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Implementing Type Classes

• I know of two methods for 
implementing type classes

• Using the “Dictionary Passing 
Transform”

• Passing runtime representation of type 
information.
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Source & 2 strategies
class Equal a where

equal :: a -> a -> Bool

class Nat a where
inc :: a -> a
dec :: a -> a
zero :: a -> Bool

data EqualL a = EqualL
{ equalM :: a -> a -> Bool
}

data NatL a = NatL
{ incM :: a -> a
, decM :: a -> a
, zeroM :: a -> Bool
}

equalX :: Rep a -> a -> a -> 
Bool

incX  :: Rep a -> a -> a
decX  :: Rep a -> a -> a
zeroX :: Rep a -> a -> Bool

f0 :: (Equal a, Nat a) =>
a -> a

f0 x =
if zero x 

&& equal x x
then inc x
else dec x

f1 :: EqualL a -> NatL a ->
a -> a

f1 el nl x =
if zeroM nl x 

&& equalM el x x
then incM nl x
else decM nl x

f2 :: Rep a -> 
a -> a

f2 r x =
if zeroX r x 

&& equalX r x x
then incX r x
else decX r x
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“Dictionary passing” instances

instance Equal Int where

equal x y = x==y

instance Nat Int where

inc x = x+1
dec x = x+1
zero 0 = True
zero n = False

instance_l1 :: EqualL Int
instance_l1 =

EqualL {equalM = equal }  where
equal x y = x==y

instance_l2 :: NatL Int
instance_l2 =

NatL {incM=inc,decM=dec,zeroM=zero}
where

inc x = x+1
dec x = x+1
zero 0 = True
zero n = False
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Instance declarations

data N = Z | S N

instance Equal N where
equal Z Z = True
equal (S x) (S y) = equal x y
equal _ _ = False

instance Nat N where
inc x = S x
dec (S x) = x
zero Z = True
zero (S _) = False
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Become record definitions

instance_l3 :: EqualL N
instance_l3 = EqualL { equalM = equal } where
equal Z Z = True
equal (S x) (S y) = equal x y
equal _ _ = False

instance_l4 :: NatL N
instance_l4 = 
NatL {incM = inc, decM = dec, zeroM = zero } where
inc x = S x
dec (S x) = x
zero Z = True
zero (S _) = False
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Dependent classes

instance Equal a => Equal [a] where
equal [] [] = True
equal (x:xs) (y:ys) = equal x y && equal xs ys

equal _ _ = False

instance Nat a => Nat [a] where
inc xs = map inc xs
dec xs = map dec xs
zero xs = all zero xs
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become functions between records

instance_l5 :: EqualL a -> EqualL [a]
instance_l5 lib = EqualL { equalM = equal } where
equal [] [] = True
equal (x:xs) (y:ys) = equalM lib x y && equal xs ys
equal _ _ = False

instance_l6 :: NatL a -> NatL [a]
instance_l6 lib = NatL { incM = inc, decM =dec, zeroM = zero } where

inc xs = map (incM lib) xs
dec xs = map (decM lib) xs
zero xs = all (zeroM lib) xs
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In run-time type passing

Collect all the instances together to make one function which has an 
extra arg which is the representation of the type this function is 
specialized on.

incX (Int p)    x = to p (inc (from p x)) where inc x = x+1
incX (N p)      x = to p (inc (from p x)) where inc x = S x
incX (List a p) x = to p (inc (from p x)) where inc xs = map (incX a) xs

decX (Int p)    x = to p (dec (from p x)) where dec x = x+1
decX (N p)      x = to p (dec (from p x)) where dec x = S x
decX (List a p) x = to p (dec (from p x)) where dec xs = map (decX a) xs

zeroX (Int p)    x = zero (from p x) where zero 0 = True
zero n = False

zeroX (N p)      x = zero (from p x) where zero Z = True
zero (S _) = False

zeroX (List a p) x = zero (from p x) where zero xs = all (zeroX a) xs
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data Proof a b = Ep{from :: a->b, to:: b->a}

data Rep t

=              Int  (Proof t Int)

|              Char (Proof t Char)

|              Unit (Proof t ())

| forall a b . Arr  (Rep a) (Rep b) (Proof t (a->b))

| forall a b . Prod (Rep a) (Rep b) (Proof t (a,b))

| forall a b . Sum  (Rep a) (Rep b) (Proof t (Either a b))

|              N    (Proof t N)

| forall a   . List (Rep a) (Proof t [a])
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Note how recursive calls at different types are calls to the run-
time passing versions with new type-rep arguments.

equalX (Int p)    x y = h equal p x y where equal x y = x==y
equalX (N p)      x y = h equal p x y where equal Z Z = True

equal (S x) (S y) = equal x y
equal _ _ = False

equalX (List a p) x y = h equal p x y where equal [] [] = True
equal (x:xs) (y:ys) = 

equalX a x y && equal xs ys
equal _ _ = False

h equal p x y = equal (from p x) (from p y)
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Higher Order types

Type constructors are higher order since they take 
types as input and return types as output.

Some type constructors (and also some class 
definitions) are even higher order, since they 
take type constructors as arguments.

Haskell’s Kind system
A Kind is haskell’s way of “typing” types
Ordinary types have kind *

Int :: *
[ String ] :: *

Type constructors have kind * -> *
Tree :: * -> *
[] :: * -> *
(,) :: * -> * -> *
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The Functor Class
class Functor f where

fmap :: (a -> b) -> (f a -> f b)
Note how the class Functor requires a type 

constructor of kind * -> * as an argument.
The method fmap abstracts the operation of 

applying a function on every parametric 
Argument.

a   
a    aType T a = 

x   
x    x

(f x)   
(f x)    (f x)

fmap  f
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More than just types

Laws for Functor. Most class definitions have 
some implicit laws that all instances should 
obey. The laws for Functor are:

fmap id = id
fmap (f . g) = fmap f . fmap g
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Built in Higher Order Types

Special syntax for built in type constructors

(->) :: * -> * -> *
[] :: * -> *
(,) :: * -> * -> *
(,,) :: * -> * -> * -> *

type Arrow = (->) Int Int
type List = [] Int
type Pair = (,) Int Int
type Triple = (,,) Int Int Int



Advanced Functional Programming

Tim Sheard 16Lecture 1

Instances of class functor
data Tree a = Leaf a 

| Branch (Tree a) (Tree a)

instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch x y) = 

Branch (fmap f x) (fmap f y)

instance Functor ((,) c) where
fmap f (x,y) = (x, f y)
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More Instances

instance Functor [] where
fmap f []     = []
fmap f (x:xs) = f x : fmap f xs

instance Functor Maybe where
fmap f Nothing  = Nothing
fmap f (Just x) = Just (f x)
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Other uses of Higher order T.C.’s

data Tree t a = Tip a 
| Node (t (Tree t a))

t1 = Node [Tip 3, Tip 0]
Main> :t t1
t1 :: Tree [] Int

data Bin x = Two x x

t2 = Node (Two(Tip 5) (Tip 21))
Main> :t t2
t2 :: Tree Bin Int
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What is the kind of Tree?

Tree is a binary type constructor
It’s kind will  be something like: 

? -> ? -> *

The first argument to Tree is itself a type 
constructor, the second is just an ordinary 
type.

Tree :: ( * -> *) -> * -> *
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Another Higher Order Class

class Monad m where
(>>=)  :: m a -> (a -> m b) -> m b
(>>)   :: m a -> m b -> m b
return :: a -> m a
fail   :: String -> m a

p >> q  = p >>= \ _ -> q
fail s  = error s

We pronounce  >>=  as “bind”   
and >>  as “sequence”

Note m is a
type constructor
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Default methods

Note that Monad has two default definitions

p >> q  = p >>= \ _ -> 
q
fail s  = error s

These are the definitions that are usually 
correct, so when making an instance of 
class Monad, only two defintions (>>=> 
and (return) are usually given.
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Do notation shorthand

The Do notation is shorthand for  the infix 
operator >>=

do e  => e

do { e1 ; e2; … ; en}  =>
e1  >>   do { e2 ; … ;en}

do { x <- e; f} => e >>= (\ x -> f)
where x is a variable

do { pat <- e1 ; e2 ; … ; en }  =>
let ok pat = do { e2; … ; en }

ok _ = fail “some error message”
in e1  >>=  ok
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Monad’s and Actions
• We’ve always used the do notation to 

indicate an impure computation that 
performs an actions and then returns a 
value.

• We can use monads to “invent” our own 
kinds of actions.

• To define a new monad we need to 
supply a monad instance declaration.

Example:  The action is potential failure
instance Monad Maybe where

Just x  >>= k  =  k x
Nothing >>= k  =  Nothing
return         =  Just



Advanced Functional Programming

Tim Sheard 24Lecture 1

Example

find :: Eq a => a -> [(a,b)] -> Maybe b
find x [] = Nothing
find x ((y,a):ys) = 

if x == y then Just a else find x ys

test a c x =
do { b <- find a x; return (c+b) }

What is the type of test?
What does it return if the find fails?
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Multi-parameter Type Classes

• A relationship between two types

class (Monad m,Same ref) => 
Mutable ref m where
put :: ref a -> a -> m ()
get :: ref a -> m a
new :: a -> m (ref a)

class Same ref where
same :: ref a -> ref a -> Bool



Advanced Functional Programming

Tim Sheard 26Lecture 1

An Instance

instance 
Mutable (STRef a) (ST a) where
put = writeSTRef
get = readSTRef
new = newSTRef

instance Same (STRef a) where
same x y = x==y
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Another Instance

instance Mutable IORef IO where
new = newIORef
get = readIORef
put = writeIORef 

instance Same IORef where
same x y = x==y
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Another Multi-parameter Type Class
class Name term name where
isName :: term -> Maybe name
fromName :: name -> term

type Var = String
data Term0 =

Add0 Term0 Term0
| Const0 Int
| Lambda0 Var Term0
| App0 Term0 Term0
| Var0 Var

instance Name Term0 Var where
isName (Var0 s) = Just s
isName _ = Nothing
fromName s = Var0 s
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Yet Another

class Mult a b c where
times :: a -> b -> c

instance Mult Int Int Int where
times x y  = x * y

instance Ix a => 
Mult Int (Array a Int) (Array a Int)

where
times x y = fmap (*x) y
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An Example Use

• Unification of types is used for type inference.

data Type ref m  where
Tvar :: (Mutable ref m ) => 

ref (Maybe (Type ref m)) -> Type ref m
Tgen:: Int -> Type ref m
Tarrow::Type ref m -> Type ref m -> Type ref m
Ttuple::  [Type ref m] -> Type ref m
Tcon:: String -> [Type ref m] -> Type ref m
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Questions

What are the types of the constructors

Tvar ::

Tgen ::

Tarrow ::
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Useful Function

Run down a chain of Type TVar references 
making them all point  to the last item in 
the chain.

Tvar(Just _ )

Tvar(Just _ )

Tvar(Just _ )

Tvar(Just _ )

Tvar(Just _ )

Tvar(Just _ )

Tuple[ X, Y] 
Tuple[ X, Y] 
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Prune

prune :: (Monad m, Mutable ref m) => 
Type ref m -> m (Type ref m)

prune (typ @ (Tvar ref)) = 
do { m <- get ref

; case m of
Just t -> do { newt <- prune t

; put ref (Just newt)
; return newt
} 

Nothing -> return typ}
prune x = return x
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Does a reference occur in a type?

occursIn :: Mutable ref m => 
ref (Maybe (Type ref m)) -> Type ref m -> m Bool

occursIn ref1 t =
do { t2 <- prune t 

; case t2 of
Tvar ref2 -> return (same ref1 ref2)
Tgen n -> return False
Tarrow a b -> 

do { x <- occursIn ref1 a
; if x then return True 

else occursIn ref1 b }
Ttuple xs -> 

do { bs <- sequence(map (occursIn ref1) xs)
; return(any id bs)}

Tcon c xs ->
do { bs <- sequence(map (occursIn ref1) xs)

; return(any id bs) }
}
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Unify
unify :: Mutable ref m => 
(Type ref m -> Type ref m -> m [String]) ->

Type ref m -> Type ref m -> m [String]
unify occursAction x y = 
do { t1 <- prune x

; t2 <- prune y
; case (t1,t2) of

(Tvar r1,Tvar r2) -> 
if same r1 r2 

then return []
else do { put r1 (Just t2); return []}

(Tvar r1,_) -> 
do { b <- occursIn r1 t2

; if b then occursAction t1 t2
else do { put r1 (Just t2)

; return [] }
}



Advanced Functional Programming

Tim Sheard 36Lecture 1

Unify continued

unify occursAction x y = 
do { t1 <- prune x

; t2 <- prune y
; case (t1,t2) of

. . .
(_,Tvar r2) -> unify occursAction t2 t1
(Tgen n,Tgen m) -> 

if n==m then return [] 
else return ["generic error"]

(Tarrow a b,Tarrow x y) ->
do { e1 <- unify occursAction a x

; e2 <- unify occursAction b y
; return (e1 ++ e2)
}

(_,_) -> return ["shape match error"]
}
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Generic Monad Functions

sequence  :: Monad m => [m a] -> m [a]
sequence =  foldr mcons (return [])           
where mcons p q = 

do { x <- p
; xs <- q
; return (x:xs)
}

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as  =  sequence (map f as)
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