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Polymorphism 

• A function is polymorphic if it can work on 
any kind of argument. 

 

f x = (x,x) 
 

Main> :t f 

f :: a -> (a,a) 
 

• In essence it makes no reference to the 
value of its argument, it only manipulates 
it abstractly. 
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Local Polymorphism 

Polymorphism can be scoped. 
 
 

g x = let f = \ y -> (x,y) 

          w1 = f "z" 

          w2 = f True 

      in (x,f) 

 

Main> :t g 

g :: a -> (a,b -> (a,b)) 

 

What type does f have? 
forall b . b -> (a,b) 
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Let as function application 

Let is often defined in terms of application 
let x = e in y  == (\ x -> y) e 

But there are difference in how let is typed. 
 

g x = (\ f -> let w1 = f "z" 

                  w2 = f True 

              in (x,f)) 

      (\ y -> (x,y)) 

 

ERROR " (line 12): Type error in application 

*** Expression     : f True 

*** Term           : True 

*** Type           : Bool 

*** Does not match : [Char] 

 

g x = let f = \ y -> (x,y) 

          w1 = f "z" 

          w2 = f True 

      in (x,f) 
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Let polymorphism 

Let-bound functions can be polymorphic, 
but lambda-bound arguments cannot. 

This is the essence of Hindley-Milner 
polymorphism. 

This means  
no function can be defined to take an argument 

which must be polymorphic 
No argument can ever be used in more than 

none polymorphic context. 
All types have the forall on the outermost 
  forall a . ( x -> (a -> b) -> (x,b)) 
as opposed to 
  x -> (forall a . a -> b) -> (x,b) 
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Example 

h f x = let w1 = f "z" 

            w2 = f True 

        in (w1,w2) 

  

ERROR (line 18): Type error in application 

*** Expression     : f True 

*** Term           : True 

*** Type           : Bool 

*** Does not match : [Char]  
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Rank 2 polymorphism 

Rank 2 polymorphism relaxes some of this 
restriction. 

 
h :: (forall a . a -> a) -> x -> (x,Bool) 

h f x = let w1 = f x 

            w2 = f True 

        in (w1,w2) 

 

forall's can be in the back-end of an arrow, 
but never the front end. 

(forall ...) -> ((forall ...) -> z) 
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Type inference 

Type inference of polymorphic arguments is 
undecidable. 

If we want rank 2 polymorphism, we must 
use type annotations. Type-checking of 
rank 2 polymorphism is decidable 

What kind of annotations must we give? 
The answer to this is hard to find. 
Giving the full signature of every function is 

enough. 
Is there any compromise using less 

information? 
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Full application 

In order to do type checking, rank 2 functions 
must be fully applied. That is all polymorphic 
arguments must be supplied. 
ex2 = (4,h)         
(line 28): Use of h requires at least 1 argument  

Arguments to rank 2 functions must really be 
polymorphic. 
ex4 = h id 5            Main> :t ex4 
                        ex4 :: (Integer,Bool) 
 
ex3 = h ( \ x -> 1) 5 
ERROR (line 33): Cannot justify constraints in 
application 

*** Expression    : \x -> 1 
*** Type          : b -> b 
*** Given context : () 
*** Constraints   : Num b 
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Rank 2 Data Constructors 

Data Constructors with polymorphic 
components give enough information to 
do type inference. 

 

data Test x = C (forall a . a -> x -> (a,x)) x 
 
ex5 = C (\ a x -> (a,x+1)) 3 
 
ex6 = C (\ a x -> (a,not x)) True 
 
f3 (C h n) w = h "z" w 
 

What is the type of ex5, ex6, and f3 ? 
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Church Numerals 

Recognize the data type definition for natural 
numbers 
data Nat = Z | S Nat 

The catamorphism for Nat is the natural recursion 
pattern for Nat (sometimes called the fold) 
cataNat zobj sfun Z = zobj 
cataNat zobj sfun (S x) =  
        sfun (cataNat zobj sfun x) 

Many functions on Nat can be defined in terms of 
cataNat  
plus x y = cataNat y S x 
ex7 = plus (S Z) (S (S Z)) 
Main> ex7 
S (S (S Z)) 
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CataNat for multiplication 

times x y = cataNat Z (plus x) y 

 

one = S Z 

two = S one 

three = S two 

 

ex8 = times two three 

 

Main> ex8 

S (S (S (S (S (S Z))))) 
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Nat as a rank 2 function 
data N = N (forall z . z -> (z -> z) -> z) 

 

cataN zobj sfun (N f) = f zobj sfun 
 

n0 = N(\ z s -> z) 

n1 = N(\ z s -> s z) 

n2 = N(\ z s -> s(s z)) 

n3 = N(\ z s -> s(s(s z))) 

n4 = N(\ z s -> s(s(s(s z)))) 
 

n2Int n = cataN 0 (+1) n 

ex9 = n2Int n3 

 

Main> ex9 

3 
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Plus in data type N 

--plus x y = cataNat y S x 

 

succN :: N -> N 

succN (N f) = N(\ z s -> s(f z s)) 

 

plusN :: N -> N -> N 

plusN x y = cataN y succN x 

 

ex10 = n2Int (plusN n2 n3) 

 

Main> ex10 

5 
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Church Numerals for List 

data L1 a = L1 (forall b . b -> (a -> b -> b) -> b) 
 
-- [1,2,3,4]  
ex1 = L1 ( \ n  c -> c 1 (c 2 (c 3 (c 4 n)))) 
 
toList (L1 f) = f [] (:) 
 
ex11 = toList ex1 
 
Main> :t ex11 
ex11 :: [Integer] 
Main> ex11 
[1,2,3,4] 
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Append in "church numeral" lists 
cataList nobj cfun [] = nobj 

cataList nobj cfun (x:xs) =  

         cfun x (cataList nobj cfun) 

 

cataL nobj cfun (L1 f) = f nobj cfun 

 

cons x (L1 f) = L1(\ n c -> c x (f n c)) 

 

app x y = cataL y cons x 

 

ex12 = app ex1 ex1 

ex13 = toList ex12 

 

Main> ex13 

[1,2,3,4,1,2,3,4] 
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lists, fusion, and rank 2 polymorphism 

• This form of rank 2 polymorphism has 
been exploited to justify fusion or 
deforestation. 

• Consider 
sum(map (+1) (upto 3)) 
sum(map (+1) [1,2,3]) 
sum[2,3,4] 
9 

• Produces, then consumes a bunch of 
intermediate lists, which never needed to 
be produced at all 
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Discovering fusion 

How can we take an arbitrary expression about 
lists like: 
sum(map (+1) (upto 3)) 

and discover an equivalent expression that 
does not build the intermediate lists? 

Answer: write functions in terms of abstract 
recursion patterns, and rank-2 
representations of lists. 
cata : b -> (a -> b -> b) -> [a] -> b 
build: (forall b . b -> (a -> b -> b) -> b) -> [a] 

with the law: cata n c (build f) == f n c 
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build :: (forall b . b -> (a -> b -> b) -> b) -> [a] 

build f = f [] (:) 

cata nobj cfun [] = nobj 

cata nobj cfun (x:xs) = cfun x (cata nobj cfun xs) 

upto x =  

 build(\ n c -> 

         let h m = if m>x  

                      then n  

                      else c m (h (m+1)) 

         in h 1) 

          

mapX f x =  

  build(\ n c -> cata n (\ y ys -> c (f y) ys) x) 

sumX xs = cata 0 (+) xs  



Advanced Functional Programming 

Tim Sheard 20 Lecture 8 

sum(map (+1) (upto 3))   == 

sum(map (+1)  

      (build(\ n c -> 

               let h m = if m>3 

                         then n  

                         else c m (h (m+1)) 

               in h 1)   == 

sum(build(\ n c ->  

            cata n (\ y ys -> c (f y) ys) 

                 (build(\ n c -> 

                          let h m = if m>3 

                                       then n  

                                       else c m (h (m+1)) 

                          in h 1)))   == 
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sum(build(\ n c -> 

            let h m = if m>3 

                         then n 

                         else c (f m) (h (m+1)) 

            in h 1))  == 

cata 0 (+) 

     (build(\ n c -> 

              let h m = if m>3 

                           then n 

                           else c (f m) (h (m+1)) 

              in h 1)) == 

let h m = if m>3 

             then 0 

             else (f m) + (h (m+1))] 

in h 1 ==  sum(map (+1) (upto 3) 
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We can encode this as such 

data List a  
  = Nil 
  | Cons a (List a) 
  | Build (forall b . b -> (a -> b -> b) -> b) 
 
cataZ nobj cfun Nil = nobj 
cataZ nobj cfun (Cons y ys) = cfun y (cataZ nobj cfun ys) 
cataZ nobj cfun (Build f) = f nobj cfun 
   
uptoZ x =  
 Build(\ n c -> let h m = if m>x  
                             then n  
                             else c m (h (m+1)) 
                in h 1)          
mapZ f x =  
  Build(\ n c -> cataZ n (\ y ys -> c (f y) ys) x) 
sumZ xs = cataZ 0 (+) xs    
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Results 

ex14 = sumZ(mapZ (+1) (uptoZ 3)) 

ex15 = sum(map (+1) ([1..3])) 

 

 

Main> ex14 

9 

(81 reductions, 177 cells) 

Main> ex15 

9 

(111 reductions, 197 cells) 
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Type inference and Hindley-Milner 

How is type inference done? 
– Structural recursion over a term. 
– Uses an environment which maps variables to 

their types 
– Returns a computation in a monad 
– type infer :: Exp -> Env -> M Type 

• What does the Env look like 
– partial function from Name -> Scheme 
– Scheme is an encoding of a Hindley-Milner 

polymorphic type. All the forall's to the 
outermost position. 

– Often implemented as a list 
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How is Env used 

g x = let f = \ y -> (x,y) 

          w1 = f "z" 

          w2 = f True 

      in (x,f) 

Every instance of a variable is given a new 
instance of its type. 

Let Capital letters (A,B,C,A1,B1,C1, ...) 
indicate new fresh type variables. 

In the box  
suppose  f:: forall a . a -> (x,a) 
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Instantiation 

g x = let f = \ y -> (x,y) 

          w1 = f "z" 
          w2 = f True 
      in (x,f) 
 

the f in (f "z") 
   A1 -> (x,A1)    A1 gets "bound" to String 

 

the f in (f True) 
   A2 -> (x,A2)    A2 gets "bound" to Bool 

 

the f in (x,f) 
     A3 -> (x,A3)   A3 remains "unbound" 



Advanced Functional Programming 

Tim Sheard 27 Lecture 8 

Binding Introduction 

g x = let f = \ y -> (x,y) 

          w1 = f "z" 
          w2 = f True 
      in (x,f) 

 

Every Bound program variable is assigned a 
new fresh type variable 
{g::E1} 
{g::E1, x::A1} 
{g::E1, x::A1, f::B1, y::C1 } 
{g::E1, x::A1, f::B1, w1::D1} 
{g::E1, x::A1, f::B1, w1::D1, w2::F1} 
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Type inference 

g x = let f = \ y -> (x,y) 

          w1 = f "z" 

          w2 = f True 

      in (x,f) 

{g::E1, x::A1, f::B1} 

As type inference proceeds type variables 
become "bound", thus the type of 
(\ y -> (x,y))  

becomes  
C1 -> (A1,C1) 
Since f = (\ y -> (x,y)) 
the type variable B1 could be bound to 
C1 -> (A1,C1) 
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Generalization 

But the rules of Hindley-Milner type inference say for 
every let-bound variable generalize it on all the type 
variables not in the current scope. 

g x = let f = ((\ y -> (x,y)) :: C1 -> (A1,C1)) 
          w1 = f "z" 

          w2 = f True 

      in (x,f) 

{g::E1, x::A1, f::B1} 
 

Since C1 does not appear in the types of the current 
scope, it is generalized and the type of f (B1) 
becomes polymorphic. 

 

{g::E1, x::A1, f::forall c . c -> (A1,c)} 
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The monad of Type Inference 

Methods required 
 
unify:: Type -> Type -> M () 

lambdaExt :: Name -> Env -> M(Env,Type) 

letExt:: Name -> Env -> M(Env,Scheme) 

lookup:: Name -> Env -> Scheme 

instantiate:: Scheme -> M Type 

generalize:: Type -> Env -> M Scheme 

freshTypeVar:: M Type 
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Rank 2 polymorphism 

 

• The Type of runSt is a rank 2 polymorphic 
type 
– runST :: ∀a . (∀s . ST s a) -> a 
 

• The forall is not all the way to the outside. 
• There are other uses of rank 2 types. 
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