
Debugging Haskell Programs 

Advanced Functional Programming 
Spring 2014 



Kinds of debugging 

• Finding and fixing typing errors 
• Finding and fixing errors in logic 
• Finding and fixing infinite loops 
• Making programs run faster 
• Finding and fixing space leaks 



Tools for debugging 
• print 

– Requires that your program be in the IO monad 
– If its is in some other monad, you can add the OutputT 

transformer. 
• Debug.Trace 
• Using the GHC stack trace mechanisms 
• Using the GHC profiler 
• The GHCi debugger 
• Other external libraries for debugging 

– The Hood debugger 
– The HAT debugger (The Haskell Tracer) 
– The Safe library 

 



Preventative Debugging 

• Good testing tools can help you identify bugs 
before they become show stoppers 
 

• Hunit 
• QuickCheck 
• SmallCheck 



Finding typing errors 
• Comment out some of your  program. 

– Add stubs for the commented out part 
f:: A -> B 
f x = undefined 
 

• Force the part whose type you can’t figure out into a 
context whose type is known. 
known:: Int -> a 
known n = error “call to known” 
… (known x) … 
– Will raise an error that tells you the type of x isn’t Int, but 

at least you’ll know what type it is! 



Finding infinite loops 

• Use the profiler. Unlike some tools it still 
creates a  xxx.prof   file even if xxx is 
interrupted by ^C 

• Then look at what function has the most (or 
suspiciously many) calls. 



Inspecting inside infinite loops 

• Use print (if your in the IO monad) 
• Use Debug.trace 
• Add an extra argument to the function. 

–  Decrement this counter for every recursive call. 
– Add a case like 

• f count xs | count <0 = error (…) 

• Use the GHCI debugger (I can never 
understand what’s going on if I do this) 

 


	Debugging Haskell Programs
	Kinds of debugging
	Tools for debugging
	Preventative Debugging
	Finding typing errors
	Finding infinite loops
	Inspecting inside infinite loops

