
Monads

Monads part 1
Computations where order matters

A monad orders actions
• An action is any computation that has a natural notion

of order. I.e. one thing happens before another.
– IO is the action of altering the real world.
– There are many other styles of computation that have a

natural notion of order
• A Monad is Haskell’s way of specifying which actions

come before others.
• The “do” operator provides this control over the order

in which computations occur

do { var <- location x -- the first action
 ; write var (b+1) -- the next action
 }

Observations
• Actions are first class.

– They can be abstracted (parameters of functions)
– Stored in data structures. -- It is possible to have a list of actions, etc.

• Actions can be composed.
– They can be built out of smaller actions by glueing them together with

do and return
– They are sequenced with do much like one uses semi-colon in

languages like Pascal and C.
• Actions can be performed (run).

– separation of construction from performance is key to their versatility.
– IO actions are “run” as the “main” function, or interactively in GHCI

• Actions of type: Action() are like statements in imperative
languages.
– They are used only for their side effects.

Do syntactic sugar
do { a; b } = do { _ <- a; b }

do { x <- a
 ; do { y <- b
 ; do { z <- c
 ; d }}} = do {x <- a; y <- b;
 z <- c; d }
= do x <- a
 y <- b
 z <- c
 d -- uses indentation
 -- rather than { ; }

Do: syntax, types, and order
IO Int

Int

semi colons separate actions, I think it is good style to line ; up with
opening { and closing }

last action must
must have type M a
which is the type of do
cannot have v <- ...

actions without
v <- ... must have
type (M a) for some
monad M

do { x <- f
 ; y <- g 7
 ; putChar y
 ; return (x + 4)
 }

Monads have Axioms
• Order matters (and is maintained by Do)

– do { x <- do { y <- b; c }
– ; d } =
– do { y <- b; x <- c; d }

• Return introduces no effects

– do { x <- Return a; e } = e[a/x]
– do { x <- e; Return x } = e

Sample Monads

• data Id x = Id x

• data Exception x = Ok x | Fail

• data Env e x = Env (e -> x)

• data Store s x = Store (s -> (x,s))

• data Mult x = Mult [x]

• data Output x = Output (x,String)

Sample Problem
Importing Excel tables into Haskell

(["1 die","2 die","3 die"]
,[("1",[Just 1,Nothing,Nothing])
 ,("2",[Just 1,Just 1,Nothing])
 ,("3",[Just 1,Just 2,Just 1])
 ,("4",[Just 1,Just 3,Just 3])
 ,("5",[Just 1,Just 4,Just 6])
 ,("6",[Just 1,Just 5,Just 10])
 ,("7",[Nothing,Just 6,Just 15])
 ,("8",[Nothing,Just 5,Just 21])
 ,("9",[Nothing,Just 4,Just 25])
 ,("10",[Nothing,Just 3,Just 27])
 ,("11",[Nothing,Just 2,Just 27])
 ,("12",[Nothing,Just 1,Just 25])
 ,("13",[Nothing,Nothing,Just 21])
 ,("14",[Nothing,Nothing,Just 15])
 ,("15",[Nothing,Nothing,Just 10])
 ,("16",[Nothing,Nothing,Just 6])
 ,("17",[Nothing,Nothing,Just 3])
 ,("18",[Nothing,Nothing,Just 1])]
)

Strategy

• Write Excel table into a comma separated values
file.

• Use the CSV library to import the comma
separated values file into Haskell as a [[String]]

• Process each sublist as a single line of the Excel
table

• Interpret each string in the sublist as the correct
form of data. E.g. an Int, or Bool, or list element,
etc

• Note that order matters. The first element might
be an Int, but the second might be a Bool.

[["","1 die„
 ,"2 die","3 die"],
 ["1","1","",""],
 ["2","1","1",""],
 ["3","1","2","1"],
 ["4","1","3","3"],
 ["5","1","4","6"],
 ["6","1","5","10"],
 ["7","","6","15"],
 ["8","","5","21"],
 ["9","","4","25"],
 ["10","","3","27"],
 ["11","","2","27"],
 ["12","","1","25"],
 ["13","","","21"],
 ["14","","","15"],
 ["15","","","10"],
 ["16","","","6"],
 ["17","","","3"],
 ["18","","","1"],[""]]

(["1 die","2 die","3 die"]
,[("1",[Just 1,Nothing,Nothing])
 ,("2",[Just 1,Just 1,Nothing])
 ,("3",[Just 1,Just 2,Just 1])
 ,("4",[Just 1,Just 3,Just 3])
 ,("5",[Just 1,Just 4,Just 6])
 ,("6",[Just 1,Just 5,Just 10])
 ,("7",[Nothing,Just 6,Just 15])
 ,("8",[Nothing,Just 5,Just 21])
 ,("9",[Nothing,Just 4,Just 25])
 ,("10",[Nothing,Just 3,Just 27])
 ,("11",[Nothing,Just 2,Just 27])
 ,("12",[Nothing,Just 1,Just 25])
 ,("13",[Nothing,Nothing,Just 21])
 ,("14",[Nothing,Nothing,Just 15])
 ,("15",[Nothing,Nothing,Just 10])
 ,("16",[Nothing,Nothing,Just 6])
 ,("17",[Nothing,Nothing,Just 3])
 ,("18",[Nothing,Nothing,Just 1])]
)

Pattern
There is a pattern to the process (a simple form of

parsing)

• Take a [String] as input
• Interpret 1 or more elements to produce data
• Return the data and the rest of the strings

f:: [String] -> (Result,[String])

• Repeat for the next piece of data

Interpretation is different depending upon the data we
want to produce.

What’s involved

Lets observe what
happens for the 6th line
of the Excel table

1. Read a string
2. Read 3 values to

get a [Int]

Note the order involved

Write some code

getString:: [String] -> (String,[String])
getString (s:ss) = (s,ss)
getString [] =
 error "No more strings to read a 'String' from"

getInt:: [String] -> (Int,[String])
getInt (s:ss) = (read s,ss)
getInt [] =
 error "No more strings to read an 'Int' from"

Interpret as a
string. I.e. do

nothing

Interpret as
an Int. Use

read

How can we get a list of Int?

getInts:: Int -> [String] -> ([Int],[String])
getInts 0 ss = ([],ss)
getInts n ss =
 case getInt ss of
 (x,ss2) -> case getInts (n-1) ss2 of
 (xs,ss3) -> (x:xs,ss3)

Note that the order is
enforced by data

dependencies, and we
use the case to
implement it.

Now get line 6
getLine6:: [String] ->
 ((String,[Int]),[String])
getLine6 ss =
 case getString ss of
 (count,ss2) ->
 case getInts 3 ss2 of
 (rolls,ss3) -> ((count,rolls),ss3)

Note how the ordering is
enforced again. We can do

better than this

There are three patterns

• Threading of the list of strings in the function types
– getString:: [String] -> (String,[String])

• Threading in the use of the list
 (count,ss2) ->
 case getInts 3 ss2 of

• Use of the case to create data dependencies that

enforce ordering

• This is a Monad

Parts of a Monad

• A Monad encapsulates some hidden structure
• A Monad captures a repeated pattern
• A Monad enforces ordering

The State Monad

• import Control.Monad.State

• Defines the type constructor (State t a)
– It behaves like
– data State s a = State (s -> (a,s))

• Use the do notation to compose and order
actions (without performing them)

• Use the function evalState to perform actions

One of the standard libraries
Use these
functions,

plus do
and return

to solve
problems

Part of the code
import Control.Monad.State
type Line a = State [String] a
type Reader a = State [[String]] a

getLine6b :: Line (String,[Maybe Int])
getLine6b =
 do { count <- string
 ; rolls <- list 3 (blank int)
 ; return(count,rolls)
 }

The first line is different

getLine1 :: Line [String]
getLine1 =
 do { skip
 ; list 3 string
 }

What do int and string etc look like?
int:: Line Int
int = mapState f (return ())
 where f ((),s:ss) = (read s,ss)
 f ((),[]) =
 error "No more strings to read an 'Int' from"

list:: Int -> Line a -> Line [a]
list 0 r = return []
list n r = do { x <- r; xs <- list (n-1) r; return(x:xs)}

blank:: Line a -> Line(Maybe a)
blank (State g) = State f
 where f ("":xs) = (Nothing, xs)
 f xs = case g xs of
 (y,ys) -> (Just y,ys)

From lines to files
type Reader a = State [[String]] a

lineToReader:: Line a -> Reader a
lineToReader l1 = State g
 where g (line:lines) = (evalState l1 line, lines)

getN :: Int -> Line a -> Reader [a]
getN 0 line = return []
getN n line =
 do { x <- lineToReader line
 ; xs <- getN (n-1) line
 ; return(x:xs)
 }

Reading a whole file
getFile :: Reader ([String],[(String,[Maybe Int])])
getFile =
 do { labels <- lineToReader getLine1
 ; pairs <- getN 18 getLine6b
 ; return(labels,pairs)
 }

importCSV :: Reader a -> String -> IO a
importCSV reader file =
 do { r <- parseCSVFromFile file; (f r)}
 where f (Left err) =
 error ("Error reading from file: "++
 file++"\n"++show err)
 f (Right xs) = return(evalState reader xs)

test1 = importCSV getFile "roll3Die.csv"

Thoughts

• We use state monad at two different states
– Lines where the state is [String]
– Files where the state is [[String]]

• The use of the do notation makes the ordering
explicit and is much cleaner than using nested
case and threading (although this still
happens)

• We have defined higher-order programs like
list, blank, and lineToReader

Can we do better?

• Recall that monadic computations are first
class.

• Can we capture patterns of use in our example
to make things even simpler and more
declarative.

• What patterns do we see again and again?

Patterns
getFile =
 do { labels <- lineToReader getLine1
 ; pairs <- getN 18 getLine6b
 ; return(labels,pairs)
 }

getN n line =
 do { x <- lineToReader line
 ; xs <- getN (n-1) line
 ; return(x:xs)
 }

getLine6b =
 do { count <- string
 ; rolls <- list 3 (blank int)
 ; return(count,rolls)
 }

Run two computations
in order and then
combine the two

results

Generic Monad Operations
infixr 3 `x`
x :: Monad m => m b -> m c -> m(b,c)
r1 `x` r2 = do { a <- r1; b <- r2; return(a,b) }

many :: Monad m => Int -> m c -> m [c]
many n r = sequence (replicate n r)

sequence [] = return []
sequence (c:cs) =
 do { x <- c; xs <- sequence cs; return(x:xs)}

Declarative description
row:: (a -> b) -> Line a -> Reader b
row f line1 = lineToReader line2
 where line2 = do { x <- line1; return(f x) }

get3DieEx2::Reader ([[Char]],[([Char],[Maybe Int])])

get3DieEx2 = (row snd (skip `x` list 3 string))
 `x` (many 18 (row id cols2_18))
 where cols2_18 = (string `x` list 3 (blank int))

What if we get it wrong?
get3DieEx2 = (row snd (skip `x` list 3 string))
 `x` (many 18 (row id cols2_18))
 where cols2_18 = (string `x` list 4 (blank int))

Not very informative about where the error occurred

Thread more information in the state

type Line a = State (Int,Int,[String]) a

type Reader a = State (Int,[[String]]) a

• Where do we need to make changes?
• Remarkably, very few places

Line and column
information

Line information

Only at the interface to the monad
report l c message =
 error ("\n at line: "++show l++
 ", column: "++show c++
 "\n "++message)

bool:: Line Bool
bool = (State f) where
 f (l,c,"True" : ss) = (True,(l,c+1,ss))
 f (l,c,"False" : ss) = (False,(l,c+1,ss))
 f (l,c,x:xs) =
 report l c ("Non Bool in reader bool: "++x)
 f (l,c,[]) =
 report l c "No more strings to read a 'Bool' from"

string:: Line String
string = State f
 where f (l,c,s:ss) = (s,(l,c+1,ss))
 f (l,c,[]) = report l c
 "No more strings to read a 'String' from"

int:: Line Int
int = mapState f (return ())
 where f ((),(l,c,s:ss)) = (read s,(l,c+1,ss))
 f ((),(l,c,[])) = report l c
 "No more strings to read an 'Int' from"

skip:: Line ()
skip = State f
 where f (l,c,s:ss) = ((), (l,c+1,ss))
 f (l,c,[]) = report l c "No more strings to 'skip' over"

blank:: Line a -> Line(Maybe a)
blank (State g) = State f
 where f (l,c,"":xs) = (Nothing, (l,c+1,xs))
 f xs = case g xs of
 (y,ys) -> (Just y,ys)

Some thoughts
lineToReader:: Line a -> Reader a
lineToReader l1 = mapState f (return ())
 where f ((),(l,line:lines)) =
 (evalState l1 (l,1,line),(l+1,lines))

• Changes occur only where they matter
• Other functions use the same monadic interface
• The “plumbing” is handled automatically, even in

the generic monad functions like `x` and `many`

We can see where the error occurred

	Monads
	A monad orders actions
	Observations
	Do syntactic sugar
	Do: syntax, types, and order
	Monads have Axioms
	Sample Monads
	Sample Problem �Importing Excel tables into Haskell
	Strategy
	Slide Number 10
	Pattern
	What’s involved
	Write some code
	How can we get a list of Int?
	Now get line 6
	There are three patterns
	Parts of a Monad
	The State Monad
	One of the standard libraries
	Part of the code
	The first line is different
	What do int and string etc look like?
	From lines to files
	Reading a whole file
	Thoughts
	Can we do better?
	Patterns
	Generic Monad Operations
	Declarative description
	What if we get it wrong?
	Thread more information in the state
	Only at the interface to the monad
	Slide Number 33
	Some thoughts
	We can see where the error occurred

