
Staging in Haskell

What is Staging
What does it Mean

Using Template Haskell

Example reduction

–(power 2)
• unfold the definition

–(fn x => if 2=0 then 1 else x * (power (2-1) x))

• perform the if, under the lambda

–(fn x => x * (power (2-1) x))
• unfold power again

–(fn x => x * ((fn x => if 1=0
– then 1
– else x * (power (1-1) x))
– x))

• use the beta rule to apply the explicit lambda to x

Example (cont.)

–(fn x => x * (if 1=0 then 1 else x * (power (1-1) x)))
• perform the if

–(fn x => x * (x * (power (1-1) x)))

• unfold power again
•

–(fn x => x * (x * ((fn x => if 0=0
– then 1
– else x * (power (0-1) x)))
– x))

• use the beta rule to apply the explicit lambda to x

–(fn x => x * (x * (if 0=0 then 1
– else x * (power (0-1) x))))

• perform the if
–(fn x => x * (x * 1))

Theory

• Develop a theory
• See how it applies in practice
• How does it work in Template Haskell?

Solution - Use richer annotations

• Brackets: [| e |]
• no reductions allowed in e
• delay computation
• if e:t then [|e|] : [|t|] (pronounced code of t)

• Escape: $ e
• relax the no reduction rule of brackets above
• Escape may only occur inside Brackets
• splice code together to build larger code

• Run: run e
• remove outermost brackets
• force computations which have been delayed

Calculus

• A calculus describes equivalences between program
fragments.

• The rules of a calculus can be applied in any order.
• An implementation applies the rules in some fixed

order.

• Traditional rules
– beta – (\ x -> e) v  e[v/x]
– if – if true then x else y  x
– – if false then x else y  y
– delta – 5 + 2  7

 Rules for code
• Introduction rule for code

–[| e |]

•1st elimination rule for code (escape-bracket elim)
–[| … $[|e|] … |] ---> [| … e … |]
• $[|e|] must appear inside enclosing brackets
• e must be escape free
• [|e|] must be at level 0

•2nd elimination rule for code (run-bracket elim)

–run [|e|] ---> e
• provided e has no escapes
• the whole expression is at level 0

Power example revisited

power :: int -> [|int|] -> [|int|]
power n x =
 if n=0
 then [|1|]
 else [| $x * $(power (n-1) x) |]

ans :: [| int -> int |]
ans = [| \ z -> $(power 2 [|z|]) |];

[| \ z -> $ (power 2 [|z|]) |]

[| \ z ->

 $(if 2=0

 then [|1|]

 else [| $[|z|] * $(power (2-1) [|z|]) |])|]

[| \ z -> $[| $[|z|] * $(power (2-1) [|z|]) |] |])

[| \ z -> $[| z * $(power (2-1) [|z|]) |]|])

[| \ z ->
 $[| z * $(if 1=0
 then [|1|]
 else [| $[|z|] *
 $(power (1-1) [|z|]) |]) |]|])

[| \ z -> $[| z * $[| $[|z|] *

 $(power (1-1) [|z|]) |]|]|]

[| \ z -> $[| z * $[| z *

 $(power (1-1) [|z|]) |]|]|]

[| \ z -> $[| z * $[| z *

 $(power 0 [|z|]) |]|]|]

[| \ z -> $[| z * $[| z * $[|1|] |]|]|]

[| \ z -> $[| z * $[| z * 1 |]|]|]

[| \ z -> $[| z * z * 1 |]|]

[| \ z -> z * z * 1|]

Meta-programming

• Programs that write programs
• What Infrastructure is possible in a language designed to help support the

algorithmic construction of other programs?

• Advantages of meta-programs
• capture knowledge
• efficient solutions
• design ideas can be communicated and shared

Staging
inc x = x + 1
c1a = [| 4 + 3 |]

c2a = [| \ x -> x + $c1a |]

c3 = [| let f x = y - 1
 where y = 3 * x
 in f 4 + 3 |]
c4 = [| inc 3 |]
c5 = [| [| 3 |] |]
c6 = [| \ x -> x |]

brackets build code

The escape $, splices
previously existing code

(c1a) into the hole in
the brackets marked by

$c1a

An example

• count 0 = []
• count n = n: count (n-1)

• count' 0 = [| [] |]
• count' n = [| $(lift n) : $(count' (n-1)) |]

Exercise 18
• The traditional staged function is the power function. The term (power

3 x) returns x to the third power. The unstaged power function can be
written as:

power:: Int -> Int -> Int
power 0 x = 1
power n x = x * power (n-1) x

Write a staged power function:
 pow:: Int -> [| Int |] -> [| Int |]
such that (pow 3 [|99|]) evaluates to
 [| 99 * 99 * 99 * 99 * 1 |].
This can be written simply by placing staging annotations in the unstaged

version.

A simple object-language
data Exp:: * where
 Variable:: String -> Exp
 Constant:: Int -> Exp
 Plus:: Exp
 Less:: Exp
 Apply:: Exp -> Exp -> Exp
 Tuple:: [Exp] -> Exp

-- exp1 represents “x+y”
exp1 = Apply Plus
 (Tuple [Variable "x"
 ,Variable "y"])

A simple value domain

data Value :: * where
 IntV:: Int -> Value
 BoolV:: Bool -> Value
 FunV:: (Value -> Value) -> Value
 TupleV :: [Value] -> Value

Values are a disjoint sum of many different semantic
things, so they will all have the same type. We say
the values are tagged.

A simple semantic mapping
eval:: (String -> Value) -> Exp -> Value
eval env (Variable s) = env s
eval env (Constant n) = IntV n
eval env Plus = FunV plus
 where plus (TupleV[IntV n ,IntV m]) = IntV(n+m)
eval env Less = FunV less
 where less (TupleV[IntV n ,IntV m]) = BoolV(n < m)
eval env (Apply f x) =
 case eval env f of
 FunV g -> g (eval env x)
eval env (Tuple xs) = TupleV(map (eval env) xs)

Compared to a compiler, a mapping has two forms of overhead

– Interpretive overhead
– tagging overhead

Removing Interpretive overhead

• We can remove the interpretive overhead by
the use of staging.

• I.e. for a given program, we generate a meta
language program (here that is Template
Haskell) that when executed will produce the
same result.

• Staged programs often run 2-10 times faster
than un-staged ones.

A staged semantic mapping
-- operations on values
plus (TupleV[IntV n ,IntV m]) = IntV(n+m)
less (TupleV[IntV n ,IntV m]) = BoolV(n < m)
apply (FunV g) x = g x

stagedEval:: (String -> [| Value |]) -> Exp -> [| Value |]

stagedEval env (Variable s) = env s
stagedEval env (Constant n) = lift(IntV n)
stagedEval env Plus = [| FunV plus |]
stagedEval env Less = [| FunV less |]
stagedEval env (Apply f x) =
 [| apply $(stagedEval env f) $(stagedEval env x) |]
stagedEval env (Tuple xs) =
 [| TupleV $(mapLift (stagedEval env) xs) |]
 where mapLift f [] = lift []
 mapLift f (x:xs) = [| $(f x) : $(mapLift f xs) |]

Observe

ans = stagedEval f exp1
 where f "x" = lift(IntV 3)
 f "y" = lift(IntV 4)

[| %apply (%FunV %plus)
 (%TupleV [IntV 3,IntV 4])
|] : [| Value |]

Removing tagging

• Consider the residual program
[| %apply (%FunV %plus)
 (%TupleV [IntV 3,IntV 4])
|]

The FunV, TupleV and IntV are tags.
They make it possible for integers, tuples, and functions

to have the same type (Value)
But, in a well typed object-language program they are

superfluous.

Typed object languages
• We will create an indexed term of the object language.
• The index will state the type of the object-language term being

represented.

data Term:: * -> * where
 Const :: Int -> Term Int -- 5
 Add:: Term ((Int,Int) -> Int) -- (+)
 LT:: Term ((Int,Int) -> Bool) -- (<)
 Ap:: Term(a -> b) -> Term a -> Term b -- (+) (x,y)
 Pair:: Term a -> Term b -> Term(a,b) -- (x,y)

• Note there are no variables in this object language

The value domain

• The value domain is just a subset of Haskell
values.

• No tags are necessary.

A tag less interpreter

evalTerm :: Term a -> a
evalTerm (Const x) = x
evalTerm Add = \ (x,y) -> x+y
evalTerm LT = \ (x,y) -> x < y
evalTerm (Ap f x) =
 evalTerm f (evalTerm x)
evalTerm (Pair x y) =
 (evalTerm x,evalTerm y)

Exercise 1
• In the object-languages we have seen so far, there are no variables. One way to add variables to a typed

object language is to add a variable constructor tagged by a name and a type. A singleton type
representing all the possible types of a program term is necessary. For example, we may add a Var
constructor as follows (where the Rep is similar to the Rep type from Exercise 9).

data Term:: * -> * where
 Var:: String -> Rep t -> Term t -- x
 Const :: Int -> Term Int -- 5
 . .
• Write a GADT for Rep. Now the evaluation function for Term needs an environment that can store

many different types. One possibility is use existentially quantified types in the environment as we did in
Exercise 21. Something like:

data Env where
 Empty :: Env
 Extend :: String -> Rep t -> t -> Env -> Env

eval:: Term t -> Env -> t

• Write the evaluation function for the Term type extended with variables. You will need a function akin to

test from the lecture on GADTs, recall it has type: test:: Rep a -> Rep b -> Maybe(Equal
a b).

Typed Representations
for languages with binding.

• The type (Term a) tells us it represents an object-
language term with type a

• If our language has variables, what type would (Var
“x”) have?

• It depends upon the context.
• We need to reflect the type of the variables in a

term, in an index of the term, as well as the type of
the whole term itself.

• E.g. t :: Term {`a=Int,`b=Bool} Int

Exercise
• A common use of labels is to name variables in a data structure used to

represent some object language as data. Consider the GADT and an
evaluation function over that object type.

data Expr:: * where
 VarExpr :: Label t -> Expr
 PlusExpr:: Expr -> Expr -> Expr

valueOf:: Expr -> [exists t .(Label t,Int)] -> Int
valueOf (VarExpr v) env = lookup v env
valueOf (PlusExpr x y) env =
 valueOf x env + valueOf y env

• Write the function:
 lookup:: Label v -> [exists t .(Label t,Int)] -> Int
hint: don’t forget the use of “Ex” .

Languages with binding
data Lam:: Row Tag * -> * -> * where
 Var :: Label s -> Lam (RCons s t env) t
 Shift :: Lam env t -> Lam (RCons s q env) t
 Abstract :: Label a ->
 Lam (RCons a s env) t ->
 Lam env (s -> t)
 App :: Lam env (s -> t) ->
 Lam env s ->
 Lam env t

A tag-less interpreter
data Record :: Row Tag * -> * where
 RecNil :: Record RNil
 RecCons :: Label a -> b ->
 Record r -> Record (RCons a b r)

eval:: (Lam e t) -> Record e -> t
eval (Var s) (RecCons u x env) = x
eval (Shift exp) (RecCons u x env) =
 eval exp env
eval (Abstract s body) env =
 \ v -> eval body (RecCons s v env)
eval (App f x) env = eval f env (eval x env)

Exercise
• Another way to add variables to a typed object language is to reflect the name and type of

variables in the meta-level types of the terms in which they occur. Consider the GADTs:

data VNum:: Tag -> * -> Row Tag * -> * where
 Zv:: VNum l t (RCons l t row)
 Sv:: VNum l t (RCons a b row) ->
 VNum l t (RCons x y (RCons a b row))
 deriving Nat(u) -- 0u = Zv, 1u = Sv Zv, 2u = Sv(Sv Zv), etc

data Exp2:: Row Tag * -> * -> * where
 Var:: Label v -> VNum v t e -> Exp2 e t
 Less:: Exp2 e Int -> Exp2 e Int -> Exp2 e Bool
 Add:: Exp2 e Int -> Exp2 e Int -> Exp2 e Int
 If:: Exp2 e Bool -> Exp2 e t -> Exp2 e t -> Exp2 e t

• What are the types of the terms (Var `x 0u), (Var `x 1u), and (Var `x

2u), Now the evaluation function for Exp2 needs an environment that stores both
integers and booleans. Write a datatype declaration for the environment, and then write the
evaluation function. One way to approach this is to use existentially quantified types in the
environment as we did in the previous exercise. Better mechanisms exist. Can you think of
one?

A compiler = A staged, tag-less interpreter

data SymTab:: Row Tag * -> * where
 Insert :: Label a -> [| b |] -> SymTab e ->
 SymTab (RCons a b e)
 Empty :: SymTab RNil

compile:: (Lam e t) -> SymTab e -> Code t
compile (Var s) (Insert u x env) = x
compile (Shift exp) (Insert u x env) =
 compile exp env
compile (Abstract s body) env =
 [| \ v -> $(compile body (Insert s [|v|] env)) |]
compile (App f x) env =
 [| $(compile f env) $(compile x env) |]

Exercise
• A staged evaluator is a simple compiler. Many compilers have an optimization

phase. Consider the term language with variables from a previous Exercise.

data Term:: * -> * where
 Var:: String -> Rep t -> Term t
 Const :: Int -> Term Int -- 5
 Add:: Term ((Int,Int) -> Int) -- (+)
 LT:: Term ((Int,Int) -> Bool) -- ([|)
 Ap:: Term(a -> b) -> Term a -> Term b -- (+) (x,y)
 Pair:: Term a -> Term b -> Term(a,b) -- (x,y)

• Can you write a well-typed staged evaluator the performs optimizations like

constant folding, and applies laws like (x+0) = x before generating code?

Template Haskell

• All this is fine, but how do we do it in Haskell
• The notes above are done in Omega (very

similar) to Haskell.
• Relating the notes to Template Haskell

Template Haskell is not Typed

• The type [| t |] i.e. Code of t, does not exist

• Instead we use a monad, Q, called the quoting
monad, that respects scoping but not types.

• Q Exp is essentially equivalent to [| t |]
– Note the type information has been lost.

Example

data Nat = Zero | Succ Nat

-- nat :: Int -> [| Nat |]
nat :: Int -> Q Exp
nat 0 = [e| Zero |]
nat n = [e| Succ $(nat (n-1)) |]

Inspecting generated code
class PPr t where
 ppr:: t -> Doc

sh:: Ppr a => Q a -> IO ()
sh x =
 do str <- runQ(do { a <- x
 ; return(show(ppr a))})
 putStrLn str

*S> sh (nat 4)
S.Succ (S.Succ (S.Succ (S.Succ S.Zero)))

More TH examples
sumf 0 x = x
sumf n x =
 [e| \ y -> $(sumf (n-1) [e| $x + y |]) |]

pow :: Int -> Q Exp -> Q Exp
pow 0 x = [| 1 |]
pow 1 x = x
pow n x = [e| $x * $(pow (n-1) x) |]

power n = [e| \ x -> $(pow n [e| x |]) |]

	Staging in Haskell �
	Example reduction
	Example (cont.)
	Theory
	Solution - Use richer annotations
	Calculus
	 Rules for code
	Power example revisited
	Slide Number 9
	Slide Number 10
	Meta-programming
	Staging
	An example
	Exercise 18
	A simple object-language
	A simple value domain
	A simple semantic mapping
	Removing Interpretive overhead
	A staged semantic mapping
	Observe
	Removing tagging
	Typed object languages
	The value domain
	A tag less interpreter
	Exercise 1
	Typed Representations �for languages with binding.
	Exercise
	Languages with binding
	A tag-less interpreter
	Exercise
	A compiler = A staged, tag-less interpreter
	Exercise
	Template Haskell
	Template Haskell is not Typed
	Example
	Inspecting generated code
	More TH examples

