
1

Testing in Haskell:
using HUnit

Notes , thanks to Mark P Jones
Portland State University

2

Testing, Testing, Testing, …

3

Testing:
Testing can confirm expectations about how
things work

Conversely, testing can set expectations about
how things should work

It can be dangerous to generalize from tests
“Testing can be used to show the presence of bugs, but
never to show their absence” [Edsger Dijkstra, 1969]

But testing does help us to find & avoid:
 Bugs in the things we build
 Bugs in the claims we make about those things

4

Example: filter

filter :: (a -> Bool) -> [a] -> [a]

filter even [1..10] = [2,4,6,8,10]

filter (<5) [1..100] = [1,2,3,4]

filter (<5) [100,99..1] = [4,3,2,1]

5

Making Tests Executable:

test1 = filter even [1..10] == [2,4,6,8,10]

test2 = filter (<5) [1..100] == [1,2,3,4]

test3 = filter (<5) [100,99..1] == [4,3,2,1]

6

Making Tests Executable:

test1 = filter even [1..10] == [2,4,6,8,10]

test2 = filter (<5) [1..100] == [1,2,3,4]

test3 = filter (<5) [100,99..1] == [4,3,2,1]

tests = test1 && test2 && test3

7

Pros:
Tests are simple functional programs
Tests are self-checking

Cons:
Have to run tests manually
Testing stops as soon as one test fails
No indication of which test failed
No summary statistics (e.g., # tests run)
Harder to handle complex behavior (e.g.,
testing code that performs I/O actions, raises
an exception, …)

8

Unit Testing in Haskell

9

Enter HUnit:
A library for unit testing
Written in Haskell
Available from http://hunit.sourceforge.net
(Or from http://hackage.haskell.org)

Built-in to recent versions of Hugs and GHC

Just “import Test.HUnit” and you’re ready!

http://hunit.sourceforge.net�
http://hackage.haskell.org�

10

Defining Tests:

import Test.HUnit

test1 = TestCase (assertEqual
 "filter even [1..10]"
 (filter even [1..10])
 [2,4,6,8,10])
test2 = …
test3 = …
tests = TestList [test1, test2, test3]

11

Running Tests:

Main> runTestTT tests
Cases: 3 Tried: 3 Errors: 0 Failures: 0

Main>

12

Detecting Faults:

import Test.HUnit

test1 = TestCase (assertEqual
 “filter even [1..10]”
 (filter even [1..10])
 [2,4,6,9,10])
test2 = …
test3 = …
tests = TestList [test1, test2, test3]

13

Using HUnit:

Main> runTestTT tests
Failure in: 0
filter even [1..10]
expected: [2,4,6,8,10]
 but got: [2,4,6,9,10]
Cases: 3 Tried: 3 Errors: 0 Failures: 1

Main>

14

Labeling Tests:

…

tests = TestLabel “filter tests”
 $ TestList [test1, test2, test3]

15

Using HUnit:

Main> runTestTT tests
Failure in: filter tests:0
filter even [1..10]
expected: [2,4,6,8,10]
 but got: [2,4,6,9,10]
Cases: 3 Tried: 3 Errors: 0 Failures: 1

Main>

16

The Test and Assertion Types:
data Test = TestCase Assertion
 | TestList [Test]
 | TestLabel String Test

runTestTT :: Test -> IO Counts

assertFailure :: String -> Assertion
assertBool :: String -> Bool -> Assertion
assertEqual :: (Eq a, Show a) =>

 String -> a -> a ->
Assertion

17

Problems:
Finding and running tests is a manual
process (easily skipped/overlooked)
It can be hard to trim tests from distributed
code
We still can’t solve the halting problem 

18

Example: merge
Let’s develop a merge function for combining
two sorted lists into a single sorted list:

merge :: [Int] -> [Int] -> [Int]
merge = undefined

What about test cases?

19

Merge Tests:
Simple examples:
merge [1,5,9] [2,3,6,10] == [1,2,3,5,6,9,10]

One or both arguments empty:
merge [] [1,2,3] == [1,2,3]
merge [1,2,3] [] == [1,2,3]

Duplicate elements:
merge [2] [1,2,3] == [1,2,3]
merge [1,2,3] [2] == [1,2,3]

20

Capturing the Tests:
mergeTests
 = TestLabel "merge tests”
 $ TestList [simpleTests, emptyTests, dupTests]

simpleTests
 = TestLabel "simple tests”
 $ TestCase (assertEqual "merge [1,5,9] [2,3,6,10]"
 (merge [1,5,9] [2,3,6,10])
 [1,2,3,5,6,9,10])

emptyTests
 = …

21

Capturing the Tests:
Main> runTestTT mergeTests
Cases: 6 Tried: 0 Errors: 0 Failures: 0
Program error: Prelude.undefined

Main>

22

Refining the Definition (1):
Let’s provide a little more definition for
merge:

merge :: [Int] -> [Int] -> [Int]
merge xs ys = []

What happens to the test cases now?

23

Back to the Tests:
Main> runTestTT mergeTests
Failure in: merge tests:0:simple tests
merge [1,5,9] [2,3,6,10]
expected: []
 but got: [1,2,3,5,6,9,10]
…
Cases: 6 Tried: 6 Errors: 0 Failures: 5

Main>

24

Refining the Definition (2):
Let’s provide a little more definition for
merge:

merge :: [Int] -> [Int] -> [Int]
merge xs ys = xs

What happens to the test cases now?

25

Back to the Tests:
Main> runTestTT mergeTests
Failure in: merge tests:0:simple tests
merge [1,5,9] [2,3,6,10]
expected: [1,5,9]
 but got: [1,2,3,5,6,9,10]
Failure in: merge tests:2:duplicate elements:0
merge [2] [1,2,3]
expected: [2]
 but got: [1,2,3]
Cases: 6 Tried: 6 Errors: 0 Failures: 2

Main>

26

Refining the Definition (3):
Use type information to break the definition
down into multiple cases:

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge (x:xs) ys = ys

27

Refining the Definition (4):
Repeat …

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge (x:xs) [] = x:xs
merge (x:xs) (y:ys)
 = x:xs

28

Refining the Definition (5):
Use guards to split into cases:

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge (x:xs) [] = x:xs
merge (x:xs) (y:ys)
 | x<y = x : merge xs (y:ys)
 | otherwise = y : merge (x:xs) ys

29

Back to the Tests:
Main> runTestTT mergeTests
Failure in: merge tests:2:duplicate elements:0
merge [2] [1,2,3]
expected: [1,2,2,3]
 but got: [1,2,3]
Failure in: merge tests:2:duplicate elements:1
merge [1,2,3] [2]
expected: [1,2,2,3]
 but got: [1,2,3]
Cases: 6 Tried: 6 Errors: 0 Failures: 2

Main>

30

Refining the Definition (6):
Use another guards to add another case:

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge (x:xs) [] = x:xs
merge (x:xs) (y:ys)
 | x<y = x : merge xs (y:ys)
 | y<x = y : merge (x:xs) ys
 | x==y = x : merge xs ys

31

Back to the Tests:
Main> runTestTT mergeTests
Cases: 6 Tried: 6 Errors: 0 Failures: 0

Main>

32

Modifying the Definition:
Suppose we decide to modify the definition:

merge :: [Int] -> [Int] -> [Int]
merge (x:xs) (y:ys)
 | x<y = x : merge xs (y:ys)
 | y<x = y : merge (x:xs) ys
 | x==y = x : merge xs ys
merge xs ys = xs ++ ys

Is this still a valid definition?

33

Back to the Tests:
Main> runTestTT mergeTests
Cases: 6 Tried: 6 Errors: 0 Failures: 0

Main>

34

Lessons Learned:
Writing tests (even before we’ve written the
code we want to test) can expose key details /
design decisions

A library like HUnit can help to automate the
process (at least partially)

Development alternates between coding and
testing

Bugs are expensive, running tests is cheap

Good tests can last a long time; continuing use
as code evolves

	Testing in Haskell:�using HUnit
	Testing, Testing, Testing, …
	Testing:
	Example: filter
	Making Tests Executable:
	Making Tests Executable:
	Slide Number 7
	Unit Testing in Haskell
	Enter HUnit:
	Defining Tests:
	Running Tests:
	Detecting Faults:
	Using HUnit:
	Labeling Tests:
	Using HUnit:
	The Test and Assertion Types:
	Problems:
	Example: merge
	Merge Tests:
	Capturing the Tests:
	Capturing the Tests:
	Refining the Definition (1):
	Back to the Tests:
	Refining the Definition (2):
	Back to the Tests:
	Refining the Definition (3):
	Refining the Definition (4):
	Refining the Definition (5):
	Back to the Tests:
	Refining the Definition (6):
	Back to the Tests:
	Modifying the Definition:
	Back to the Tests:
	Lessons Learned:

