
Arrow Basics

Ted Cooper
theod@pdx.edu

CS510 – Spring 2014

1 Introduction

Here’s a literate introduction to arrows and review of the basic Arrow typeclasses.

{-# LANGUAGE Arrows #-}

module ArrowBasics where

import Control.Arrow(Arrow, ArrowChoice, ArrowLoop, Kleisli(..)

, arr, first, second, (∗∗∗), (&&&)

, left, right, (+++), (| | |)
, loop)

import Control.Category(Category, (≫), (.), id)

import Control.Monad(liftM)

import Data.Function(fix)

import Prelude hiding((.), id)

-- Count the occurrences of word w in a string

count :: String → String

→ Int

count w = length ◦ filter (== w) ◦ words

-- > count "foo" "foo bar foo"

-- 2

In order to compose regular functions with functions that return types in a monad, we must
lift them into the monad. This gets ugly quickly:

-- Count the occurrences of word w in a file and print the

-- count.

countFile :: String → FilePath → IO ()

countFile w = (>>= print)

◦ liftM (count w)

◦ readFile

-- > countFile "foo" "fooBarFoo.txt"

-- 2

Haskell has an Arrow typeclass that provides combinators we can apply to regular functions,
monadic functions, and other things. We can use these combinators to rewrite countF ile if we can
express the functions in its pipeline as values of types in the Arrow typeclass:

1

countFileA :: String → Kleisli IO FilePath ()

countFileA w = Kleisli readFile

≫ arr (count w)

≫ Kleisli print

This may not seem like much of an improvement, but we will shortly introduce more interest-
ing arrow combinators.

What’s up with this arr function and Kleisli type constructor? Well, arr is like liftM for
arrows:

-- > :t arr

-- arr :: Arrow a ⇒ (b → c) → a b c

arr takes a function from b to c and lifts it into any arrow type from b to c.

2 Kleisli

We can use theKleisli newtype to make arrows out of functions of the typeMonad m⇒ a→ m b,
which are also known as ”Kleisli arrows”:

-- > :i Kleisli

-- newtype Kleisli m a b

-- = Control.Arrow.Kleisli {Control.Arrow.runKleisli :: a → m b}

-- -- Defined in ‘Control.Arrow’

-- > :t readFile

-- readFile :: FilePath → IO String

-- > :t Kleisli readFile

-- Kleisli readFile :: Kleisli IO FilePath String

-- > :t print

-- print :: Show a ⇒ a → IO ()

-- > :t Kleisli print

-- Kleisli print :: Show a ⇒ Kleisli IO a ()

So Kleisli arrows have an embedded monad type, a parameter type, and a return type. If
we match up the parameter and return types, we can compose arrows like composing functions.
There are arrow composition operators:

(>>>) composes left to right, i.e.
appliedF irst >>> appliedSecond >>> appliedThird

(<<<) composes right to left, i.e.
appliedThird <<< appliedSecond <<< appliedF irst

3 Category

An aside on the Category typeclass: Check out the type of (>>>):

-- > :t (≫)

-- (≫)

-- :: Control.Category.Category cat ⇒ cat a b → cat b c → cat a c

2

But isn’t (>>>) for composing arrows? Well, arrows are morphisms in a particular category,
and (>>>) composes category morphisms. What’s a category? What’s a morphism?

Adapted from http://en.wikipedia.org/wiki/Category_(mathematics):
In short, a category is an algebraic structure with an identity ”morphism” and associative

composition of ”morphisms”. Things you need to form a category C:

• A class of objects ob(C). A class can be a set like {1, 2, 3} (called a ”small class”) or a collection
that can’t be represented as a set, like the class of sets that don’t contain themselves (called a
”proper class”).

• A class of morphisms hom(C). A morphism maps one object to one object in the category.
We write the class of morphisms in a category from e.g. 1 to 2 as hom(1, 2). For each object a
there must be an identity morphism ida : a→ a that takes that object to itself. All morphisms
must compose associatively, i.e. if f ∈ hom(a, b) and g ∈ hom(b, c) and h ∈ hom(c, d), then
(f >>> g) >>> h = f >>> (g >>> h) ∈ hom(a, d)

Let’s look at the type of (>>>) again:

-- > :t (≫)

-- (≫)

-- :: Control.Category.Category cat ⇒ cat a b → cat b c → cat a c

So, it appears we should read this like cat a b is a type representing morphisms from a to b,
where a and b are objects in a category. According to (author?) [1], the fact that cat is a Haskell type,
rather than a class of objects, is the key difference between Haskell Arrows and the morphisms in
”Freyd Categories”. Rather, arrows are morphisms in ”Enriched Freyd Categories”. Regardless,
Haskell Arrows are morphisms in some category,

class Category a ⇒ Arrow a where ◦ .. (from Control.Arrow)

so we can certainly compose them using category morphism composition (>>>).
Perhaps some of you will understand this (from (author?) [1]) better than I do:

4 (→) is an arrow

-- > :i (→)

-- ◦ ..
-- instance Category (→) -- Defined in ‘Control.Category’

3

-- ◦ ..
-- instance Arrow (→) -- Defined in ‘Control.Arrow’

Functions have an Arrow instance, so we can use category and arrow combinators on them
directly:

-- > head ≫ ord $ "c"

-- 99

-- > ord ◦ head $ "c"

-- 99

However, if we’d like to use function arrows with another arrow type, we need to lift them
into that arrow type with arr:

-- > let readRevA = Kleisli readFile ≫ arr (init ≫ reverse)

-- ∗ArrowBasics Control.Arrow Data.Function |
-- > readFile "fooBarFoo.txt" >>= (init ≫ return)

-- "foo bar foo"

-- > runKleisli readRevA "fooBarFoo.txt"

-- "oof rab oof"

5 Arrow

The Arrow typeclass provides a set of combinators in addition to arr, which let us do cool things
with pairs (2-products):

-- > :i Arrow

-- class Category a ⇒ Arrow a where

-- arr :: (b → c) → a b c

-- first :: a b c → a (b, d) (c, d)

-- second :: a b c → a (d, b) (d, c)

-- (∗∗∗) :: a b c → a b’ c’ → a (b, b’) (c, c’)

-- (&&&) :: a b c → a b c’ → a b (c, c’)

-- -- Defined in ‘Control.Arrow’

Arrow combinators:

• (∗ ∗ ∗): Apply 2 arrows to the elements of a pair.

-- > :t (∗∗∗)
-- (∗∗∗) :: Arrow a ⇒ a b c → a b’ c’ → a (b, b’) (c, c’)

Example:

unitProduct :: Bool

unitProduct = ((+ 0) ∗∗∗ (++ "0") $ (1, "1")) == (1, "10")

-- A simple way to apply a function to both elements

-- of a homogeneously typed(?) pair.

pairMap :: (a → b) → (a, a) → (b, b)

pairMap f (x, y) = (f x, f y)

-- The same thing in point-free style, using arrow

-- combinators

pairMapA :: (a → b) → (a, a) → (b, b)

pairMapA f = f ∗∗∗ f

4

Arrow instances must define at least 2 of these combinators: arr and first.

-- > :t arr

-- arr :: Arrow a ⇒ (b → c) → a b c

-- > :t first

-- first :: Arrow a ⇒ a b c → a (b, d) (c, d)

The rest are by default defined in terms of arr, first, and (>>>). You may provide custom
implementations to improve performance.

Arrow Laws (adapted from (author?) [4]):
Given

assoc :: ((a, b), c) → (a, (b, c))

assoc ((x, y), z) = (x, (y, z))

the following laws should hold for Arrow instances.
arrid is identity

arr id ≫ f = f ≫ arr id = f

(>>>) is associative

(f ≫ g) ≫ h = f ≫ (g ≫ h)

arr distributes across (>>>):

arr (f ≫ g) = arr (g ◦ f) = arr f ≫ arr g

first distributes across (>>>):

first (f ≫ g) = first f ≫ first g

first distributes(?) into function-land as ∗ ∗ ∗id
first (arr f) = arr (f ∗∗∗ id)

Arrows that affect different pair elements commute:

first f ≫ arr (id ∗∗∗ g) = arr (id ∗∗∗ g) ≫ first f

Applying a function to the first element of a pair then getting the first element of the result is
the same as getting the first element of a pair then applying a function to the result:

first f ≫ arr fst = arr fst ≫ f

You can twirl ”left-associative” pair nests into ”right-associative” pair nests(?):

first (first f) ≫ arr assoc = arr assoc ≫ first f

5.1 Stream functions

newtype SF a b = SF { runSF :: [a] → [b] }

instance Category SF where

id = arr id

SF f ◦ SF g = SF (f ◦ g)

instance Arrow SF where

5

arr f = SF (map f)

first (SF f) = SF (unzip ≫ first f ≫ uncurry zip)

first’ (SF f) = SF $ (λxys → zip (f $ map fst xys) (map snd xys))

first’’ (SF f) = SF $ map (λ(x, y) → (head $ f [x], y))

delay x = SF (init ◦ (x :))

-- arr works:

-- > runSF (arr (("(" ++) ≫ (++ ")"))) ["a","b","c"]

-- ["(a)","(b)","(c)"]

-- first works:

-- > runSF (first $ arr (+1)) [(1,’a’),(2,’b’)]

-- [(2,’a’),(3,’b’)]

-- delay works:

-- > runSF (delay 0 &&& id) [1,2,3]

-- [(0,1),(1,2),(2,3)]

5.2 Joining computations

Consider a function that adds the result of two monadic computations:

addM :: (Monad m, Num a) ⇒ m a → m a → m a

f ‘addM‘ g = do x ← f

y ← g

return $ x + y

-- > return 3 ‘addM‘ return 4

-- 7

We can analogously create an arrow that adds the output of two arrows:

addA :: (Arrow a, Num c) ⇒ a b c → a b c → a b c

f ‘addA‘ g = f &&& g ≫ arr (uncurry (+))

-- > const 3 ‘addA‘ const 4 $ undefined

-- 7

-- > (+ 3) ‘addA‘ (∗ 4) $ 2

-- 13

6 ArrowChoice

The ArrowChoice typeclass provides us with a set of additional combinators with Eitherab, a
2-element sum type.

-- > :i ArrowChoice

-- class Arrow a ⇒ ArrowChoice a where

-- left :: a b c → a (Either b d) (Either c d)

-- right :: a b c → a (Either d b) (Either d c)

6

-- (+++) :: a b c → a b’ c’ → a (Either b b’) (Either c c’)

-- (| | |) :: a b d → a c d → a (Either b c) d

-- -- Defined in ‘Control.Arrow’

(+ + +) transforms two arrows into an arrow from Either to Either, much like how (∗ ∗ ∗)
transforms two arrows into an arrow from pairs to pairs.

-- > ((+ 3) +++ (++ "3")) $ Left 1

-- Left 4

-- > ((+ 3) +++ (++ "3")) $ Right "1"

-- Right "13"

(|||) transforms two arrows with different input types and the same output type to an arrow
from Either input type to that output type, allowing us to ”join” values of Either type wrapped
in Left and Right, respectively, to unwrapped outputs of the output type.

-- > (show | | | (++ "_was_already_a_string")) $ Right "asdf"

-- "asdf_was_already_a_string"

-- > (show | | | (++ "_was_already_a_string")) $ Left 1

-- "1"

left lets us apply an arrow to Lefts while passing through Rights unchanged. It is analogous
to first. Similarly, right lets us apply an arrow toRightswhile passing through Lefts unchanged.
It is analogous to second.

-- > left (+1) $ Left 1

-- Left 2

-- > left (+1) $ Right "x"

-- Right "x"

--

-- > right (++"y") $ Left 1

-- Left 1

-- > right (++"y") $ Right "x"

-- Right "xy"

Just like we can compose arrows built with first and second to build arrows that operate
independently on each element of a pair, we can compose arrows built with left and right to
build arrows that operate independently on each type wrapped in an Either. Note that this is the
same thing that (+ ++) does. Indeed, (+ ++) is defined in terms of left, right (which is defined
in terms of left), and (>>>).

-- > left (+1) ≫ right (++"y") $ Left 1

-- Left 2

-- > left (+1) ≫ right (++"y") $ Right "x"

-- Right "xy"

--

-- > (+1) +++ (++"y") $ Left 1

-- Left 2

-- > (+1) +++ (++"y") $ Right "x"

-- Right "xy"

listcase [] = Left ()

listcase (x:xs) = Right (x,xs)

7

mapA :: ArrowChoice a ⇒ a b c → a [b] [c]

mapA f = arr listcase

≫ arr (const []) | | | (f ∗∗∗ mapA f ≫ arr (uncurry (:)))

-- With function arrows:

-- > mapA (+1) [1,2,3]

-- [2,3,4]

-- With Kleisli arrows:

-- > runKleisli (mapA $ Kleisli print) [1,2,3]

-- 1

-- 2

-- 3

-- [(),(),()]

instance ArrowChoice SF where

left (SF f) = SF (λxs → combine xs (f [y | Left y ← xs]))

where combine (Left y : xs) (z:zs) = Left z : combine xs zs

combine (Right y : xs) zs = Right y : combine xs zs

combine [] zs = []

-- > runSF (left (arr (+1))) $ map Left [1,2,3]

-- [Left 2,Left 3,Left 4]

-- > runSF (left (arr (+1))) $ map Right [1,2,3]

-- [Right 1,Right 2,Right 3]

-- View the input list as 3 parallel streams

-- (one for each element in the first list)

-- and delay each stream, moving elements ahead to ensure that

-- the stream of elements in position 0, stream of elements in

-- position 1, and stream of elements in position 2 appear in

-- the same order.

-- > runSF (mapA (delay 0)) [[1,2,3],[4,5],[6],[7,8],[9,10,11],[12,13,14,15]]

-- [[0,0,0],[1,2],[4],[6,5],[7,8,3],[9,10,11,0]]

7 ArrowLoop

We can model feedback loops with instances of the ArrowLoop class:

-- > :i ArrowLoop

-- class Arrow a ⇒ ArrowLoop a where

-- loop :: a (b, d) (c, d) → a b c

-- -- Defined in ‘Control.Arrow’

(author?) [3] : ”The reader who finds this argument difficult should work out the sequence of
approximations in the call

runSF (loop (arr swap)) [1,2,3]

it is quite instructive to do so.”

Function instance:

8

instance ArrowLoop (→) where

loop f b = let (c,d) = f (b,d) in c

This loop creates a recursive binding, much like one we’d use to write a recursive function
using fix:

-- In case you don’t remember fix, some implementations:

fix’ f = let x = f x in x

fix’’ f = f (fix’ f)

repeat1 = fix (1:)

f (_, r) = (r, 1:r)

repeat1’ = loop f undefined

-- Haskell will happily evaluate the recursive binding

-- forever, so we’d better limit the number of elements

-- we look at:

-- > take 10 repeat1

-- [1,1,1,1,1,1,1,1,1,1]

-- > take 10 repeat1’

-- [1,1,1,1,1,1,1,1,1,1]

repeatX x = fix (x:)

g (x, r) = (r, x:r)

repeatX’ = loop g

-- > take 10 $ repeatX ’c’

-- "cccccccccc"

-- > take 10 $ repeatX’ ’c’

-- "cccccccccc"

-- fib

fibGuyCurry = (λf → (λn → if n < 2 then n else f (n - 1) + f (n -2)))

fib = fix fibGuyCurry

fibGuyArrowInput (x, af) =
(af x

, (λn → if n < 2 then n else af (n - 1) + af (n - 2)))

fib’ = loop fibGuyArrowInput

-- > map fib [1..10]

-- [1,1,2,3,5,8,13,21,34,55]

-- > map fib’ [1..10]

-- [1,1,2,3,5,8,13,21,34,55]

9

7.1 SF ArrowLoop instance

instance ArrowLoop SF where

loop (SF f) = SF $ λas →
let (bs, cs) = unzip (f (zip as (stream cs))) in bs

where stream ~(x:xs) = x : stream xs

dup x = (x,x)

-- TODO: simple example

So what does this do? Each element in the input stream is zipped with an element from the
feedback stream, the stream function is applied to that list of pairs, and the resulting list of pairs
is unzipped into the output stream and the feedback stream. The marks an irrefutable pattern.
Normally pattern matches are evaluated eagerly(right?) so Haskell can determine which branch
to build a thunk proceeding down(?). If a pattern match is irrefutable, we can only have one
branch, but we can defer evaluating the pattern match until the thunk is evaluated, i.e. for stream
when the value of an element in the list it returns is needed.

8 Arrows and feedback

Let’s model synchronous digital signals as streams and logic gates as stream arrows! Check out
Circuits.hs.

9 Future Work

• Rewrite TrivialParser.hs with PArrow or some version of the ParseArrow in Paterson.

• Toy XML Parser with HXT, maybe followed by FractalFlame example?

References

[1] Robert Atkey. What is a categorical model of arrows? Electr. Notes Theor. Comput. Sci.,
229(5):19–37, 2011.

[2] Jason Baker and luqui. How do i use fix, and how does it work?, 2011. [Online; accessed
28-April-2014].

[3] John Hughes. Programming with arrows. In Advanced Functional Programming, pages 73–129.
Springer, 2005.

[4] Ross Paterson. A new notation for arrows. SIGPLAN Not., 36(10):229–240, October 2001.

10

