
Advanced Functional Programming

Tim Sheard 1Lecture 1

Advanced Functional
Programming

Tim Sheard
Dept of computer Science
Portland State University

Winter 2016

Advanced Functional Programming

Tim Sheard 2Lecture 1

Ackknowledements

Many thanks to all those who suggested
topics for discussion in this class:
Mark Jones
Tim Sauerwein
Frank Taylor
John Launchbury
Jim Hook
Jim Teisher

Advanced Functional Programming

Tim Sheard 3Lecture 1

Course Mechanics

Instructor
Tim Sheard

sheard@cs.pdx.edu
Office 120-04 FAB
503-725-2410

Time: Spring Quarter 2014.
– Monday / Wednesday 11:30 AM – 1:20 PM
– classroom – FAB 170

Class Web page
http://web.cecs.pdx.edu/~sheard/course/AdvancedFP/DailyRecord.html

http://www.cse.ogi.edu/%7Esheard/
mailto:sheard@cs.pdx.edu

Advanced Functional Programming

Tim Sheard 4Lecture 1

Grading Scheme
• 1 midterm Exam
• Programming Exercises

• Weekly programming assignments
• checked off and graded

• Final Project
• Chosen about 5 weeks into term
• Due, Tuesday of finals week (June 10)

• Tentative Grading Scheme
• Midterm 30%
• Exercises 40%
• Final Projects 30%

Advanced Functional Programming

Tim Sheard 5Lecture 1

Materials

Required Text: None

Readings: To be assigned.
Usually a web link to papers that can be downloaded.
Sometimes handed out in class.

Resource Books:
Introductory texts in functional programming

The Haskell School of Expression
Paul Hudak, Cambridge University Press (Haskell)

Elements of Functional Programming
Chris Reade, Addisson Wesley (ML Language)

Introduction to Functional Programming
Richard Bird, Phil Wadler, Prentice Hall (Miranda-like)

Haskell: The Craft of Functional Programming
Simon Thompson, Addison Wesley (Haskell)

http://haskell.cs.yale.edu/soe/
http://www.cs.ukc.ac.uk/people/staff/sjt/craft2e/

Advanced Functional Programming

Tim Sheard 6Lecture 1

Other Resources

The Haskell Home Page
www.haskell.org

lots more links here!

The Haskell Report
http://www.haskell.org/onlinereport/

A gentle Introduction to Haskell
http://www.haskell.org/tutorial/

http://www.haskell.org/
http://www.haskell.org/onlinereport/
http://www.haskell.org/tutorial/

Advanced Functional Programming

Tim Sheard 7Lecture 1

Academic Integrity

• We follow the standard PSU guidelines for
academic integrity.
– Discussion is good;
– Items turned in should be your own, individual work.

• Students are expected to be honest in their
academic dealings. Dishonesty is dealt with
severely.

• Homework. Pass in only your own work.

Advanced Functional Programming

Tim Sheard 8Lecture 1

Type Classes and Overloading

• Readings for today's lecture
A Gentle Introduction to Haskell.
Chapter 5: "Type classes and Overloading"

• http://www.haskell.org/tutorial/classes.html
Chapter 8: "Standard Haskell Classes"

• http://www.haskell.org/tutorial/stdclasses.html

• Research Papers about Type Classes
– Please skim the following 2 papers. Reachable

from the background material web
– http://web.cecs.pdx.edu/~sheard/course/AdvancedFP/2004/papers/index.html

– A system of constructor classes: overloading and implicit
higher-order polymorphism. Mark Jones

– A theory of qualified types. Mark Jones

http://www.haskell.org/tutorial/classes.html
http://www.haskell.org/tutorial/stdclasses.html
http://www.cse.ogi.edu/%7Esheard/cse581W01/papers/fpca93.ps
http://www.cse.ogi.edu/%7Esheard/cse581W01/papers/rev-qual-types.ps

Advanced Functional Programming

Tim Sheard 9Lecture 1

Other Related Papers

• These papers can also be found in the
background web page:

– Implementing Type Classes Peterson and Jones

– Type Classes with Functional Dependencies. Mark Jones

– A Note on Functional Dependencies. Mark Jones

– Implicit Parameters: Dynamic Scoping with Static
Types. Lewis, Shields, Meijer, & Launchbury

http://www.cse.ogi.edu/%7Esheard/cse581W01/papers/pldi93.ps
http://www.cse.ogi.edu/%7Esheard/cse581W01/papers/fundeps.pdf
http://www.cse.ogi.edu/%7Esheard/cse581W01/papers/note_on_fundep.ps
http://www.cse.ogi.edu/%7Esheard/cse581W01/papers/implicit.pdf

Advanced Functional Programming

Tim Sheard 10Lecture 1

What are type classes

Type classes are unique to Haskell
They play two (related) roles
Overloading

A single name indicates many different
functions.

E.g. (+) might mean both integer and floating
point addition.

Implicit Parameterization
An operation is implicitly parameterized by a set

of operations that are used as if they were
globally available resources.

Advanced Functional Programming

Tim Sheard 11Lecture 1

Attributes of Haskell Type Classes

Explicitly declared
class and instance declarations

Implicit use
Type inference is used to decide:

When a type class is needed.
What class is meant.

Uniqueness by type
The inference mechanism must decide a unique

reference to use.
No overlapping-instances

Advanced Functional Programming

Tim Sheard 12Lecture 1

The Haskell Class System

Think of a Qualified type as a type with
a Predicate

Types which meet those predicates
have "extra" functionality.

A class definition defines the type of the
"extra" functionality.

An instance declarations defines the
"extra" functionality for a particular
type.

Advanced Functional Programming

Tim Sheard 13Lecture 1

Example Class Definition

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y)

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

Note default
definition of (/=)

Advanced Functional Programming

Tim Sheard 14Lecture 1

Properties of a class definition

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

Class name is capitalized, think of this as the name of a
type predicate that qualifies the type being
described.

Classes can depend on another class or in other words
require another classes as a prerequisite

The methods of a class are functions whose type can
depend upon the type being qualified

There can be more than one method.
The methods can be ordinary (prefix) functions or infix

operators.

Advanced Functional Programming

Tim Sheard 15Lecture 1

Overloading – The Num Class

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a
fromInt :: Int -> a

x - y = x + negate y
fromInt = fromIntegral

Advanced Functional Programming

Tim Sheard 16Lecture 1

Extending the Num Class with
Complex

Make Complex numbers an instance of class
Num.
data Complex = C Float Float
An instance of Num, must first be an instance of Eq and

Show and provide methods for (+), (-), and (*) (amongst
others).

First provide the numeric operators

complex_add (C x y) (C a b)= C (x+a) (y+b)

complex_sub (C x y) (C a b)= C (x-a) (y-b)

complex_mult (C x y) (C a b)
= C (x*a - y*b) (x*b + a*y)

Advanced Functional Programming

Tim Sheard 17Lecture 1

Num Instance
Then make the instance declarations

instance Eq(Complex) where
(C x y) == (C a b) = x==a && y==b

instance Show(Complex) where
showsPrec = error "No show for complex"
showList = error "No show for complex"

instance Num(Complex) where
x + y = complex_add x y
x - y = complex_sub x y
x * y = complex_mult x y

Note that the Show instance is quite imprecise, but this
will cause an error only if it is ever used

Advanced Functional Programming

Tim Sheard 18Lecture 1

Implicit Parameterization
-- A simple functional language

type Var = String
data Term0 =

Add0 Term0 Term0 -- x + y
| Const0 Int -- 5
| Lambda0 Var Term0 -- \ x -> x + 2
| App0 Term0 Term0 -- f x
| Var0 Var -- x

data Value0 =
Int0 Int

| Fun0 Var Term0 Env0

data Env0 = E0 [(Var,Value0)]

Advanced Functional Programming

Tim Sheard 19Lecture 1

A Simple Evaluator
eval0 :: Env0 -> Term0 -> Value0
eval0 (e @ (E0 xs)) t =
case t of
Add0 x y -> plus (eval0 e x) (eval0 e y)
Const0 n -> Int0 n
Var0 s -> look xs s
Lambda0 s t -> Fun0 s t e
App0 f x -> apply (eval0 e f) (eval0 e x)

where plus (Int0 x) (Int0 y) = Int0 (x+y)
look ((x,v):xs) s =

if s==x then v else look xs s
apply (Fun0 v t e) x = eval0 (extend e v x) t
extend (E0 xs) v x = (E0((v,x):xs))

Advanced Functional Programming

Tim Sheard 20Lecture 1

Make the environment abstract

data Term1 =
Add1 Term1 Term1

| Const1 Int
| Lambda1 Var Term1
| App1 Term1 Term1
| Var1 Var

data Value1 e =
Int1 Int

| Fun1 Var Term1 e

Advanced Functional Programming

Tim Sheard 21Lecture 1

Abstract Evaluator
eval1 :: e -> (e -> Var -> Value1 e) ->

(e -> Var -> Value1 e -> e) ->
Term1 -> Value1 e

eval1 e look extend t =
case t of
Add1 x y -> plus (eval e x) (eval e y)
Const1 n -> Int1 n
Var1 s -> look e s
Lambda1 s t -> Fun1 s t e
App1 f x -> apply (eval e f) (eval e x)

where plus (Int1 x) (Int1 y) = Int1 (x+y)
apply (Fun1 v t e) x = eval (extend e v x) t
eval e x = eval1 e look extend x

Advanced Functional Programming

Tim Sheard 22Lecture 1

Add something new
data Term2 =

Add2 Term2 Term2
| Const2 Int
| Lambda2 Var Term2
| App2 Term2 Term2
| Var2 Var
| Pair2 Term2 Term2 -- (3, 4+5)
| Let2 Pat Term2 Term2 -- let (x,y) = f x
in x+y

data Value2 e =
Int2 Int

| Fun2 Var Term2 e
| Prod2 (Value2 e) (Value2 e)

data Pat = Pat Var Var

Advanced Functional Programming

Tim Sheard 23Lecture 1

Complex Abstract Eval
eval2 :: e -> (e -> Var -> Value2 e) ->

(e -> Var -> Value2 e -> e) ->
(e -> Pat -> Value2 e -> e) -> Term2 -> Value2 e
eval2 e look extend extpat t =
case t of
Add2 x y -> plus (eval e x) (eval e y)
Const2 n -> Int2 n
Var2 s -> look e s
Lambda2 s t -> Fun2 s t e
App2 f x -> apply (eval e f) (eval e x)
Pair2 x y -> Prod2 (eval e x) (eval e y)
Let2 p x y -> eval (extpat e p (eval e x)) y

where plus (Int2 x) (Int2 y) = Int2 (x+y)
apply (Fun2 v t e) x = eval (extend e v x) t
eval e x = eval2 e look extend extpat x

Advanced Functional Programming

Tim Sheard 24Lecture 1

Using a Class

-- Lets capture the set of operators
-- on the abstract environments
-- as a type class

class Environment e where
look :: e -> Var -> Value2 e
extend:: e -> Var -> Value2 e -> e
extpat :: e -> Pat -> Value2 e -> e

Advanced Functional Programming

Tim Sheard 25Lecture 1

Simple Abstract Eval
eval3 :: Environment e => e -> Term2 -> Value2 e
eval3 e t =
case t of
Add2 x y -> plus (eval3 e x) (eval3 e y)
Const2 n -> Int2 n
Var2 s -> look e s
Lambda2 s t -> Fun2 s t e
App2 f x -> apply (eval3 e f) (eval3 e x)
Pair2 x y -> Prod2 (eval3 e x) (eval3 e y)
Let2 p x y -> eval3 (extpat e p (eval3 e x)) y

where plus (Int2 x) (Int2 y) = Int2 (x+y)
apply (Fun2 v t e) x = eval3 (extend e v x) t

Advanced Functional Programming

Tim Sheard 26Lecture 1

Instantiating the Class

data Env3 = E3 [(Var,Value2 Env3)]

instance Environment Env3 where
look (E3((x,y):xs)) v =]

if x==v then y else look (E3 xs) v
extend (E3 xs) v x = E3 ((v,x):xs)
extpat (E3 xs) (Pat x y) (Prod2 a b) =

E3 ((x,a):(y,b):xs)

Advanced Functional Programming

Tim Sheard 27Lecture 1

Different Instantiation

data Env4 = E4 (Var -> Value2 Env4)

instance Environment Env4 where
look (E4 f) v = f v
extend (E4 f) v x =

E4(\ y -> if y==v then x else f y)
extpat (E4 f) (Pat x y) (Prod2 a b) =
E4(\ z -> if x==z

then a
else if y==z

then b
else f z)

Advanced Functional Programming

Tim Sheard 28Lecture 1

Using Eval

-- let (f,g) = (\ x -> x+1, \ y -> y + 3)
-- in f (g 5)

prog =
Let2 (Pat "f" "g")

(Pair2 (Lambda2 "x" (Add2 (Var2 "x") (Const2 1)))
(Lambda2 "y" (Add2 (Var2 "y") (Const2 3))))

(App2 (Var2 "f") (App2 (Var2 "g") (Const2 5)))

ans = eval3 (E3 []) prog

ans2 = eval3
(E4 (\ x -> error "no such name"))
prog

Advanced Functional Programming

Tim Sheard 29Lecture 1

What do Type Classes Mean

A Type class is an implicit parameter

The parameter captures all the
functionality of the class (it's methods)

Advanced Functional Programming

Tim Sheard 30Lecture 1

The library passing transform

The type inference mechanism infers when
a function needs a type class

eval3 :: Environment e => e -> Term2 -> Value2 e

The mechanism transforms the program to
pass the extra parameter around

Advanced Functional Programming

Tim Sheard 31Lecture 1

Compare

class Environment e where
look :: e -> Var -> Value2 e
extend:: e -> Var -> Value2 e -> e
extpat :: e -> Pat -> Value2 e -> e

data EnvironmentC e =
EnvC {lookM :: e -> Var -> Value2 e,

extendM :: e -> Var -> Value2 e -> e,
extpatM :: e -> Pat -> Value2 e -> e
}

Advanced Functional Programming

Tim Sheard 32Lecture 1

Explicit Library Parameter
eval4 :: EnvironmentC a -> a -> Term2 -> Value2 a
eval4 d e t =
case t of
Add2 x y -> plus (eval4 d e x) (eval4 d e y)
Const2 n -> Int2 n
Var2 s -> lookM d e s
Lambda2 s t -> Fun2 s t e
App2 f x -> apply (eval4 d e f) (eval4 d e x)
Pair2 x y -> Prod2 (eval4 d e x) (eval4 d e y)
Let2 p x y -> eval4 d

(extpatM d e p (eval4 d e x)) y

where plus (Int2 x) (Int2 y) = Int2 (x+y)
apply (Fun2 v t e) x =

eval4 d (extendM d e v x) t

Advanced Functional Programming

Tim Sheard 33Lecture 1

Instances?
e3Dict = EnvC
{ lookM = \ (E3((x,y):xs)) v ->

if x==v then y else lookM e3Dict (E3 xs) v
, extendM = \ (E3 xs) v x -> E3((v,x):xs)
, extpatM = \ (E3 xs) (Pat x y) (Prod2 a b) ->

E3((x,a):(y,b):xs) }
e4Dict = EnvC
{ lookM = \ (E4 f) v -> f v
, extendM = \ (E4 f) v x ->

E4(\ y -> if y==v then x else f y)
, extpatM = \ (E4 f) (Pat x y) (Prod2 a b) ->

E4(\ z -> if x==z
then a
else if y==z then b else f z)}

ans3 = eval4 e3Dict (E3 []) prog
ans4 = eval4 e4Dict (E4 (\ x -> error "no such name")) prog

Note the
recursion

	Advanced Functional Programming
	Ackknowledements
	Course Mechanics
	Grading Scheme
	Materials
	Other Resources
	Academic Integrity
	Type Classes and Overloading
	Other Related Papers
	What are type classes
	Attributes of Haskell Type Classes
	The Haskell Class System
	Example Class Definition
	Properties of a class definition
	Overloading – The Num Class
	Extending the Num Class with Complex
	Num Instance
	Implicit Parameterization
	A Simple Evaluator
	Make the environment abstract
	Abstract Evaluator
	Add something new
	Complex Abstract Eval
	Using a Class
	Simple Abstract Eval
	Instantiating the Class
	Different Instantiation
	Using Eval
	What do Type Classes Mean
	The library passing transform
	Compare
	Explicit Library Parameter
	Instances?

