Advanced Functional Programming

Tim Sheard

Algebraic and CoAlgebraic Programs

- F Algebras
- Initial and Final Algebras
- Induction and Col nduction

Announcements

Remember Midterm exam on May $8^{\text {th }}$.

Today's lecture is drawn from the paper A Tutorial on (Co)Algebras and (CO)Induction by Bart Jacobs and J an Rutten EATCS Bulletin 62 (1997) pp. 222-259 See link on papers page on class website

Algebras and Functors

An F-algebra over a carrier sort x is set of functions (and constants) that consume an $\mathrm{F} \times$ object to produce another x object.
In Haskell we can simulate this by a data definition for a functor (Fx) and a function (Fx) -> x
data Algebra f $c=A l g e b r a(f)->c)$
data F1 x = Zero | One | Plus x x
data ListF a x = Nil | Cons a x
Note how the constructors of the functor play the roles of the constants and functions.

Examples

$$
\begin{aligned}
& f:: \text { F1 Int -> Int } \\
& f \text { Zero }=0 \\
& f \text { One }=1 \\
& f \text { (Plus x y) = x+y } \\
& g \text { :: F1 [Int] -> [Int] } \\
& \text { g Zero }=[] \\
& g \text { One }=[1] \\
& g \text { (Plus x y) = x ++ y } \\
& \text { alg1 :: Algebra F1 Int } \\
& \text { alg = Algebra f } \\
& \text { alga :: Algebra F1 [Int] } \\
& \text { alg = Algebra } g
\end{aligned}
$$

More Examples

data ListF a x = Nil | Cons a x

h : : ListF b Int -> Int
h Nil = 0
$h($ Cons x xs) $=1+x s$
alg3 :: Algebra (ListF a) Int alg3 = Algebra h

I nitial Algebra

An initial Algebra is the set of terms we can obtain be iteratively applying the functions to the constants and other function applications.
This set can be simulated in Haskell by the data definition:
data Initial alg = Init (alg (Initial alg))
Here the function is :

$$
\begin{aligned}
\text { Init : : alg (Init alg) } & ->\text { Init alg } \\
\text { f : : T } x & ->x
\end{aligned}
$$

Note how this fits the ($\mathrm{T} x->\mathrm{x}$) pattern.

Example elements of I nitial Algebras

ex1 : : Initial F1
ex1 $=$ Init(Plus (Init One) (Init Zero))

ex2 :: Initial (ListF Int)
ex2 = Init(Cons 2 (Init Nil))
initialAlg : : Algebra f (Initial f)
initialAlg = Algebra Init

Defining Functions

We can write functions by a case analysis over the functions and constants that generate the initial algebra

```
len :: Num a => Initial (ListF b) -> a
len (Init Nil) = 0
len (Init (Cons x xs)) = 1 + len xs
app :: Initial (ListF a) ->
        Initial (ListF a) -> Initial (ListF a)
app (Init Nil) ys = ys
app (Init (Cons x xs)) ys =
        Init(Cons x (app xs ys))
```


F-algebra homomorphism

An F-algebra, f, is said to be initial to any other algebra, g, if there is a UNIQUE homomorphism, from f to g (this is an arrow in the category of F-algebras).
We can show the existence of this homomorphism by building it as a datatype in Haskell.
Note: that for each "f", (Arrow fab) denotes an arrow in the category of f-algebras.
data Arrow fabs \mathbf{a} =

> Arr (Algebra f a) (Algebra f b) (a->b)
-- plus laws about the function (a->b)

F-homomorphism laws

For every Arrow

(Arr (Algebra f) (Algebra g) h)
it must be the case that
valid :: (Eq b, Functor f) =>
Arrow fab -> fa -> Bool
valid (Arr (Algebra f) (Algebra g) h) $x=$ $h(f x)==g(f m a p h x)$

Existence of h

To show the existence of " h " for any F-Algebra means we can compute a function with the type ($a->b$) from the algebra. To do this we first define cata:
cata :: Functor $f=>$ (Algebra f b) -> Initial f -> b cata (Algebra phi) (Init x) = phi(fmap (cata (Algebra phi)) x)
exhibit : : Functor f =>
Algebra f a -> Arrow f (Initial f) a
exhibit $x=$ Arr initialAlg x (cata x)

Writing functions as cata's

Lots of functions can be written directly as cata's
len2 $x=$ cata (Algebra phi) x
where phi Nil = 0
phi (Cons x n) = $1+n$
app2 x y = cata (Algebra phi) x
where phi Nil = y
phi (Cons x xs) $=\operatorname{Init}($ Cons x xs)

Advanced Functional Programming
 I nduction Principle

With initiality comes the inductive proof method. So to prove something (prop x) where x::Initial A we proceed as follows
prop1 :: Initial (ListF Int) -> Bool
prop1 x =
len(Init(Cons $1 \times$)) == 1 + len x

Prove: prop1 (Init Nil)
Assume propl xs
Then prove: propl (Init (Cons x xs))

Advanced Functional Programming
 I nduction Proof Rules

For an arbitrary F-Algebra, we need a function from F(Proof prop x) -> Proof prop x
data Proof $p x$

$$
\begin{gathered}
=\text { Simple }(p x) \\
\text { | forall } f .
\end{gathered}
$$ Induct (Algebra f (Proof p x))

CoAlgebras

An F-CoAlgebra over a carrier sort x is set of functions (and constants) whose types consume x to produce an F-structure
data CoAlgebra $f=$ CoAlgebra ($c>f c$) unCoAlgebra (CoAlgebra x) $=x$
countdown : : CoAlgebra (ListF Int) Int
countdown = CoAlgebra f
where $f 0=$ Nil
$\mathrm{f} \mathrm{n}=$ Cons n ($\mathrm{n}-1$)

Advanced Functional Programming
 Stream CoAlgebra

The classic CoAlgebra is the infinite stream
data StreamF n x = $\mathrm{C} \mathbf{n} \mathrm{x}$

Note that if we iterate StreamF, there is No nil object, all streams are infinite. What we get is an infinite set of observations (the n -objects in this case).

Examples

We can write CoAlgebras by expanding a "seed" into an F structure filled with new seeds.
seed -> F seed
The non-parameterized slots can be filled with things computed from the seed. These are sometimes called observations.
endsIn0s ::
CoAlgebra (StreamF Integer) [Integer]
endsIn0s = CoAlgebra f
where f [] = C 0 []
f (x:xs) = C x xs

More Examples

split :: CoAlgebra F1 Integer
split $=$ CoAlgebra f
where f 0 = Zero
f $1=$ One
$f \mathrm{n}=$ Plus ($\mathrm{n}-1$) ($\mathrm{n}-2$)
fibs :: CoAlgebra (StreamF Int) (Int,Int)
fibs $=$ CoAlgebra f
where $f(x, y)=C(x+y)(y, x+y)$

Final CoAlgebras

Final CoAlgebras are sequences (branching trees?) of observations of the internal state. This allows us to iterate all the possible observations. Sometimes these are infinite structures.
data Final f = Final (f (Final f))
unFinal :: Final a -> a (Final a)
unFinal (Final x) $=x$
finalCoalg :: CoAlgebra a (Final a)
finalCoalg = CoAlgebra unFinal

Example Final CoAlgebra elements

f1 :: Final (ListF a)
f1 = Final Nil
ones :: Final (StreamF Integer) ones = Final(C 1 ones)

Iterating

We can write functions producing elements in the sort of Final CoAlgebras by expanding a "seed" into an F structure filled with observations and recursive calls in the "slots". Note then, that all thats really left is the observations.
nats : : Final (StreamF Integer)
nats $=\mathrm{g} 0$
where $\mathrm{g} \mathrm{n}=$ Final (C $\mathrm{n}(\mathrm{g}(\mathrm{n}+1))$)

More Examples

data NatF $x=Z \mid S x$
omega :: Final NatF
omega = f undefined
where $f x=\operatorname{Final}(S(f x))$
n :: Int -> Final NatF
$\mathrm{n} x=\mathrm{f} \mathrm{x}$
where f 0 = Final Z
f $n=$ Final(S (f (n-1)))

CoHomomorphisms

A CoHomomorphism is an arrow in the category of F-CoAlgebras
data CoHom fable
CoHom (CoAlgebra $f a)$ (CoAlgebra f b) (a->b)
For every arrow in the category
(CoHom (CoAlgebra f) (CoAlgebra g) h)
it must be the case that

```
covalid :: (Eq (f b), Functor f) => CoHom f a b -> a -> Bool
covalid (CoHom (CoAlgebra f) (CoAlgebra g) h) x = fmap h (f x) == g(h x)
```


Advanced Functional Programming
 Final CoAlegbra

A F-CoAlgebra, g, is Final if for any other FCoAlgebra, f , there is a unique F -CoAlgebra homomorphism, h , from f to g .
We can show its existence be building a function that computes it from the CoAlgebra, f.
ana :: Functor f => (CoAlgebra f seed) -> seed -> (Final f) ana (CoAlgebra phi) seed =
Final(fmap (ana (CoAlgebra phi)) (phi seed))
exhibit2 :: Functor f =>
CoAlgebra f seed -> CoHom f seed (Final f)
exhibit2 $\mathrm{x}=$ CoHom finalCoalg x (ana x)

Examples

We use ana to iteratively unfold any coAgebra to record its observations

final1 = ana endsIn0s
final2 = ana split
final3 = ana fibs

```
endsIn0s = CoAlgebra f
    where f [] = C 0 []
    f (x:xs) = C x xs
split = CoAlgebra f
    where f 0 = Zero
    f 1 = One
    f n = Plus (n-1) (n-2)
fibs :: CoAlgebra (StreamF Int) (Int,Int)
fibs = CoAlgebra f
    where f (x,y) = C ( }x+y\mathrm{ ) ( }\textrm{y},\textrm{x}+\textrm{y}
```

tak :: Num a => a -> Final (StreamF b) -> [b]
tak 0 _ $=$ []
tak n (Final (C x xs)) $=x$: tak (n-1) xs
fibs5 = tak 5 (final3 (1,1))

CoAlgebras and ObjectOrientation

Lets use CoAlgebras to represent Points in the 2-D plane as we would in an OO-language

```
data P x = P { xcoord :: Float
    , ycoord :: Float
    , move :: Float -> Float -> x}
pointF :: (Float,Float) -> P (Float,Float)
pointF (x,y) = P { xcoord = x
    , ycoord = y
    , move = \ m n -> (m+x,n+y) }
type Point = CoAlgebra P (Float,Float)
point1 :: Point
point1 = CoAlgebra pointF
```

