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Small languages 

Many programs and systems can be 
though of as interpreters for “small 
languages” 

 
Examples: 
 Yacc – parser generators 
 Pretty printing 
 regular expressions 
 
Monads are a great way to structure 

such systems 
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Language 1 

eval1 :: T1 -> Id Value 
 
 
eval1 (Add1 x y) =  
      do {x' <- eval1 x 
         ; y' <- eval1 y 
         ; return (x' + y')} 
eval1 (Sub1 x y) =  
      do {x' <- eval1 x 
         ; y' <- eval1 y 
         ; return (x' - y')} 
eval1 (Mult1 x y) =  
      do {x' <- eval1 x 
         ; y' <- eval1 y 
         ; return (x' * y')} 
eval1 (Int1 n) = return n       
 

 

data Id x = Id x  
 
 
 
 
 
data T1 = Add1 T1 T1 
        | Sub1 T1 T1 
        | Mult1 T1 T1 
        | Int1 Int 
 
 
 
 
 
type Value = Int 
 

 

Think about abstract syntax 
Use an algebraic data type 

use types 

figure out what a 
value is 

construct a purely 
functional interpreter 

use a monad 
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Effects and monads 

– When a program has effects as well as 
returning a value, use a monad to model the 
effects. 
 

– This way your reference interpreter can still be 
a purely functional program 
 

– This helps you get it right, lets you reason 
about what it should do. 

  
– It doesn’t have to be how you actually encode 

things in a production version, but many times 
it is good enough for even large systems 
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Monads and Language Design 

Monads are important to language design because: 
 

– The meaning of many languages include effects. It’s 
good to have a handle on how to model effects, so it is 
possible to build the “reference interpreter” 
 

– Almost all compilers use effects when compiling. This 
helps us structure our compilers. It makes them more 
modular, and easier to maintain and evolve. 
 

– Its amazing, but the number of different effects that 
compilers use is really small (on the order of 3-5). 
These are well studied and it is possible to build 
libraries of these monadic components, and to reuse 
them in many different compilers. 
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An exercise in language specification 

• In this section we will run through a sequence of 
languages which are variations on language 1. 
 

• Each one will introduce a construct whose 
meaning is captured as an effect. 
 

• We'll capture the effect first as a pure functional 
program  (usually a higher order object, i.e. a function , 
but this is not always the case, see exception and output) 
then in a second reference interpreter 
encapsulate it as a monad. 
 

• The monad encapsulation will have a amazing 
effect on the structure of our programs. 
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Monads of our exercise 

data Id x = Id x  
 

data Exception x = Ok x | Fail 
 

data Env e x = Env (e -> x) 
 

data Store s x = St(s -> (x,s)) 
 

data Mult x = Mult [x] 
 

data Output x = OP(x,String)  



Advanced Functional Programming 

Tim Sheard 8 Lecture 6 

Failure effect 
 
eval2a :: T2 -> Exception Value 
 
eval2a (Add2 x y) = 
  case (eval2a x,eval2a y) of 
    (Ok x', Ok y') -> Ok(x' + y') 
    (_,_) -> Fail 
eval2a (Sub2 x y) = ... 
eval2a (Mult2 x y) = ... 
eval2a (Int2 x) = Ok x  
eval2a (Div2 x y) = 
  case (eval2a x,eval2a y)of 
    (Ok x', Ok 0) -> Fail 
    (Ok x', Ok y') -> Ok(x' `div` y') 
    (_,_) -> Fail 

data Exception x  
  = Ok x | Fail 
 
data T2  
  = Add2 T2 T2 
  | Sub2 T2 T2 
  | Mult2 T2 T2 
  | Int2 Int 
  | Div2 T2 T2 
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Another way 

eval2a (Add2 x y) = 
  case (eval2a x,eval2a y) of 
    (Ok x', Ok y') -> Ok(x' + y') 
    (_,_) -> Fail 
 
 
eval2a (Add2 x y) = 
  case eval2a x of 
    Ok x' -> case eval2a y of 
               Ok y' -> Ok(x' + y') 
             | Fail -> Fail 
    Fail -> Fail 

 

Note there are several 
orders in which we 
could do things 
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Monadic Failure 
eval2 :: T2 -> Exception Value 
eval2 (Add2 x y) =  
 do { x' <- eval2 x 
    ; y' <- eval2 y 
    ; return (x' + y')} 
eval2 (Sub2 x y) =  
 do { x' <- eval2 x 
    ; y' <- eval2 y 
    ; return (x' - y')} 
eval2 (Mult2 x y) = ... 
eval2 (Int2 n) = return n  
eval2 (Div2 x y) =  
 do { x' <- eval2 x 
    ; y' <- eval2 y 
    ; if y'==0  
         then Fail  
         else return  
            (div x' y')} 

eval1 :: T1 -> Id Value 
eval1 (Add1 x y) =  
      do {x' <- eval1 x 
         ; y' <- eval1 y 
         ; return (x' + y')} 
eval1 (Sub1 x y) =  
      do {x' <- eval1 x 
         ; y' <- eval1 y 
         ; return (x' - y')} 
eval1 (Mult1 x y) = ... 
eval1 (Int1 n) = return n 

Compare with 
language 1 
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environments and variables 

eval3a :: T3 -> Env Map Value 
eval3a (Add3 x y) = 
 Env(\e ->  
     let Env f = eval3a x 
         Env g = eval3a y 
     in (f e) + (g e)) 
eval3a (Sub3 x y) = ... 
eval3a (Mult3 x y) = ... 
eval3a (Int3 n) = Env(\e -> n) 
eval3a (Let3 s e1 e2) = 
 Env(\e -> 
     let Env f = eval3a e1 
         env2 = (s,f e):e 
         Env g = eval3a e2 
     in g env2) 
eval3a (Var3 s) = Env(\ e -> find s e) 

data Env e x  
  = Env (e -> x) 
 
data T3  
  = Add3 T3 T3 
  | Sub3 T3 T3 
  | Mult3 T3 T3 
  | Int3 Int 
  | Let3 String T3 T3 
  | Var3 String 
 
Type Map =    
    [(String,Value)] 
 

 



Advanced Functional Programming 

Tim Sheard 12 Lecture 6 

Monadic Version 

eval3 :: T3 -> Env Map Value 
eval3 (Add3 x y) =  
 do { x' <- eval3 x 
    ; y' <- eval3 y 
    ; return (x' + y')} 
eval3 (Sub3 x y) = ... 
eval3 (Mult3 x y) = ... 
eval3 (Int3 n) = return n 
eval3 (Let3 s e1 e2) =  
 do { v <- eval3 e1 
     ; runInNewEnv s v (eval3 e2) } 
eval3 (Var3 s) = getEnv s 
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Multiple answers 

eval4a :: T4 -> Mult Value 
eval4a (Add4 x y) =  
 let Mult xs = eval4a x 
     Mult ys = eval4a y 
 in Mult[ x+y | x <- xs, y <- ys ] 
eval4a (Sub4 x y) = …  
eval4a (Mult4 x y) = … 
eval4a (Int4 n) = Mult [n] 
eval4a (Choose4 x y) =  
  let Mult xs = eval4a x 
      Mult ys = eval4a y 
  in Mult (xs++ys) 
eval4a (Sqrt4 x) =  
  let Mult xs = eval4a x 
  in Mult(roots xs) 

data Mult x 
  = Mult [x] 
 
data T4 
   = Add4 T4 T4 
   | Sub4 T4 T4 
   | Mult4 T4 T4 
   | Int4 Int 
   | Choose4 T4 T4 
   | Sqrt4 T4 

 
roots [] = [] 
roots (x:xs) | x<0 = roots xs 
roots (x:xs) =  y : z : roots xs 
  where y = root x 
        z = negate y 
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Monadic Version 

eval4 :: T4 -> Mult Value 
eval4 (Add4 x y) =  
 do { x' <- eval4 x 
    ; y' <- eval4 y 
    ; return (x' + y')} 
eval4 (Sub4 x y) = … 
eval4 (Mult4 x y) = … 
eval4 (Int4 n) = return n  
eval4 (Choose4 x y) = merge (eval4a x) (eval4a y) 
eval4 (Sqrt4 x) =  
 do { n <- eval4 x 
    ; if n < 0  
        then none  
        else merge (return (root n))  
                   (return(negate(root n))) } 

merge :: Mult a -> Mult a -> Mult a 
merge (Mult xs) (Mult ys) = Mult(xs++ys) 
none = Mult [] 
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Print statement 

eval6a :: T6 -> Output Value 
eval6a (Add6 x y) = 
 let OP(x',s1) = eval6a x 
     OP(y',s2) = eval6a y 
 in OP(x'+y',s1++s2) 
eval6a (Sub6 x y) = ... 
eval6a (Mult6 x y) = ... 
eval6a (Int6 n) = OP(n,"") 
eval6a (Print6 mess x) = 
 let OP(x',s1) = eval6a x 
 in OP(x',s1++mess++(show x')) 

data Output x  
  = OP(x,String) 
 
data T6  
 = Add6 T6 T6 
 | Sub6 T6 T6 
 | Mult6 T6 T6 
 | Int6 Int 
 | Print6 String T6 
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monadic form 
eval6 :: T6 -> Output Value 
eval6 (Add6 x y) =  do { x' <- eval6 x 
                       ; y' <- eval6 y 
                       ; return (x' + y')} 
eval6 (Sub6 x y) =  do { x' <- eval6 x 
                       ; y' <- eval6 y 
                       ; return (x' - y')} 
eval6 (Mult6 x y) = do { x' <- eval6 x 
                       ; y' <- eval6 y 
                       ; return (x' * y')} 
eval6 (Int6 n) = return n    
eval6 (Print6 mess x) = 
 do { x' <- eval6 x  
    ; printOutput (mess++(show x')) 
    ; return x'} 
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Why is the monadic form so regular? 

• The Monad makes it so. 
In terms of effects you wouldn’t expect the code for Add, 

which doesn’t affect the printing of output to be 
effected by adding a new action for Print 

 
• The Monad  “hides” all the necessary detail. 

 

• An Monad is like an abstract datatype (ADT). 
The actions like Fail, runInNewEnv, getEnv, Mult, 

getstore, putStore and printOutput are the interfaces to 
the ADT 

 

• When adding a new feature to the language, only 
the actions which interface with it need a big 
change. 

Though the plumbing might be affected in all actions 
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Plumbing 
case (eval2a x,eval2a y)of 
    (Ok x', Ok y') ->  
                Ok(x' + y') 
    (_,_) -> Fail 

Env(\e ->  
  let Env f = eval3a x 
      Env g = eval3a y 
  in (f e) + (g e)) 

let Mult xs = eval4a x 
    Mult ys = eval4a y 
in Mult[ x+y |  
         x <- xs, y <- ys ] 

St(\s->  
  let St f = eval5a x 
      St g = eval5a y 
      (x',s1) = f s 
      (y',s2) = g s1 
  in(x'+y',s2)) 

let OP(x',s1) = eval6a x 
    OP(y',s2) = eval6a y 
in OP(x'+y',s1++s2) 

The unit and bind of the 
monad abstract the 
plumbing. 
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Adding Monad instances 

When we introduce a new monad, we need to 
define a few things 

1. The “plumbing” 
• The return function 
• The bind function 

2. The operations of the abstraction 
• These differ for every monad and are 

the interface to the “plumbing”, the 
methods of the ADT 

• They isolate into one place how the 
plumbing and operations work 
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The Id monad 

 
 
data Id x = Id x 
 
instance Monad Id where 
  return x = Id x 
  (>>=) (Id x) f = f x 
  

There are no 
operations, and 
only the simplest 
plumbing 
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The Exception Monad 

Data Exceptionn x = Fail | Ok x 
 
instance Monad Exception where 
  return x = Ok x 
  (>>=) (Ok x) f = f x 
  (>>=) Fail f = Fail 
  
 

There only 
operations is Fail 
and the plumbing 
is matching 
against Ok 
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The Environment Monad 

instance Monad (Env e) where 
  return x = Env(\ e -> x) 
  (>>=) (Env f) g = Env(\ e -> let Env h = g (f e) 
                               in h e) 
 
type Map = [(String,Value)]    
 
getEnv :: String -> (Env Map Value) 
getEnv nm = Env(\ s -> find s) 
  where find [] = error ("Name: "++nm++" not found") 
        find ((s,n):m) = if s==nm then n else find m 
 
runInNewEnv :: String -> Int -> (Env Map Value) ->  
              (Env Map Value) 
runInNewEnv s n (Env g) =  
   Env(\ m -> g ((s,n):m)) 
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The Store Monad 

data Store s x = St(s -> (x,s)) 
instance Monad (Store s) where 
  return x = St(\ s -> (x,s)) 
  (>>=) (St f) g = St h 
    where h s1 = g' s2 where (x,s2) = f s1 
                             St g' = g x                                                                        
getStore :: String -> (Store Map Value) 
getStore nm = St(\ s -> find s s) 
  where find w [] = (0,w) 
        find w ((s,n):m) = if s==nm then (n,w) else find w m 
 
putStore :: String -> Value -> (Store Map ()) 
putStore nm n = (St(\ s -> ((),build s))) 
  where build [] = [(nm,n)] 
        build ((s,v):zs) =  
           if s==nm then (s,n):zs else (s,v):(build zs) 



Advanced Functional Programming 

Tim Sheard 24 Lecture 6 

The Multiple results monad 
 
 
data Mult x = Mult [x] 
 
instance Monad Mult where 
  return x = Mult[x] 
  (>>=) (Mult zs) f = Mult(flat(map f zs)) 
     where flat [] = [] 
           flat ((Mult xs):zs) = xs ++ (flat zs) 
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The Output monad 
 
data Output x = OP(x,String) 
 
instance Monad Output where 
  return x = OP(x,"") 
  (>>=) (OP(x,s1)) f =  
       let OP(y,s2) = f x in OP(y,s1 ++ s2) 
 
printOutput:: String -> Output () 
printOutput s = OP((),s) 
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Further Abstraction 

• Not only do monads hide details, but they 
make it possible to design language 
fragments 

• Thus a full language can be constructed 
by composing a few fragments together. 

• The complete language will have all the 
features of the sum of the fragments. 

• But each fragment is defined in complete 
ignorance of what features the other 
fragments support. 
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The Plan 

Each fragment will  
1. Define an abstract syntax data declaration, abstracted 

over the missing pieces of the full language 
2. Define a class to declare the methods that are needed 

by that fragment. 
3. Only after tying the whole language together do we 

supply the methods. 

 
There is one class that ties the rest together 
 
class Monad m => Eval e v m where 
   eval :: e -> m v 
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The Arithmetic Language Fragment 

instance  
  (Eval e v m,Num v)  
     => Eval (Arith e) v m   where 
  eval (Add x y) =   
     do { x' <- eval x 
        ; y' <- eval y 
        ; return (x'+y') } 
  eval (Sub x y) =  
     do { x' <- eval x 
        ; y' <- eval y 
        ; return (x'-y') } 
  eval (Times x y) = 
     do { x' <- eval x 
        ; y' <- eval y 
        ; return (x'* y') } 
  eval (Int n) = return (fromInt n) 

class Monad m =>  
  Eval e v m where 
   eval :: e -> m v 
 
data Arith x  
  = Add x x 
  | Sub x x  
  | Times x x 
  | Int Int 
 

 
The syntax 
fragment 
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The divisible Fragment 
instance  
 (Failure m,  
  Integral v, 
  Eval e v m) =>  
    Eval (Divisible e) v m where 
 
 eval (Div x y) = 
   do { x' <- eval x 
      ; y' <- eval y 
      ; if (toInt y') == 0 
           then fails 
           else return(x' `div` y') 
      } 

data Divisible x  
  = Div x x 
 
 
 
 
 
class Monad m =>  
  Failure m where 
    fails :: m a 
   

 

The syntax 
fragment 

The class with 
the necessary 
operations 
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The LocalLet fragment 

data LocalLet x 
  = Let String x x 
  | Var String 
 
class Monad m => HasEnv m v where 
  inNewEnv :: String -> v -> m v -> m v 
  getfromEnv :: String -> m v 
 
instance (HasEnv m v,Eval e v m) => 
                Eval (LocalLet e) v m where 
  eval (Let s x y) =  
    do { x' <- eval x 
       ; inNewEnv s x' (eval y) 
       } 
  eval (Var s) = getfromEnv s 

The syntax 
fragment 

The 
operations 
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The assignment fragment 

data Assignment x 
  = Assign String x 
  | Loc String 
   
class Monad m => HasStore m v where    
  getfromStore :: String -> m v 
  putinStore :: String -> v -> m v 
   
instance (HasStore m v,Eval e v m) =>  
            Eval (Assignment e) v m     where 
  eval (Assign s x) = 
    do { x' <- eval x 
       ; putinStore s x' } 
  eval (Loc s) = getfromStore s 

The syntax 
fragment 

The 
operations 
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The Print fragment 

data Print x  
  = Write String x 
   
class (Monad m,Show v) => Prints m v where 
  write :: String -> v -> m v 
 
instance (Prints m v,Eval e v m) => 
             Eval (Print e) v m      where 
 
  eval (Write message x)  = 
    do { x' <- eval x 
       ; write message x' } 

The syntax 
fragment 

The 
operations 
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The Term Language 

data Term  
  = Arith (Arith Term) 
  | Divisible (Divisible Term) 
  | LocalLet (LocalLet Term) 
  | Assignment (Assignment Term) 
  | Print (Print Term) 
   
instance (Monad m, Failure m, Integral v, 
          HasEnv m,v HasStore m v, Prints m v) => 
         Eval Term v m where   
  eval (Arith x) = eval x 
  eval (Divisible x) = eval x 
  eval (LocalLet x) = eval x 
  eval (Assignment x) = eval x 
  eval (Print x) = eval x 
 

Tie the 
syntax 
fragments 
together 

Note all the 
dependencies 
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A rich monad 

In order to evaluate Term we need a 
rich monad, and value types with the 
following constraints. 

 
–Monad m 
–Failure m 
–Integral v 
–HasEnv m v 
–HasStore m v 
–Prints m v 
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The Monad M 
type Maps x = [(String,x)] 
data M v x = 
    M(Maps v -> Maps v -> (Maybe x,String,Maps v)) 
 
instance Monad (M v) where 
 return x = M(\ st env -> (Just x,[],st)) 
 (>>=) (M f) g = M h 
   where h st env = compare env (f st env) 
         compare env (Nothing,op1,st1) = (Nothing,op1,st1) 
         compare env (Just x, op1,st1)   
            = next env op1 st1 (g x) 
         next env op1 st1 (M f2)         
           = compare2 op1 (f2 st1 env) 
         compare2 op1 (Nothing,op2,st2) 
           = (Nothing,op1++op2,st2) 
         compare2 op1 (Just y, op2,st2)  
           = (Just y, op1++op2,st2) 
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Language Design 

• Think only about Abstract syntax  
this is fairly stable, concrete syntax changes much more often 

• Use algebraic datatypes to encode the abstract 
syntax 

use a language which supports algebraic datatypes 

• Makes use of types to structure everything 
Types help you think about the structure, so even if you use a 

language with out types. Label everything with types 

• Figure out what the result of executing a program is 
this is your “value” domain. values can be quite complex 
think about a purely functional encoding. This helps you get it 

right. It doesn’t have to be how you actually encode things. If 
it has effects use monads to model the effects. 
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Language Design 
(cont.) 

Construct a purely functional interpreter for 
the abstract syntax. 

This becomes your “reference” implementation. It is the 
standard by which you judge the correctness of other 
implementations. 

Analyze the target environment 
What properties does it have? 
What are the primitive actions that get things done? 

Relate the primitive actions of the target 
environment to the values of the 
interpreter. 

Can the values be implemented by the primitive actions? 
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mutable variables 
eval5a :: T5 -> Store Map Value 
eval5a (Add5 x y) = 
  St(\s-> let St f = eval5a x 
              St g = eval5a y 
              (x',s1) = f s 
              (y',s2) = g s1 
          in(x'+y',s2)) 
eval5a (Sub5 x y) = ... 
eval5a (Mult5 x y) = ... 
eval5a (Int5 n) = St(\s ->(n,s)) 
eval5a (Var5 s) = getStore s 
eval5a (Assign5 nm x) = St(\s -> 
  let St f = eval5a x 
      (x',s1) = f s 
      build [] = [(nm,x')] 
      build ((s,v):zs) =  
       if s==nm then (s,x'):zs  
                else (s,v):(build zs) 
  in (0,build s1))  

data Store s x  
 = St (s -> (x,s))  
 
data T5  
  = Add5 T5 T5 
  | Sub5 T5 T5 
  | Mult5 T5 T5 
  | Int5 Int 
  | Var5 String 
  | Assign5 String T5 
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Monadic Version 

eval5 :: T5 -> Store Map Value 
eval5 (Add5 x y) =  
  do {x' <- eval5 x 
     ; y' <- eval5 y 
     ; return (x' + y')} 
eval5 (Sub5 x y) = ... 
eval5 (Mult5 x y) = ... 
eval5 (Int5 n) = return n   
eval5 (Var5 s) = getStore s 
eval5 (Assign5 s x) =  
      do { x' <- eval5 x 
         ; putStore s x'  
         ; return x' } 
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