 
 
*S> sh (nat 4) 
S.Succ (S.Succ (S.Succ (S.Succ S.Zero))) 



More TH examples 
sumf 0 x = x 
sumf n x =  
  [e| \ y -> $(sumf (n-1) [e| $x + y |]) |] 
 
pow :: Int -> Q Exp -> Q Exp 
pow 0 x = [| 1 |] 
pow 1 x = x 
pow n x = [e| $x * $(pow (n-1) x) |] 
 
power n = [e| \ x -> $(pow n [e| x |]) |] 
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