
Advanced Functional Programming

Tim Sheard 1Lecture 1

Advanced Functional
Programming

Tim Sheard
Portland State University

Lecture 2: More about Type Classes

•Implementing Type Classes

•Higher Order Types

•Multi-parameter Type Classes

Advanced Functional Programming

Tim Sheard 2Lecture 1

Implementing Type Classes

• I know of two methods for
implementing type classes

• Using the “Dictionary Passing
Transform”

• Passing runtime representation of type
information.

Advanced Functional Programming

Tim Sheard 3Lecture 1

Source & 2 strategies
class Equal a where

equal :: a -> a -> Bool

class Nat a where
inc :: a -> a
dec :: a -> a
zero :: a -> Bool

data EqualL a = EqualL
{ equalM :: a -> a -> Bool
}

data NatL a = NatL
{ incM :: a -> a
, decM :: a -> a
, zeroM :: a -> Bool
}

equalX :: Rep a -> a -> a ->
Bool

incX :: Rep a -> a -> a
decX :: Rep a -> a -> a
zeroX :: Rep a -> a -> Bool

f0 :: (Equal a, Nat a) =>
a -> a

f0 x =
if zero x

&& equal x x
then inc x
else dec x

f1 :: EqualL a -> NatL a ->
a -> a

f1 el nl x =
if zeroM nl x

&& equalM el x x
then incM nl x
else decM nl x

f2 :: Rep a ->
a -> a

f2 r x =
if zeroX r x

&& equalX r x x
then incX r x
else decX r x

Advanced Functional Programming

Tim Sheard 4Lecture 1

“Dictionary passing” instances

instance Equal Int where

equal x y = x==y

instance Nat Int where

inc x = x+1
dec x = x+1
zero 0 = True
zero n = False

instance_l1 :: EqualL Int
instance_l1 =

EqualL {equalM = equal } where
equal x y = x==y

instance_l2 :: NatL Int
instance_l2 =

NatL {incM=inc,decM=dec,zeroM=zero}
where

inc x = x+1
dec x = x+1
zero 0 = True
zero n = False

Advanced Functional Programming

Tim Sheard 5Lecture 1

Instance declarations

data N = Z | S N

instance Equal N where
equal Z Z = True
equal (S x) (S y) = equal x y
equal _ _ = False

instance Nat N where
inc x = S x
dec (S x) = x
zero Z = True
zero (S _) = False

Advanced Functional Programming

Tim Sheard 6Lecture 1

Become record definitions

instance_l3 :: EqualL N
instance_l3 = EqualL { equalM = equal } where
equal Z Z = True
equal (S x) (S y) = equal x y
equal _ _ = False

instance_l4 :: NatL N
instance_l4 =
NatL {incM = inc, decM = dec, zeroM = zero } where
inc x = S x
dec (S x) = x
zero Z = True
zero (S _) = False

Advanced Functional Programming

Tim Sheard 7Lecture 1

Dependent classes

instance Equal a => Equal [a] where
equal [] [] = True
equal (x:xs) (y:ys) = equal x y && equal xs ys

equal _ _ = False

instance Nat a => Nat [a] where
inc xs = map inc xs
dec xs = map dec xs
zero xs = all zero xs

Advanced Functional Programming

Tim Sheard 8Lecture 1

become functions between records

instance_l5 :: EqualL a -> EqualL [a]
instance_l5 lib = EqualL { equalM = equal } where
equal [] [] = True
equal (x:xs) (y:ys) = equalM lib x y && equal xs ys
equal _ _ = False

instance_l6 :: NatL a -> NatL [a]
instance_l6 lib = NatL { incM = inc, decM =dec, zeroM = zero } where

inc xs = map (incM lib) xs
dec xs = map (decM lib) xs
zero xs = all (zeroM lib) xs

Advanced Functional Programming

Tim Sheard 9Lecture 1

In run-time type passing

Collect all the instances together to make one function which has an
extra arg which is the representation of the type this function is
specialized on.

incX (Int p) x = to p (inc (from p x)) where inc x = x+1
incX (N p) x = to p (inc (from p x)) where inc x = S x
incX (List a p) x = to p (inc (from p x)) where inc xs = map (incX a) xs

decX (Int p) x = to p (dec (from p x)) where dec x = x+1
decX (N p) x = to p (dec (from p x)) where dec x = S x
decX (List a p) x = to p (dec (from p x)) where dec xs = map (decX a) xs

zeroX (Int p) x = zero (from p x) where zero 0 = True
zero n = False

zeroX (N p) x = zero (from p x) where zero Z = True
zero (S _) = False

zeroX (List a p) x = zero (from p x) where zero xs = all (zeroX a) xs

Advanced Functional Programming

Tim Sheard 10Lecture 1

data Proof a b = Ep{from :: a->b, to:: b->a}

data Rep t

= Int (Proof t Int)

| Char (Proof t Char)

| Unit (Proof t ())

| forall a b . Arr (Rep a) (Rep b) (Proof t (a->b))

| forall a b . Prod (Rep a) (Rep b) (Proof t (a,b))

| forall a b . Sum (Rep a) (Rep b) (Proof t (Either a b))

| N (Proof t N)

| forall a . List (Rep a) (Proof t [a])

Advanced Functional Programming

Tim Sheard 11Lecture 1

Note how recursive calls at different types are calls to the run-
time passing versions with new type-rep arguments.

equalX (Int p) x y = h equal p x y where equal x y = x==y
equalX (N p) x y = h equal p x y where equal Z Z = True

equal (S x) (S y) = equal x y
equal _ _ = False

equalX (List a p) x y = h equal p x y where equal [] [] = True
equal (x:xs) (y:ys) =

equalX a x y && equal xs ys
equal _ _ = False

h equal p x y = equal (from p x) (from p y)

Advanced Functional Programming

Tim Sheard 12Lecture 1

Higher Order types

Type constructors are higher order since they take
types as input and return types as output.

Some type constructors (and also some class
definitions) are even higher order, since they
take type constructors as arguments.

Haskell’s Kind system
A Kind is haskell’s way of “typing” types
Ordinary types have kind *

Int :: *
[String] :: *

Type constructors have kind * -> *
Tree :: * -> *
[] :: * -> *
(,) :: * -> * -> *

Advanced Functional Programming

Tim Sheard 13Lecture 1

The Functor Class
class Functor f where

fmap :: (a -> b) -> (f a -> f b)
Note how the class Functor requires a type

constructor of kind * -> * as an argument.
The method fmap abstracts the operation of

applying a function on every parametric
Argument.

a
a aType T a =

x
x x

(f x)
(f x) (f x)

fmap f

Advanced Functional Programming

Tim Sheard 14Lecture 1

More than just types

Laws for Functor. Most class definitions have
some implicit laws that all instances should
obey. The laws for Functor are:

fmap id = id
fmap (f . g) = fmap f . fmap g

Advanced Functional Programming

Tim Sheard 15Lecture 1

Built in Higher Order Types

Special syntax for built in type constructors

(->) :: * -> * -> *
[] :: * -> *
(,) :: * -> * -> *
(,,) :: * -> * -> * -> *

type Arrow = (->) Int Int
type List = [] Int
type Pair = (,) Int Int
type Triple = (,,) Int Int Int

Advanced Functional Programming

Tim Sheard 16Lecture 1

Instances of class functor
data Tree a = Leaf a

| Branch (Tree a) (Tree a)

instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch x y) =

Branch (fmap f x) (fmap f y)

instance Functor ((,) c) where
fmap f (x,y) = (x, f y)

Advanced Functional Programming

Tim Sheard 17Lecture 1

More Instances

instance Functor [] where
fmap f [] = []
fmap f (x:xs) = f x : fmap f xs

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

Advanced Functional Programming

Tim Sheard 18Lecture 1

Other uses of Higher order T.C.’s

data Tree t a = Tip a
| Node (t (Tree t a))

t1 = Node [Tip 3, Tip 0]
Main> :t t1
t1 :: Tree [] Int

data Bin x = Two x x

t2 = Node (Two(Tip 5) (Tip 21))
Main> :t t2
t2 :: Tree Bin Int

Advanced Functional Programming

Tim Sheard 19Lecture 1

What is the kind of Tree?

Tree is a binary type constructor
It’s kind will be something like:

? -> ? -> *

The first argument to Tree is itself a type
constructor, the second is just an ordinary
type.

Tree :: (* -> *) -> * -> *

Advanced Functional Programming

Tim Sheard 20Lecture 1

Another Higher Order Class

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

p >> q = p >>= \ _ -> q
fail s = error s

We pronounce >>= as “bind”
and >> as “sequence”

Note m is a
type constructor

Advanced Functional Programming

Tim Sheard 21Lecture 1

Default methods

Note that Monad has two default definitions

p >> q = p >>= \ _ ->
q
fail s = error s

These are the definitions that are usually
correct, so when making an instance of
class Monad, only two defintions (>>=>
and (return) are usually given.

Advanced Functional Programming

Tim Sheard 22Lecture 1

Do notation shorthand

The Do notation is shorthand for the infix
operator >>=

do e => e

do { e1 ; e2; … ; en} =>
e1 >> do { e2 ; … ;en}

do { x <- e; f} => e >>= (\ x -> f)
where x is a variable

do { pat <- e1 ; e2 ; … ; en } =>
let ok pat = do { e2; … ; en }

ok _ = fail “some error message”
in e1 >>= ok

Advanced Functional Programming

Tim Sheard 23Lecture 1

Monad’s and Actions
• We’ve always used the do notation to

indicate an impure computation that
performs an actions and then returns a
value.

• We can use monads to “invent” our own
kinds of actions.

• To define a new monad we need to
supply a monad instance declaration.

Example: The action is potential failure
instance Monad Maybe where

Just x >>= k = k x
Nothing >>= k = Nothing
return = Just

Advanced Functional Programming

Tim Sheard 24Lecture 1

Example

find :: Eq a => a -> [(a,b)] -> Maybe b
find x [] = Nothing
find x ((y,a):ys) =

if x == y then Just a else find x ys

test a c x =
do { b <- find a x; return (c+b) }

What is the type of test?
What does it return if the find fails?

Advanced Functional Programming

Tim Sheard 25Lecture 1

Multi-parameter Type Classes

• A relationship between two types

class (Monad m,Same ref) =>
Mutable ref m where
put :: ref a -> a -> m ()
get :: ref a -> m a
new :: a -> m (ref a)

class Same ref where
same :: ref a -> ref a -> Bool

Advanced Functional Programming

Tim Sheard 26Lecture 1

An Instance

instance
Mutable (STRef a) (ST a) where
put = writeSTRef
get = readSTRef
new = newSTRef

instance Same (STRef a) where
same x y = x==y

Advanced Functional Programming

Tim Sheard 27Lecture 1

Another Instance

instance Mutable IORef IO where
new = newIORef
get = readIORef
put = writeIORef

instance Same IORef where
same x y = x==y

Advanced Functional Programming

Tim Sheard 28Lecture 1

Another Multi-parameter Type Class
class Name term name where
isName :: term -> Maybe name
fromName :: name -> term

type Var = String
data Term0 =

Add0 Term0 Term0
| Const0 Int
| Lambda0 Var Term0
| App0 Term0 Term0
| Var0 Var

instance Name Term0 Var where
isName (Var0 s) = Just s
isName _ = Nothing
fromName s = Var0 s

Advanced Functional Programming

Tim Sheard 29Lecture 1

Yet Another

class Mult a b c where
times :: a -> b -> c

instance Mult Int Int Int where
times x y = x * y

instance Ix a =>
Mult Int (Array a Int) (Array a Int)

where
times x y = fmap (*x) y

Advanced Functional Programming

Tim Sheard 30Lecture 1

An Example Use

• Unification of types is used for type inference.

data Type ref m where
Tvar :: (Mutable ref m) =>

ref (Maybe (Type ref m)) -> Type ref m
Tgen:: Int -> Type ref m
Tarrow::Type ref m -> Type ref m -> Type ref m
Ttuple:: [Type ref m] -> Type ref m
Tcon:: String -> [Type ref m] -> Type ref m

Advanced Functional Programming

Tim Sheard 31Lecture 1

Questions

What are the types of the constructors

Tvar ::

Tgen ::

Tarrow ::

Advanced Functional Programming

Tim Sheard 32Lecture 1

Useful Function

Run down a chain of Type TVar references
making them all point to the last item in
the chain.

Tvar(Just _)

Tvar(Just _)

Tvar(Just _)

Tvar(Just _)

Tvar(Just _)

Tvar(Just _)

Tuple[X, Y]
Tuple[X, Y]

Advanced Functional Programming

Tim Sheard 33Lecture 1

Prune

prune :: (Monad m, Mutable ref m) =>
Type ref m -> m (Type ref m)

prune (typ @ (Tvar ref)) =
do { m <- get ref

; case m of
Just t -> do { newt <- prune t

; put ref (Just newt)
; return newt
}

Nothing -> return typ}
prune x = return x

Advanced Functional Programming

Tim Sheard 34Lecture 1

Does a reference occur in a type?

occursIn :: Mutable ref m =>
ref (Maybe (Type ref m)) -> Type ref m -> m Bool

occursIn ref1 t =
do { t2 <- prune t

; case t2 of
Tvar ref2 -> return (same ref1 ref2)
Tgen n -> return False
Tarrow a b ->

do { x <- occursIn ref1 a
; if x then return True

else occursIn ref1 b }
Ttuple xs ->

do { bs <- sequence(map (occursIn ref1) xs)
; return(any id bs)}

Tcon c xs ->
do { bs <- sequence(map (occursIn ref1) xs)

; return(any id bs) }
}

Advanced Functional Programming

Tim Sheard 35Lecture 1

Unify
unify :: Mutable ref m =>
(Type ref m -> Type ref m -> m [String]) ->

Type ref m -> Type ref m -> m [String]
unify occursAction x y =
do { t1 <- prune x

; t2 <- prune y
; case (t1,t2) of

(Tvar r1,Tvar r2) ->
if same r1 r2

then return []
else do { put r1 (Just t2); return []}

(Tvar r1,_) ->
do { b <- occursIn r1 t2

; if b then occursAction t1 t2
else do { put r1 (Just t2)

; return [] }
}

Advanced Functional Programming

Tim Sheard 36Lecture 1

Unify continued

unify occursAction x y =
do { t1 <- prune x

; t2 <- prune y
; case (t1,t2) of

. . .
(_,Tvar r2) -> unify occursAction t2 t1
(Tgen n,Tgen m) ->

if n==m then return []
else return ["generic error"]

(Tarrow a b,Tarrow x y) ->
do { e1 <- unify occursAction a x

; e2 <- unify occursAction b y
; return (e1 ++ e2)
}

(_,_) -> return ["shape match error"]
}

Advanced Functional Programming

Tim Sheard 37Lecture 1

Generic Monad Functions

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])
where mcons p q =

do { x <- p
; xs <- q
; return (x:xs)
}

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as = sequence (map f as)

	Advanced Functional Programming
	Implementing Type Classes
	Source & 2 strategies
	“Dictionary passing” instances
	Instance declarations
	Become record definitions
	Dependent classes
	become functions between records
	In run-time type passing
	Slide Number 10
	Slide Number 11
	Higher Order types
	The Functor Class
	More than just types
	Built in Higher Order Types
	Instances of class functor
	More Instances
	Other uses of Higher order T.C.’s
	What is the kind of Tree?
	Another Higher Order Class
	Default methods
	Do notation shorthand
	Monad’s and Actions
	Example
	Multi-parameter Type Classes
	An Instance
	Another Instance
	Another Multi-parameter Type Class
	Yet Another
	An Example Use
	Questions
	Useful Function
	Prune
	Does a reference occur in a type?
	Unify
	Unify continued
	Generic Monad Functions

