Debugging Haskell Programs

Advanced Functional Programming
Spring 2014



Kinds of debugging

-inding and fixing typing errors

-inding and fixing errors in logic

-inding and fixing infinite loops
Making programs run faster
Finding and fixing space leaks



Tools for debugging

print
— Requires that your program be in the 10 monad

— If its is in some other monad, you can add the OutputT
transformer.

Debug.Trace

Using the GHC stack trace mechanisms
Using the GHC profiler

The GHCi debugger

Other external libraries for debugging
— The Hood debugger

— The HAT debugger (The Haskell Tracer)
— The Safe library



Preventative Debugging

Good testing tools can help you identify bugs
before they become show stoppers

Hunit
QuickCheck
SmallCheck



Finding typing errors

e« Comment out some of your program.

— Add stubs for the commented out part
f:: A->B
T X = undefined

 Force the part whose type you can’t figure out into a
context whose type is known.

known:: Int -> a
known n = error ‘“call to known”
.. (known x) ..

— Will raise an error that tells you the type of x isn’t Int, but
at least you’ll know what type it is!



Finding infinite loops

e Use the profiler. Unlike some tools it still
creates a xxx.prof file even if xxx is
interrupted by AC

e Then look at what function has the most (or
suspiciously many) calls.



Inspecting inside infinite loops

e Use print (if your in the 10 monad)
e Use Debug.trace
e Add an extra argument to the function.

— Decrement this counter for every recursive call.
— Add a case like
« T count xs | count <O = error (..)

e Use the GHCI debugger (I can never
understand what’s going on if | do this)



	Debugging Haskell Programs
	Kinds of debugging
	Tools for debugging
	Preventative Debugging
	Finding typing errors
	Finding infinite loops
	Inspecting inside infinite loops

