
Advanced Functional Programming

Tim Sheard 1 Lecture 6

Advanced Functional
Programming

Tim Sheard

Monads part 2

Monads and Interpreters

Advanced Functional Programming

Tim Sheard 2 Lecture 6

Small languages

Many programs and systems can be
though of as interpreters for “small
languages”

Examples:
 Yacc – parser generators
 Pretty printing
 regular expressions

Monads are a great way to structure

such systems

Advanced Functional Programming

Tim Sheard 3 Lecture 6

Language 1

eval1 :: T1 -> Id Value

eval1 (Add1 x y) =
 do {x' <- eval1 x
 ; y' <- eval1 y
 ; return (x' + y')}
eval1 (Sub1 x y) =
 do {x' <- eval1 x
 ; y' <- eval1 y
 ; return (x' - y')}
eval1 (Mult1 x y) =
 do {x' <- eval1 x
 ; y' <- eval1 y
 ; return (x' * y')}
eval1 (Int1 n) = return n

data Id x = Id x

data T1 = Add1 T1 T1
 | Sub1 T1 T1
 | Mult1 T1 T1
 | Int1 Int

type Value = Int

Think about abstract syntax
Use an algebraic data type

use types

figure out what a
value is

construct a purely
functional interpreter

use a monad

Advanced Functional Programming

Tim Sheard 4 Lecture 6

Effects and monads

– When a program has effects as well as
returning a value, use a monad to model the
effects.

– This way your reference interpreter can still be
a purely functional program

– This helps you get it right, lets you reason
about what it should do.

– It doesn’t have to be how you actually encode

things in a production version, but many times
it is good enough for even large systems

Advanced Functional Programming

Tim Sheard 5 Lecture 6

Monads and Language Design

Monads are important to language design because:

– The meaning of many languages include effects. It’s
good to have a handle on how to model effects, so it is
possible to build the “reference interpreter”

– Almost all compilers use effects when compiling. This
helps us structure our compilers. It makes them more
modular, and easier to maintain and evolve.

– Its amazing, but the number of different effects that
compilers use is really small (on the order of 3-5).
These are well studied and it is possible to build
libraries of these monadic components, and to reuse
them in many different compilers.

Advanced Functional Programming

Tim Sheard 6 Lecture 6

An exercise in language specification

• In this section we will run through a sequence of
languages which are variations on language 1.

• Each one will introduce a construct whose
meaning is captured as an effect.

• We'll capture the effect first as a pure functional
program (usually a higher order object, i.e. a function ,
but this is not always the case, see exception and output)
then in a second reference interpreter
encapsulate it as a monad.

• The monad encapsulation will have a amazing
effect on the structure of our programs.

Advanced Functional Programming

Tim Sheard 7 Lecture 6

Monads of our exercise

data Id x = Id x

data Exception x = Ok x | Fail

data Env e x = Env (e -> x)

data Store s x = St(s -> (x,s))

data Mult x = Mult [x]

data Output x = OP(x,String)

Advanced Functional Programming

Tim Sheard 8 Lecture 6

Failure effect

eval2a :: T2 -> Exception Value

eval2a (Add2 x y) =
 case (eval2a x,eval2a y) of
 (Ok x', Ok y') -> Ok(x' + y')
 (_,_) -> Fail
eval2a (Sub2 x y) = ...
eval2a (Mult2 x y) = ...
eval2a (Int2 x) = Ok x
eval2a (Div2 x y) =
 case (eval2a x,eval2a y)of
 (Ok x', Ok 0) -> Fail
 (Ok x', Ok y') -> Ok(x' `div` y')
 (_,_) -> Fail

data Exception x
 = Ok x | Fail

data T2
 = Add2 T2 T2
 | Sub2 T2 T2
 | Mult2 T2 T2
 | Int2 Int
 | Div2 T2 T2

Advanced Functional Programming

Tim Sheard 9 Lecture 6

Another way

eval2a (Add2 x y) =
 case (eval2a x,eval2a y) of
 (Ok x', Ok y') -> Ok(x' + y')
 (_,_) -> Fail

eval2a (Add2 x y) =
 case eval2a x of
 Ok x' -> case eval2a y of
 Ok y' -> Ok(x' + y')
 | Fail -> Fail
 Fail -> Fail

Note there are several
orders in which we
could do things

Advanced Functional Programming

Tim Sheard 10 Lecture 6

Monadic Failure
eval2 :: T2 -> Exception Value
eval2 (Add2 x y) =
 do { x' <- eval2 x
 ; y' <- eval2 y
 ; return (x' + y')}
eval2 (Sub2 x y) =
 do { x' <- eval2 x
 ; y' <- eval2 y
 ; return (x' - y')}
eval2 (Mult2 x y) = ...
eval2 (Int2 n) = return n
eval2 (Div2 x y) =
 do { x' <- eval2 x
 ; y' <- eval2 y
 ; if y'==0
 then Fail
 else return
 (div x' y')}

eval1 :: T1 -> Id Value
eval1 (Add1 x y) =
 do {x' <- eval1 x
 ; y' <- eval1 y
 ; return (x' + y')}
eval1 (Sub1 x y) =
 do {x' <- eval1 x
 ; y' <- eval1 y
 ; return (x' - y')}
eval1 (Mult1 x y) = ...
eval1 (Int1 n) = return n

Compare with
language 1

Advanced Functional Programming

Tim Sheard 11 Lecture 6

environments and variables

eval3a :: T3 -> Env Map Value
eval3a (Add3 x y) =
 Env(\e ->
 let Env f = eval3a x
 Env g = eval3a y
 in (f e) + (g e))
eval3a (Sub3 x y) = ...
eval3a (Mult3 x y) = ...
eval3a (Int3 n) = Env(\e -> n)
eval3a (Let3 s e1 e2) =
 Env(\e ->
 let Env f = eval3a e1
 env2 = (s,f e):e
 Env g = eval3a e2
 in g env2)
eval3a (Var3 s) = Env(\ e -> find s e)

data Env e x
 = Env (e -> x)

data T3
 = Add3 T3 T3
 | Sub3 T3 T3
 | Mult3 T3 T3
 | Int3 Int
 | Let3 String T3 T3
 | Var3 String

Type Map =
 [(String,Value)]

Advanced Functional Programming

Tim Sheard 12 Lecture 6

Monadic Version

eval3 :: T3 -> Env Map Value
eval3 (Add3 x y) =
 do { x' <- eval3 x
 ; y' <- eval3 y
 ; return (x' + y')}
eval3 (Sub3 x y) = ...
eval3 (Mult3 x y) = ...
eval3 (Int3 n) = return n
eval3 (Let3 s e1 e2) =
 do { v <- eval3 e1
 ; runInNewEnv s v (eval3 e2) }
eval3 (Var3 s) = getEnv s

Advanced Functional Programming

Tim Sheard 13 Lecture 6

Multiple answers

eval4a :: T4 -> Mult Value
eval4a (Add4 x y) =
 let Mult xs = eval4a x
 Mult ys = eval4a y
 in Mult[x+y | x <- xs, y <- ys]
eval4a (Sub4 x y) = …
eval4a (Mult4 x y) = …
eval4a (Int4 n) = Mult [n]
eval4a (Choose4 x y) =
 let Mult xs = eval4a x
 Mult ys = eval4a y
 in Mult (xs++ys)
eval4a (Sqrt4 x) =
 let Mult xs = eval4a x
 in Mult(roots xs)

data Mult x
 = Mult [x]

data T4
 = Add4 T4 T4
 | Sub4 T4 T4
 | Mult4 T4 T4
 | Int4 Int
 | Choose4 T4 T4
 | Sqrt4 T4

roots [] = []
roots (x:xs) | x<0 = roots xs
roots (x:xs) = y : z : roots xs
 where y = root x
 z = negate y

Advanced Functional Programming

Tim Sheard 14 Lecture 6

Monadic Version

eval4 :: T4 -> Mult Value
eval4 (Add4 x y) =
 do { x' <- eval4 x
 ; y' <- eval4 y
 ; return (x' + y')}
eval4 (Sub4 x y) = …
eval4 (Mult4 x y) = …
eval4 (Int4 n) = return n
eval4 (Choose4 x y) = merge (eval4a x) (eval4a y)
eval4 (Sqrt4 x) =
 do { n <- eval4 x
 ; if n < 0
 then none
 else merge (return (root n))
 (return(negate(root n))) }

merge :: Mult a -> Mult a -> Mult a
merge (Mult xs) (Mult ys) = Mult(xs++ys)
none = Mult []

Advanced Functional Programming

Tim Sheard 15 Lecture 6

Print statement

eval6a :: T6 -> Output Value
eval6a (Add6 x y) =
 let OP(x',s1) = eval6a x
 OP(y',s2) = eval6a y
 in OP(x'+y',s1++s2)
eval6a (Sub6 x y) = ...
eval6a (Mult6 x y) = ...
eval6a (Int6 n) = OP(n,"")
eval6a (Print6 mess x) =
 let OP(x',s1) = eval6a x
 in OP(x',s1++mess++(show x'))

data Output x
 = OP(x,String)

data T6
 = Add6 T6 T6
 | Sub6 T6 T6
 | Mult6 T6 T6
 | Int6 Int
 | Print6 String T6

Advanced Functional Programming

Tim Sheard 16 Lecture 6

monadic form
eval6 :: T6 -> Output Value
eval6 (Add6 x y) = do { x' <- eval6 x
 ; y' <- eval6 y
 ; return (x' + y')}
eval6 (Sub6 x y) = do { x' <- eval6 x
 ; y' <- eval6 y
 ; return (x' - y')}
eval6 (Mult6 x y) = do { x' <- eval6 x
 ; y' <- eval6 y
 ; return (x' * y')}
eval6 (Int6 n) = return n
eval6 (Print6 mess x) =
 do { x' <- eval6 x
 ; printOutput (mess++(show x'))
 ; return x'}

Advanced Functional Programming

Tim Sheard 17 Lecture 6

Why is the monadic form so regular?

• The Monad makes it so.
In terms of effects you wouldn’t expect the code for Add,

which doesn’t affect the printing of output to be
effected by adding a new action for Print

• The Monad “hides” all the necessary detail.

• An Monad is like an abstract datatype (ADT).
The actions like Fail, runInNewEnv, getEnv, Mult,

getstore, putStore and printOutput are the interfaces to
the ADT

• When adding a new feature to the language, only
the actions which interface with it need a big
change.

Though the plumbing might be affected in all actions

Advanced Functional Programming

Tim Sheard 18 Lecture 6

Plumbing
case (eval2a x,eval2a y)of
 (Ok x', Ok y') ->
 Ok(x' + y')
 (_,_) -> Fail

Env(\e ->
 let Env f = eval3a x
 Env g = eval3a y
 in (f e) + (g e))

let Mult xs = eval4a x
 Mult ys = eval4a y
in Mult[x+y |
 x <- xs, y <- ys]

St(\s->
 let St f = eval5a x
 St g = eval5a y
 (x',s1) = f s
 (y',s2) = g s1
 in(x'+y',s2))

let OP(x',s1) = eval6a x
 OP(y',s2) = eval6a y
in OP(x'+y',s1++s2)

The unit and bind of the
monad abstract the
plumbing.

Advanced Functional Programming

Tim Sheard 19 Lecture 6

Adding Monad instances

When we introduce a new monad, we need to
define a few things

1. The “plumbing”
• The return function
• The bind function

2. The operations of the abstraction
• These differ for every monad and are

the interface to the “plumbing”, the
methods of the ADT

• They isolate into one place how the
plumbing and operations work

Advanced Functional Programming

Tim Sheard 20 Lecture 6

The Id monad

data Id x = Id x

instance Monad Id where
 return x = Id x
 (>>=) (Id x) f = f x

There are no
operations, and
only the simplest
plumbing

Advanced Functional Programming

Tim Sheard 21 Lecture 6

The Exception Monad

Data Exceptionn x = Fail | Ok x

instance Monad Exception where
 return x = Ok x
 (>>=) (Ok x) f = f x
 (>>=) Fail f = Fail

There only
operations is Fail
and the plumbing
is matching
against Ok

Advanced Functional Programming

Tim Sheard 22 Lecture 6

The Environment Monad

instance Monad (Env e) where
 return x = Env(\ e -> x)
 (>>=) (Env f) g = Env(\ e -> let Env h = g (f e)
 in h e)

type Map = [(String,Value)]

getEnv :: String -> (Env Map Value)
getEnv nm = Env(\ s -> find s)
 where find [] = error ("Name: "++nm++" not found")
 find ((s,n):m) = if s==nm then n else find m

runInNewEnv :: String -> Int -> (Env Map Value) ->
 (Env Map Value)
runInNewEnv s n (Env g) =
 Env(\ m -> g ((s,n):m))

Advanced Functional Programming

Tim Sheard 23 Lecture 6

The Store Monad

data Store s x = St(s -> (x,s))
instance Monad (Store s) where
 return x = St(\ s -> (x,s))
 (>>=) (St f) g = St h
 where h s1 = g' s2 where (x,s2) = f s1
 St g' = g x
getStore :: String -> (Store Map Value)
getStore nm = St(\ s -> find s s)
 where find w [] = (0,w)
 find w ((s,n):m) = if s==nm then (n,w) else find w m

putStore :: String -> Value -> (Store Map ())
putStore nm n = (St(\ s -> ((),build s)))
 where build [] = [(nm,n)]
 build ((s,v):zs) =
 if s==nm then (s,n):zs else (s,v):(build zs)

Advanced Functional Programming

Tim Sheard 24 Lecture 6

The Multiple results monad

data Mult x = Mult [x]

instance Monad Mult where
 return x = Mult[x]
 (>>=) (Mult zs) f = Mult(flat(map f zs))
 where flat [] = []
 flat ((Mult xs):zs) = xs ++ (flat zs)

Advanced Functional Programming

Tim Sheard 25 Lecture 6

The Output monad

data Output x = OP(x,String)

instance Monad Output where
 return x = OP(x,"")
 (>>=) (OP(x,s1)) f =
 let OP(y,s2) = f x in OP(y,s1 ++ s2)

printOutput:: String -> Output ()
printOutput s = OP((),s)

Advanced Functional Programming

Tim Sheard 26 Lecture 6

Further Abstraction

• Not only do monads hide details, but they
make it possible to design language
fragments

• Thus a full language can be constructed
by composing a few fragments together.

• The complete language will have all the
features of the sum of the fragments.

• But each fragment is defined in complete
ignorance of what features the other
fragments support.

Advanced Functional Programming

Tim Sheard 27 Lecture 6

The Plan

Each fragment will
1. Define an abstract syntax data declaration, abstracted

over the missing pieces of the full language
2. Define a class to declare the methods that are needed

by that fragment.
3. Only after tying the whole language together do we

supply the methods.

There is one class that ties the rest together

class Monad m => Eval e v m where
 eval :: e -> m v

Advanced Functional Programming

Tim Sheard 28 Lecture 6

The Arithmetic Language Fragment

instance
 (Eval e v m,Num v)
 => Eval (Arith e) v m where
 eval (Add x y) =
 do { x' <- eval x
 ; y' <- eval y
 ; return (x'+y') }
 eval (Sub x y) =
 do { x' <- eval x
 ; y' <- eval y
 ; return (x'-y') }
 eval (Times x y) =
 do { x' <- eval x
 ; y' <- eval y
 ; return (x'* y') }
 eval (Int n) = return (fromInt n)

class Monad m =>
 Eval e v m where
 eval :: e -> m v

data Arith x
 = Add x x
 | Sub x x
 | Times x x
 | Int Int

The syntax
fragment

Advanced Functional Programming

Tim Sheard 29 Lecture 6

The divisible Fragment
instance
 (Failure m,
 Integral v,
 Eval e v m) =>
 Eval (Divisible e) v m where

 eval (Div x y) =
 do { x' <- eval x
 ; y' <- eval y
 ; if (toInt y') == 0
 then fails
 else return(x' `div` y')
 }

data Divisible x
 = Div x x

class Monad m =>
 Failure m where
 fails :: m a

The syntax
fragment

The class with
the necessary
operations

Advanced Functional Programming

Tim Sheard 30 Lecture 6

The LocalLet fragment

data LocalLet x
 = Let String x x
 | Var String

class Monad m => HasEnv m v where
 inNewEnv :: String -> v -> m v -> m v
 getfromEnv :: String -> m v

instance (HasEnv m v,Eval e v m) =>
 Eval (LocalLet e) v m where
 eval (Let s x y) =
 do { x' <- eval x
 ; inNewEnv s x' (eval y)
 }
 eval (Var s) = getfromEnv s

The syntax
fragment

The
operations

Advanced Functional Programming

Tim Sheard 31 Lecture 6

The assignment fragment

data Assignment x
 = Assign String x
 | Loc String

class Monad m => HasStore m v where
 getfromStore :: String -> m v
 putinStore :: String -> v -> m v

instance (HasStore m v,Eval e v m) =>
 Eval (Assignment e) v m where
 eval (Assign s x) =
 do { x' <- eval x
 ; putinStore s x' }
 eval (Loc s) = getfromStore s

The syntax
fragment

The
operations

Advanced Functional Programming

Tim Sheard 32 Lecture 6

The Print fragment

data Print x
 = Write String x

class (Monad m,Show v) => Prints m v where
 write :: String -> v -> m v

instance (Prints m v,Eval e v m) =>
 Eval (Print e) v m where

 eval (Write message x) =
 do { x' <- eval x
 ; write message x' }

The syntax
fragment

The
operations

Advanced Functional Programming

Tim Sheard 33 Lecture 6

The Term Language

data Term
 = Arith (Arith Term)
 | Divisible (Divisible Term)
 | LocalLet (LocalLet Term)
 | Assignment (Assignment Term)
 | Print (Print Term)

instance (Monad m, Failure m, Integral v,
 HasEnv m,v HasStore m v, Prints m v) =>
 Eval Term v m where
 eval (Arith x) = eval x
 eval (Divisible x) = eval x
 eval (LocalLet x) = eval x
 eval (Assignment x) = eval x
 eval (Print x) = eval x

Tie the
syntax
fragments
together

Note all the
dependencies

Advanced Functional Programming

Tim Sheard 34 Lecture 6

A rich monad

In order to evaluate Term we need a
rich monad, and value types with the
following constraints.

–Monad m
–Failure m
–Integral v
–HasEnv m v
–HasStore m v
–Prints m v

Advanced Functional Programming

Tim Sheard 35 Lecture 6

The Monad M
type Maps x = [(String,x)]
data M v x =
 M(Maps v -> Maps v -> (Maybe x,String,Maps v))

instance Monad (M v) where
 return x = M(\ st env -> (Just x,[],st))
 (>>=) (M f) g = M h
 where h st env = compare env (f st env)
 compare env (Nothing,op1,st1) = (Nothing,op1,st1)
 compare env (Just x, op1,st1)
 = next env op1 st1 (g x)
 next env op1 st1 (M f2)
 = compare2 op1 (f2 st1 env)
 compare2 op1 (Nothing,op2,st2)
 = (Nothing,op1++op2,st2)
 compare2 op1 (Just y, op2,st2)
 = (Just y, op1++op2,st2)

Advanced Functional Programming

Tim Sheard 36 Lecture 6

Language Design

• Think only about Abstract syntax
this is fairly stable, concrete syntax changes much more often

• Use algebraic datatypes to encode the abstract
syntax

use a language which supports algebraic datatypes

• Makes use of types to structure everything
Types help you think about the structure, so even if you use a

language with out types. Label everything with types

• Figure out what the result of executing a program is
this is your “value” domain. values can be quite complex
think about a purely functional encoding. This helps you get it

right. It doesn’t have to be how you actually encode things. If
it has effects use monads to model the effects.

Advanced Functional Programming

Tim Sheard 37 Lecture 6

Language Design
(cont.)

Construct a purely functional interpreter for
the abstract syntax.

This becomes your “reference” implementation. It is the
standard by which you judge the correctness of other
implementations.

Analyze the target environment
What properties does it have?
What are the primitive actions that get things done?

Relate the primitive actions of the target
environment to the values of the
interpreter.

Can the values be implemented by the primitive actions?

Advanced Functional Programming

Tim Sheard 38 Lecture 6

mutable variables
eval5a :: T5 -> Store Map Value
eval5a (Add5 x y) =
 St(\s-> let St f = eval5a x
 St g = eval5a y
 (x',s1) = f s
 (y',s2) = g s1
 in(x'+y',s2))
eval5a (Sub5 x y) = ...
eval5a (Mult5 x y) = ...
eval5a (Int5 n) = St(\s ->(n,s))
eval5a (Var5 s) = getStore s
eval5a (Assign5 nm x) = St(\s ->
 let St f = eval5a x
 (x',s1) = f s
 build [] = [(nm,x')]
 build ((s,v):zs) =
 if s==nm then (s,x'):zs
 else (s,v):(build zs)
 in (0,build s1))

data Store s x
 = St (s -> (x,s))

data T5
 = Add5 T5 T5
 | Sub5 T5 T5
 | Mult5 T5 T5
 | Int5 Int
 | Var5 String
 | Assign5 String T5

Advanced Functional Programming

Tim Sheard 39 Lecture 6

Monadic Version

eval5 :: T5 -> Store Map Value
eval5 (Add5 x y) =
 do {x' <- eval5 x
 ; y' <- eval5 y
 ; return (x' + y')}
eval5 (Sub5 x y) = ...
eval5 (Mult5 x y) = ...
eval5 (Int5 n) = return n
eval5 (Var5 s) = getStore s
eval5 (Assign5 s x) =
 do { x' <- eval5 x
 ; putStore s x'
 ; return x' }

	Advanced Functional Programming
	Small languages
	Language 1
	Effects and monads
	Monads and Language Design
	An exercise in language specification
	Monads of our exercise
	Failure effect
	Another way
	Monadic Failure
	environments and variables
	Monadic Version
	Multiple answers
	Monadic Version
	Print statement
	monadic form
	Why is the monadic form so regular?
	Plumbing
	Adding Monad instances
	The Id monad
	The Exception Monad
	The Environment Monad
	The Store Monad
	The Multiple results monad
	The Output monad
	Further Abstraction
	The Plan
	The Arithmetic Language Fragment
	The divisible Fragment
	The LocalLet fragment
	The assignment fragment
	The Print fragment
	The Term Language
	A rich monad
	The Monad M
	Language Design
	Language Design (cont.)
	mutable variables
	Monadic Version

