GADTs

GADTs in Haskell

ADT vs GADT

Algebraic Datatype
Data List a
$=$ Nil
| Cons a (List a)
Data Tree $a \operatorname{b}=$
Tip a
| Node (Tree a b) b
| Fork (Tree ab) (Tree a b)
Data Tree a b where
Tip a : Tree a b
Node: Tree a b ->
b ->
Tree a b
Fork:: Tree a b ->
Note that types than can be expressed as an ADT always have the identical range types on all their constructors

GADTs relax the range restriction

data Even n where Base:: Even Z
NE: : Odd n -> Even (S n)
data Rep:: * -> * where
Int:: Rep Int
Char:: Rep Char
Float: : Rep Float
The range is always the type being defined, (Even \& Rep) but that type's arguments can vary. We call Bool :: Rep Bool
Pair:: Rep a -> Rep b -> Rep (a,b)
List : : Rep a -> Rep [a]

Examples

- Length indexed lists
- Balanced Trees
- Redblack trees
- 2-threes trees
- AVL trees
- Representation types
- Well-typed terms
- Terms as typing judgements
- Tagless interpreters
- Subject reduction
- Type inference
- Witnesses
- Odd and Even
- Well formed join and cross product in relational algebra
- Well structured paths in trees
- Units of measure (inches, centimeters, etc)
- Provable Equality
- Proof carrying code

Length indexed lists

data LList :: * -> * -> * where
LNil:: LList a Z
LCons:: a -> LList a n -> LList a (S n)

Note the range type is always LList But they differ in the indexes.

Promotion

- As of GHC version 7 GHC allows indexes to be ordinary datatypes.
- One says the datatype is promoted to the type level.
- This is very usefull, as it enforces a typing system on the indexes.
- For example does (LList Int String) make any sense. The index is supposed to be drawn from Z and S

Length indexed lists again

data Nat $=$ Zero | Succ Nat

data Vec: : * -> Nat -> * where
Nil : : Vec a Zero
Cons:: a $->$ Vec a $n->$ Vec $a(S u c c \quad n)$
The index is always drawn from well
typed values of type Nat, so values
of type Nat are promoted to Types

GADTs as proof objects

data EvenX:: Nat -> * where BaseX: : EvenX Zero NEX: : OddX n -> EvenX (Succ n)
data OddX: : Nat -> * where
NOX: : EvenX n -> OddX (Succ n)

- What type does NEX (NOX BaseX) have?

The Curry-Howard isomorphism

- The Curry-Howard isomorphism says that two things have exactly the same structure.
- A term has a type
- A proof proves a proposition

NEX (NOX BaseX) : : EvenX (Succ (Succ Zero))

Proves a proposition

Note that there is no term with type: EvenX (Succ Zero)

Proofs and witnesses

- GADTs make the Curry-Howard isomorphism useful in Haskell.
- Sometime we say a term "witnesses" a property. l.e the term NEX (NOX BaseX) witnesses that 2 is even.
- We use GADTs has indexes to show that some things are not possible.

Paths and Trees

data Shape $=$ Tp | Nd | Fk Shape Shape
data Path :: Shape -> * where
Here:: Path Nd
Left:: Path x -> Path (Fk x y)
Right:: Path y -> Path (Fk x y)

Note there are no paths with index Tp
data Tree:: Shape -> * -> * where
Tip :: Tree Tp a
Node: : a -> Tree Nd a
Fork :: Tree x a -> Tree y a -> Tree (Fk x y) a

Well formed paths

find:: Eq a => a -> Tree sh a -> [Path sh] find n Tip $=$ [] find n (Node m) =
if $n==m$ then [Here] else []
find n (Fork x y) =
(map Left (find $n x)$) ++
(map Right (find n y))

Using a path. No possibility of failure

extract: : Eq a => Tree sh a $->$ Path $s h ~->~ a$ extract (Node n) (Here) $=n$ extract (Fork l r) (Left p) = extract 1 p extract (Fork l r) (Right p) $=$ extract $r p$
-- No other cases are possible,
-- Since there are no Paths with index Tp

Balanced Trees

- Balanced trees are used as binary search mechanisms.
- They support $\log (\mathrm{n})$ time searches for trees that have n elements
- They rely on the trees being balanced.
- Usually saying that all paths from root to leaf have roughly the same length
- Indexes make perfect tools to represent these invariants.

Red Black Trees

- A red-black tree is a binary search tree with the following additional invariants:
- Each node is colored either red or black
- The root is black
- The leaves are black
- Each Red node has Black children
- for all internal nodes, each path from that node to a descendant leaf contains the same number of black nodes.
- We can encode these invariants by thinking of each internal node as having two attributes: a color and a black-height.

Red Black Tree as a GADT

data Color = Red | Black
data SubTree : : Color -> Nat -> * where
LeafRB :: SubTree Black Zero
RNode : : SubTree Black n -> Int -> SubTree Black n -> SubTree Red n
BNode : : SubTree cL m -> Int -> SubTree cR m ->
SubTree Black (Succ m)
data RBTree where
Root:: (forall n. (SubTree Black n)) -> RBTree

AVL Trees

- In an AVL tree, the heights of the two child sub trees of any node differ by at most one;
data Balance:: Nat -> Nat -> Nat -> * where
Same :: Balance n n n
Less :: Balance n (Succ n) (Succ n)
More :: Balance (Succ n) n (Succ n)
data Avl:: Nat -> * where
TipA:: Avl Zero

A witness type that witnesses
only the legal height differences.

NodeA:: Balance i j k -> Avl i -> Int ->
Avl j -> Avl (Succ k)
data $A V L=$ forall h. AVL (Avl h)

Balancing Constructors. The algorithms for insertion and deletion each follow the same basic pattern: First do the insertion (or deletion) as you would for any other binary search tree. Then re-balance any subtree that became unbalanced in the process. The tool used for re-balancing is tree rotation, which is best described visually.

Post-insertion height is the same.
Keep the same Balance

Height increases.
Change Balance from Same to More

Height increases.
Change Balance from Less to Same

Height increases. Rebalance with rotr

Insertion

```
insert :: Int -> AVL -> AVL
insert x (AVL t) = case ins x t of L t -> AVL t; R t -> AVL t
ins :: Int -> Avl n -> (Avl n + Avl (Succ n))
ins x TipA = R(NodeA Same TipA x TipA)
ins x (NodeA bal lc y rc)
    | x == y = L(NodeA bal lc y rc)
    | x < y = case ins x lc of
    L lc -> L(NodeA bal lc y rc)
    R lc ->
        case bal of
            Same -> R(NodeA More lc y rc)
            Less -> L(NodeA Same lc y rc)
            More -> rotr lc y rc -- rebalance
| x > y = case ins x rc of
    L rc -> L(NodeA bal lc y rc)
    R rc -> case bal of
    Same -> R(NodeA Less lc y rc)
    More -> L(NodeA Same lc y rc)
    Less -> rotl lc y rc -- rebalance
```

rotr (Node Same a x b) y c $\quad=\mathrm{R}$ (Node Less a x (Node More by c))

rotr (Node More a x b) y c $\quad=\mathrm{L}($ Node Same a x (Node Same by c))


```
L(Node Same (Node More a x b) y
                                    (Node Same c z d) )
```


rotr (Node Less a x

Example code

The rest is in the accompanying Haskell file

```
data (+) a b = L a | R b
rotr :: Avl(Succ(Succ n)) -> Int -> Avl n ->
    (Avl(Succ(Succ n))+Avl(Succ(Succ(Succ n))))
-- rotr Tip u a = unreachable
rotr (NodeA Same b v c) u a = R(NodeA Less b v (NodeA More c u a))
rotr (NodeA More b v c) u a = L(NodeA Same b v (NodeA Same c u a))
-- rotr (NodeA Less b v TipA) u a = unreachable
rotr (NodeA Less b v (NodeA Same x m y)) u a =
    L(NodeA Same (NodeA Same b v x) m (NodeA Same y u a))
rotr (NodeA Less b v (NodeA Less x m y)) u a =
    L(NodeA Same (NodeA More b v x) m (NodeA Same y u a))
rotr (NodeA Less b v (NodeA More x m y)) u a =
    L(NodeA Same (NodeA Same b v x) m (NodeA Less y u a))
```


At the top level

- Insertion may make the height of the tree grow.
- Hide the height of the tree as an existentially quantified index.
data $A V L=$ forall h. AVL (Avl h)

2-3-Tree

- a tree where every node with children (internal node) has either two children (2-node) and one data element or three children (3nodes) and two data elements. Nodes on the outside of the tree (leaf nodes) have no children and zero, one or two data elements
data Tree23: : Nat -> * -> * where
Three : : (Tree23 n a) -> a ->
(Tree23 n a) -> a ->
(Tree23 (Succ n) a)
Two: : (Tree23 n a) -> a ->
(Tree23 n a) $->$ (Tree23 (Succ n) a)
Leaf1 :: a -> (Tree23 Zero a)
Leaf2 :: a -> a -> (Tree23 Zero a)
Leaf0 :: (Tree23 Zero a)

Witnessing equality

- Sometimes we need to prove that two types are equal.
- We need a type that represents this proposition.
- We call this a witness, since legal terms with this type only witness that the two types are the same.
- This is sometimes called provable equality (since it is possible to write a function that returns an element of this type).
data Equal:: k-> k-> * where Refl : : Equal x x

Representation types

data Rep:: * -> * where
Int:: Rep Int
Char:: Rep Char
Float: : Rep Float
Bool :: Rep Bool
Pair:: Rep a -> Rep b -> Rep (a,b)
List :: Rep a -> Rep [a]

- Some times this is called a Universe, since it witnesses only those types representable.

Generic Programming

eq:: Rep a $->$ a $->$ a $->$ Bool
eq Int $x y=x==y$
eq Char $x y=x==y$
eq Float x $y=x==y$
eq Bool x y $=x==y$
eq (Pair t1 t2) (a,b) $(c, d)=$
(eq t1 a c) \&\& (eq t2 b d)
eq (List t) $x s$ ys
| not(length xs == length ys) = False
| otherwise $=$ and (zipWith (eq t) xs ys)

Using provable equality

- We need a program to inspect two Rep types (at runtime) to possible produce a proof that the types that they represent are the same.
test:: Rep a -> Rep b -> Maybe(Equal a b)
- This is sort of like an equality test, but reflects in its type that the two types are really equal.

Code for test

test:: Rep a -> Rep b -> Maybe(Equal a b) test Int Int = Just Refl
test Char Char = Just Refl
test Float Float = Just Refl
test Bool Bool = Just Refl
test (Pair x y) (Pair m n) =
do \{ Refl <- test x m
; Refl <- test y n Refl, the compiler know that the
; Just Refl \}

When we pattern match against two types are statically equal in the scope of the match.
test (List x) (List y) =
do \{ Refl <- test x y
; Just Refl\}
test _ _ = Nothing

Well typed terms

data Exp:: * -> * where
Int : : Int -> Exp Int
Chare:: Char -> Exp Char
Pair : : Exp $a->\operatorname{Exp} b->\operatorname{Exp}(a, b)$
Var: : String $->$ Rep $t->$ Exp t
LamE: : String -> Rep $t->$
$\operatorname{Exp} \mathrm{s}->\operatorname{Exp}(\mathrm{t}->\mathrm{s})$
Apply:: Exp (a $->$ b) $->$
$\operatorname{Exp} a->\operatorname{Exp} b$
FstE: : Exp $(\mathbf{a}, \mathrm{b}) \rightarrow \operatorname{Exp} a$
SidE: : Exp (arb) \rightarrow Exp b

Typing judgements

- Well typed terms have the exact same structure as a typing judgment.
- Consider the constructor ApplyE ApplyE:: Exp (a -> b) -> Exp a -> Exp b
Compare it to the typing judgement

$$
\frac{f: a \rightarrow b \quad x: a}{f \quad x: b}
$$

Tagless interpreter

- An interpreter gives a value to a term.
- Usually we need to invent a value datatype like data Value
= IntV Int
| FunV (Value -> Value)
| PairV Value Value
- We also need to store Values in an environment
- data Env = E [(String, Value)]

Valueless environments

data Env where
Empty :: Env
Extend :: String -> Rep t -> t -> Env -> Env

Note that the type variable " t " is existentially quantified.
Given a pattern (Extend var rep t more) There is not much we can do with t, since we do not know its type.

Tagless interpreter

eval:: Exp t -> Env -> t
eval (IntE n) env = n
eval (CharE c) env = c
eval (PairE x y) env = (eval x env, eval y env)
eval (VarE s t) Empty =
error ("Variable not found: "++s)
eval (LamE nm t body) env =
(\ v -> eval body (Extend nm t v env))
eval (ApplyE f x) env = (eval f env) (eval x env)
eval (FstE x) env = fst(eval x env)
eval (SndE x) env = snd(eval x env)
eval (v@(VarE s t1)) (Extend nm t2 value more)
| s==nm = case test t1 t2 of
Just Refl -> value
Nothing -> error "types don't match"
| otherwise = eval v more

Units of measure

data TempUnit = Fahrenheit Celsius Kelvin

data Degree:: TempUnit -> * where
F:: Float -> Degree Fahrenheit
C:: Float -> Degree Celsius
K: : Float -> Degree Kelvin
add:: Degree u -> Degree u -> Degree u
add (F x) (F y) = F(x+y)
add (C x) (C y) = C(x+y)
add (K x) (K y) = K(x+y)

N-way zip

zipN 1 (+1) [1,2,3] $\rightarrow[2,3,4]$
zipN 2 (+) [1,2,3] [4,5,6]

$$
\rightarrow[5,7,9]
$$

zipN 3 (\x y z -> (x+z,y))[2,3]

$$
\left.\begin{array}{c}
{[5,1][6,8]} \\
\rightarrow
\end{array}\right][(8,5),(11,1)]
$$

The Natural Numbers with strange types

data Zip :: * -> * -> * where Z:: Zip a [a] S: : Zip b c -> Zip (a -> b) ([a] -> c)

Z :: Zip a [a]
(S Z) :: Zip (a -> b) ([a] -> [b])
(S (S Z)) ::
Zip (a -> a1 -> b) ([a] -> [a1] -> [b])
(S(S (S Z))) ::
Zip (a -> a1 -> a2 -> b)
([a] -> [a1] -> [a2] -> [b])

Why these types.

f :: (a -> b -> c -> d)
(f x) :: (b -> c -> d)
(f x y) :: (c -> d)
(f x y z) : : d
(zip f) :: ([a] -> [b] -> [c] -> [d])
(zip f xs) :: ([b] -> [c] -> [d])
(zip f xs ys) :: ([c] -> [d])
(zip f xs ys za) :: [d]

To define zip using Zip', we write helper function, help :: Zip' ab -> a -> b -> b. The basic idea is captured by the table below.

zero' = Z
one' = S Z
two' $=\mathrm{S}(\mathrm{S} Z)$
help:: Zip a b -> a -> b -> b
help Z x xs = x:xs
help (Sn) f real =
(\es -> case gs of
(z:zs) -> help n (f z) (rall zs) other -> skip n)

Code

skip:: Zip a b -> b
skip Z = []
skip (S n) = \ ys -> skip n
zipN: : Zip a b -> a -> b
zipN $z=$ \ $n \rightarrow$ [n]
zipN (n@(S m)) =
let zip $f=$ help $n f(\backslash x->\operatorname{zip} f x)$ in zip

