
Advanced Functional
Programming
Profiling in GHC

GHC Profiling

• The GHC compiler has extensive support
for profiling.

• Links to documentation
– http://www.haskell.org/ghc/docs/latest/html/users_guide/profiling.html

• GHC can perform two kinds of profiling
– time profiling
– space profiling

http://www.haskell.org/ghc/docs/latest/html/users_guide/profiling.html�

Time Profiling

• Used to instrument code to see where a
program is spending its time.

• Useful to find bottlenecks
• Overview of use

– Compile code with profiling flags
• ghc -prof -auto-all sort1.hs

– Run code with profiling command-line options
• ./main.exe +RTS -p -RTS

– Inspect the profile-information file produced
•edit main.exe.prof

Lets try it.

• Our goal is to write a quik-sort routine
• We expect it to have n-log(n) behavior
• We write it in Haskell (see next page)
• It appears to behave like an n2 algorithm
• We want to know why?

First some tests
test1 = check "null list"
 (quik []) ([]::[Int])
test2 = check "one list"
 (quik [3]) [3]
test3 = check "1 to 10"
 (quik [1,9,2,8,3,7,4,6,5,10])
 [1,2,3,4,5,6,7,8,9,10]

tests = [test1,test2,test3]
test = runTestTT (TestList tests)

helper functions
merge [] xs = xs
merge xs [] = xs
merge (x:xs) (y:ys) | x<y = x : merge xs (y:ys)
merge (x:xs) (y:ys) = y : merge (x:xs) ys

smaller x [] = []
smaller x (y:ys) =
 if x>y
 then y : smaller x ys
 else smaller x ys

larger x [] = []
larger x (y:ys) =
 if x<=y
 then y : larger x ys
 else larger x ys

quik [] = []
quik [x] = [x]
quik (x:xs) = merge (merge small [x]) large
 where small = quik (smaller x xs)
 large = quik (larger x xs)

main =
 do { putStrLn ("N = "++show n)
 ; let l = last(quik xs)
 ; putStrLn ("The last element is: "++show l)
 }

Run the tests

• Type :? for help
• Main> testall
• Cases: 3 Tried: 3 Errors: 0 Failures: 0
• Main>

Test time
in GHCI

• n = 100
• xs = concat (replicate 5 [1..n])

• for n=100, main, takes 0.06 seconds
• for n= 250 about 0.30 seconds
• for n = 500 about 1.37
• for n = 750 about 2.75
• for n = 1000 about 4.95 seconds
• for n = 2500 about 31.53 seconds
• for n= 5000 about 128.4 seconds

main =
 do { let l = last(quik xs)
 ; putStrLn
 ("The last element of the sort is: “
 ++show l)
 }

Looks quadratic (or worse) to me.

Use GHC profiling

$ ghc -prof -auto-all --make sort0.hs
[1 of 1] Compiling Main (
sort0.hs, sort0.o)

Linking sort0.exe ...

$./sort0.exe +RTS -p -RTS
N = 2500
The last element of the sort is: 2500

• edit sort1.prof

 Mon May 05 11:38 2014 Time and Allocation Profiling Report (Final)

 sort0.exe +RTS -p -RTS

 total time = 5.91 secs (5911 ticks @ 1000 us, 1 processor)
 total alloc = 2,010,526,712 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

larger Main 60.9 99.5
smaller Main 38.8 0.0

 individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 37 0 0.0 0.0 100.0 100.0
 CAF GHC.IO.Encoding.CodePage 59 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Encoding 56 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Handle.FD 51 0 0.0 0.0 0.0 0.0
 CAF Main 44 0 0.0 0.0 100.0 100.0
 xs Main 78 1 0.0 0.0 0.0 0.0
 n Main 75 1 0.0 0.0 0.0 0.0
 main Main 74 1 0.0 0.0 100.0 100.0
 main.l Main 76 1 0.0 0.0 100.0 100.0
 quik Main 77 40001 0.1 0.1 99.9 100.0
 quik.large Main 82 20000 0.0 0.0 60.9 99.6
 larger Main 83 62577496 60.9 99.5 60.9 99.5
 quik.small Main 80 20000 0.0 0.0 38.8 0.1
 smaller Main 81 62577496 38.8 0.0 38.8 0.0
 merge Main 79 134991 0.2 0.2 0.2 0.2

Try for finer detail
merge [] xs = xs
merge xs [] = xs
merge (x:xs) (y:ys) | x<y = add1 x (merge xs (y:ys))
merge (x:xs) (y:ys) = add1 y (merge (x:xs) ys)

add1 x xs = x:xs
add2 x xs = x:xs

smaller x [] = []
smaller x (y:ys) =
 if x>y
 then add2 y (smaller x ys)
 else smaller x ys

larger x [] = []
larger x (y:ys) =
 if x<=y
 then add2 y (larger x ys)
 else larger x ys

 Mon May 05 11:42 2014 Time and Allocation Profiling Report (Final)

 sort1.exe +RTS -p -RTS

 total time = 1.76 secs (1763 ticks @ 1000 us, 1 processor)
 total alloc = 505,286,712 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

larger Main 65.2 99.1
smaller Main 34.2 0.1

 individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 37 0 0.1 0.0 100.0 100.0
 CAF GHC.IO.Encoding.CodePage 59 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Encoding 56 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Handle.FD 51 0 0.0 0.0 0.0 0.0
 CAF Main 44 0 0.0 0.0 99.9 100.0
 xs Main 78 1 0.0 0.1 0.0 0.1
 n Main 75 1 0.0 0.0 0.0 0.0
 main Main 74 1 0.0 0.0 99.9 99.9
 main.l Main 76 1 0.0 0.0 99.9 99.9
 quik Main 77 20001 0.1 0.2 99.9 99.9
 quik.large Main 82 10000 0.0 0.1 65.2 99.1
 larger Main 83 15663746 65.2 99.1 65.2 99.1
 add2 Main 84 15643750 0.0 0.0 0.0 0.0
 quik.small Main 80 10000 0.0 0.1 34.2 0.1
 smaller Main 81 15663746 34.2 0.1 34.2 0.1
 add2 Main 85 9996 0.0 0.0 0.0 0.0
 merge Main 79 67491 0.5 0.5 0.5 0.5
 add1 Main 86 47491 0.0 0.0 0.0 0.0

Why so many calls to add1
merge [] xs = xs
merge xs [] = xs
merge (x:xs) (y:ys) | x<y = add1 x (merge xs (y:ys))
merge (x:xs) (y:ys) = add1 y (merge (x:xs) ys)

quik [] = []
quik [x] = [x]
quik (x:xs) = merge (merge small [x]) large
 where small = quik (smaller x xs)
 large = quik (larger x xs)

Fix that
quik [] = []
quik [x] = [x]
quik (x:xs) = merge small (x:large)
 where small = quik (smaller x xs)
 large = quik (larger x xs)

 Mon May 05 11:45 2014 Time and Allocation Profiling Report (Final)

 sort2.exe +RTS -p -RTS

 total time = 1.64 secs (1637 ticks @ 1000 us, 1 processor)
 total alloc = 503,166,952 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

larger Main 60.8 99.5
smaller Main 38.9 0.1

 individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 37 0 0.0 0.0 100.0 100.0
 CAF GHC.IO.Encoding.CodePage 59 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Encoding 56 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Handle.FD 51 0 0.0 0.0 0.0 0.0
 CAF Main 44 0 0.0 0.0 100.0 100.0
 xs Main 78 1 0.0 0.1 0.0 0.1
 n Main 75 1 0.0 0.0 0.0 0.0
 main Main 74 1 0.1 0.0 100.0 99.9
 main.l Main 76 1 0.0 0.0 99.9 99.9
 quik Main 77 20001 0.1 0.1 99.9 99.9
 quik.large Main 82 10000 0.1 0.1 60.9 99.5
 larger Main 83 15663746 60.8 99.5 60.8 99.5
 add2 Main 84 15643750 0.0 0.0 0.0 0.0
 quik.small Main 80 10000 0.0 0.1 38.9 0.1
 smaller Main 81 15663746 38.9 0.1 38.9 0.1
 add2 Main 85 9996 0.0 0.0 0.0 0.0
 merge Main 79 19996 0.0 0.1 0.0 0.1
 add1 Main 86 9996 0.0 0.0 0.0 0.0

Its not the algorithm!

• It’s the data
• N=8

• [1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,

7,8,1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8]

• Well. Maybe it is the algorithm
• Choose randomly, or try another approach

Merge Sort
msort n [] = []
msort n [x] = [x]
msort n xs = merge2 (msort m ys) (msort m zs)
 where m = n `div` 2 - 1
 (ys,zs) = splitAt m xs
 merge2 [] xs = xs
 merge2 xs [] = xs
 merge2 (x:xs) (y:ys)
 | x<y = x : merge2 xs (y:ys)
 merge2 (x:xs) (y:ys) = y : merge2 (x:xs) ys

$ ghc -prof -auto-all --make
sort3.hs
[1 of 1] Compiling Main
(sort3.hs, sort3.o)
Linking sort3.exe ...

sheard@freya
/cygdrive/d/work/sheard/Courses/
AdvancedFP/web/code/profiling
$./sort3.exe +RTS -p -RTS
N = 8

It doesn’t terminate, so ^C

 Mon May 05 11:47 2014 Time and Allocation Profiling Report (Final)

 sort3.exe +RTS -p -RTS

 total time = 8.29 secs (8290 ticks @ 1000 us, 1 processor)
 total alloc = 3,515,897,488 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

msort Main 47.3 77.3
msort.m Main 34.3 15.9
msort.(...) Main 6.2 6.8
msort.zs Main 4.6 0.0
msort.ys Main 4.5 0.0
merge Main 2.6 0.0

 individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 37 0 0.0 0.0 100.0 100.0
 CAF GHC.IO.Encoding.CodePage 61 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Encoding 58 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Handle.FD 52 0 0.5 0.0 0.5 0.0
 CAF GHC.TopHandler 51 0 0.0 0.0 0.0 0.0
 CAF Main 44 0 0.0 0.0 99.5 100.0
 xs Main 78 1 0.0 0.0 0.0 0.0
 n Main 75 1 0.0 0.0 0.0 0.0
 main Main 74 1 0.0 0.0 99.5 100.0
 main.l Main 76 1 0.0 0.0 99.5 100.0
 msort Main 77 39952817 47.3 77.3 99.5 100.0
 msort.zs Main 83 19976406 4.6 0.0 4.6 0.0
 msort.m Main 82 19976410 34.3 15.9 34.3 15.9
 msort.(...) Main 81 19976410 6.2 6.8 6.2 6.8
 msort.ys Main 80 19976410 4.5 0.0 4.5 0.0
 merge Main 79 19976410 2.6 0.0 2.6 0.0

Faulty when n==2

msort n xs = merge2 (msort m ys) (msort m zs)
 where m = n `div` 2 - 1
 (ys,zs) = splitAt m xs

Better
msort n xs = merge2 (msort m ys) (msort (n-m) zs)
 where m = n `div` 2
 (ys,zs) = splitAt m xs

 Mon May 05 11:26 2014 Time and Allocation Profiling Report (Final)

 sort4.exe +RTS -p -RTS

 total time = 0.00 secs (2 ticks @ 1000 us, 1 processor)
 total alloc = 13,181,536 bytes (excludes profiling overheads)

COST CENTRE MODULE %time %alloc

msort.(...) Main 50.0 41.5
CAF GHC.IO.Handle.FD 50.0 0.3
msort Main 0.0 16.4
msort.merge2 Main 0.0 37.5
xs Main 0.0 3.4

 individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 37 0 0.0 0.0 100.0 100.0
 CAF GHC.IO.Encoding.CodePage 61 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Encoding 58 0 0.0 0.0 0.0 0.0
 CAF GHC.IO.Handle.FD 52 0 50.0 0.3 50.0 0.3
 CAF Main 44 0 0.0 0.0 50.0 99.7
 xs Main 78 1 0.0 3.4 0.0 3.4
 n Main 75 1 0.0 0.0 0.0 0.0
 main Main 74 1 0.0 0.1 50.0 96.3
 main.l Main 76 1 0.0 0.0 50.0 96.2
 msort Main 77 24999 0.0 16.4 50.0 96.2
 msort.zs Main 83 12499 0.0 0.0 0.0 0.0
 msort.m Main 82 12499 0.0 0.8 0.0 0.8
 msort.(...) Main 81 12499 50.0 41.5 50.0 41.5
 msort.ys Main 80 12499 0.0 0.0 0.0 0.0
 msort.merge2 Main 79 115597 0.0 37.5 0.0 37.5

Space Profiling

• It can be quite difficult to tell the lifetime of
an object in the heap.(why GC is nice)

• Lazy evaluation makes thing even more
difficult because we don’t necessarily
know when a thunk/closure will be
evaluated.

• Solution: instrumented programs that
record their own space/time behavior.

GHC profiler overview

• Compile with “–prof” to instrument the code
 (1) ghc –prof Main.hs –o Main

• Run with cues to the runtime system to generate
a heap profile (*.hp)
 (2) ./Main +RTS {options}

• Convert the heap profile to Postscript (*.ps) and
view it
 (3) hp2ps Main.hp
 (4) gv Main.ps

GHC profiler options

• One breakdown

option (see right)
• And one option to

restrict the profile to a
specific part of the
program (see GHC
User’s Guide online)

Option Breakdown

-hc By function
-hm By module
-hy By type

-hb By thunk
behavior

./Main +RTS {options}

Thunk behaviors

• Output from the –hb option

 LAG between creation and first use
 USE between first and last use
 DRAG from final use until GC’ed
 VOID never used

• Most suspicious are DRAG and VOID

Program 1
mean :: [Float] -> Float
mean xs = sum xs /
 (fromIntegral (length xs))

main = print (mean [0.0 .. 1000000])

• xs is lazily computed, must be stored until
both sum and length finish.

• Program runs out of memory and crashes!

$ ghc -prof program1.hs

$./program1 +RTS -hb
Stack space overflow: current size 8388608 bytes.
Use `+RTS -Ksize -RTS' to increase it.

$ hp2ps program1.hp

$ ls
program1.aux program1.o sort0.o sort1.o sort2.o sort3.o sort4.o

program1.exe program1.ps sort0.prof sort1.prof sort2.prof sort3.prof sort4.prof

program1.hi sort0.exe sort1.exe sort2.exe sort3.exe sort4.exe sortA.hs

program1.hp sort0.hi sort1.hi sort2.hi sort3.hi sort4.hi sortAA.hs

program1.hs sort0.hs sort1.hs sort2.hs sort3.hs sort4.hs

Program 1 (by type)

Program 1 (by behavior)

Program 2
mean :: [Float] -> Float
mean xs = loop 0 0 xs where
 loop sum len [] = sum / len
 loop sum len (x:xs) =
 loop (sum+x) (len+1) xs

main = print (mean [0.0 .. 1000000])

• Now we only traverse the list once.
• But STILL runs out of memory and crashes!

Program 2 (by type)

Strictness operators
• seq :: a -> b -> b {- primitive -}

• Evaluating seq e1 e2 first evaluates e1
until its top constructor is known and then
evaluates e2 (and returns the value of e2).

• ($!) :: (a -> b) -> a -> b
 f $! x = seq x (f x)

• ($!) makes any function strict

Program 3
mean :: [Float] -> Float
mean xs = loop 0 0 xs where
 loop sum len [] = sum / len
 loop sum len (x:xs) =
 (loop $! (sum+x)) $! (len+1)) xs

main = print (mean [0.0 .. 1000000])

• No more senselessly growing arithmetic thunks.
• Program prints 499940.88 and exits normally

$ ghc -prof program3.hs
[1 of 1] Compiling Main (program3.hs, program3.o)
Linking program3.exe ...

$./program3 +RTS -hy
499940.88

$ hp2ps program3.hp

	Advanced Functional Programming
	GHC Profiling
	Time Profiling
	Lets try it.
	First some tests
	helper functions
	Slide Number 7
	Run the tests
	Test time in GHCI
	Slide Number 10
	Use GHC profiling
	Slide Number 12
	Try for finer detail
	Slide Number 14
	Why so many calls to add1
	Fix that
	Slide Number 17
	Its not the algorithm!
	Merge Sort
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Space Profiling
	GHC profiler overview
	GHC profiler options
	Thunk behaviors
	Program 1
	Slide Number 29
	Program 1 (by type)
	Program 1 (by behavior)
	Program 2
	Program 2 (by type)
	Strictness operators
	Program 3
	Slide Number 36
	Slide Number 37

