
GADTs 

GADTs in Haskell 



ADT  vs GADT 

Algebraic Datatype 
Data List a 
 = Nil 
| Cons a (List a) 
 
Data Tree a b = 
 Tip a 
| Node (Tree a b) b  
| Fork (Tree a b) (Tree a b) 

Generalized Algebraic Datatype 
Data List a where 
  Nil:: List a 
Cons:: a -> List a -> List a 
 
Data Tree a b  where 
 Tip a : Tree a b 
 Node:   Tree a b -> 
         b -> 
         Tree a b 
 Fork::  Tree a b -> 
         Tree a b -> 
         Tree a b 

Note that types than can be 
expressed as an ADT always have 
the  identical  range types on all 

their constructors 



GADTs relax the range restriction 
data Even n where 
  Base:: Even Z 
  NE:: Odd n -> Even (S n) 
 
data Rep:: * -> * where 
 Int:: Rep Int 
 Char:: Rep Char 
 Float:: Rep Float 
 Bool :: Rep Bool 
 Pair:: Rep a -> Rep b -> Rep (a,b) 
 List :: Rep a -> Rep [a] 

The range is always the type being 
defined, (Even & Rep) but that 

type’s arguments can vary. We call 
an argument that varies and index. 



Examples 
• Length indexed lists 
• Balanced Trees 

– Redblack trees 
– 2-threes trees 
– AVL trees 

• Representation types 
• Well-typed terms  

– Terms as typing judgements  
– Tagless interpreters 
– Subject reduction 
– Type inference 

• Witnesses 
– Odd and Even 
– Well formed join and cross product in relational algebra 

• Well structured paths in trees 
• Units of measure (inches, centimeters, etc) 
• Provable Equality 
• Proof carrying code 

 



Length indexed lists 

data Z 
data S n 
 
data LList :: * -> * -> * where 
  LNil:: LList a Z 
  LCons:: a -> LList a n -> LList a (S n) 

Note we introduce uninhabited 
types that have the structure of 
the Natural numbers to serve as 

indexes to LList 

Note the range type  is always LList 
But they differ in the indexes. 



Promotion 

• As of GHC version 7 GHC allows indexes to be 
ordinary datatypes. 

• One says the datatype is promoted to the type 
level. 

• This is very usefull, as it enforces a typing 
system on the indexes. 
– For example does  (LList Int  String) make any 

sense. The index is supposed to be drawn from Z 
and S 



Length indexed lists again 

data Nat = Zero | Succ Nat 
 
 
 
data Vec:: * -> Nat ->  * where 
  Nil :: Vec a Zero 
  Cons:: a -> Vec a n -> Vec a (Succ n) 

An ordinary algebraic datatype 

The index is always drawn from well 
typed values of type Nat, so values 
of type Nat are promoted to Types 

The type Nat is promoted to a Kind 



GADTs as proof objects 

data EvenX:: Nat -> * where 
  BaseX:: EvenX Zero 
  NEX:: OddX n -> EvenX (Succ n) 
   
data OddX:: Nat -> * where 
  NOX:: EvenX n -> OddX (Succ n) 

 
• What type does NEX (NOX BaseX) have? 



The Curry-Howard isomorphism 
• The Curry-Howard isomorphism says that two 

things have exactly the same structure. 
– A term has a type 
– A proof proves a proposition 

 
 

NEX (NOX BaseX) :: EvenX (Succ (Succ Zero)) 
 
 
 
Note that there is no term with type: EvenX (Succ Zero) 

 

Proves a proposition 

Has a type A term 

A proof  



Proofs and witnesses 

• GADTs make the Curry-Howard isomorphism 
useful in Haskell. 
 

• Sometime we say a term “witnesses” a 
property.  I.e  the term  NEX (NOX BaseX) 
witnesses that 2 is even. 
 

• We use GADTs  has indexes to show that some 
things are not possible. 



Paths and Trees 
data Shape = Tp | Nd | Fk Shape Shape 
 
data Path :: Shape -> * where 
  Here:: Path Nd  
  Left:: Path x  -> Path (Fk x y)  
  Right:: Path y -> Path (Fk x y)  
  
 
 
data Tree:: Shape -> * -> * where 
  Tip :: Tree Tp a 
  Node:: a -> Tree Nd a 
  Fork :: Tree x a -> Tree y a -> Tree (Fk x y) a 
 

Note there are no paths 
with index Tp 



Well formed paths 

find:: Eq a => a -> Tree sh a -> [Path sh]   

find n Tip = [] 
find n (Node m) = 
  if n==m then [Here] else [] 
find n (Fork x y) =  
 (map Left (find n x)) ++  
 (map Right (find n y)) 
 



Using a path. No possibility of failure 

extract:: Eq a => Tree sh a -> Path sh -> a 
extract (Node n) (Here) = n 
extract (Fork l r) (Left p) = extract l p 
extract (Fork l r) (Right p) = extract r p 
 
-- No other cases are possible,  
-- Since there are no Paths with index Tp 



Balanced Trees 

• Balanced trees are used as binary search 
mechanisms. 

• They support log(n) time searches for trees 
that have n elements 

• They rely on the trees being balanced. 
– Usually saying that all paths from root to leaf have 

roughly the same length 
• Indexes make perfect tools to represent these 

invariants. 



Red Black Trees 
• A red-black tree is a binary search tree with the 

following additional invariants: 
– Each node is colored either red or black 
– The root is black 
– The leaves are black 
– Each Red node has Black children 
–  for all internal nodes, each path from that node to a 

descendant leaf contains the same number of black nodes. 
 

• We can encode these invariants by thinking of each 
internal node as having two attributes: a color and a 
black-height. 



Red Black Tree as a GADT 
data Color = Red | Black 
  
data SubTree :: Color -> Nat -> * where 
   LeafRB :: SubTree Black Zero 
   RNode :: SubTree Black n -> Int ->       
            SubTree Black n -> SubTree Red n 
   BNode :: SubTree cL m -> Int ->  
            SubTree cR m ->  
            SubTree Black (Succ m) 
   
data RBTree where 
  Root:: (forall n. (SubTree Black n)) -> RBTree 
 



AVL Trees 
• In an AVL tree, the heights of the two child sub trees of  any node 

differ by at most one;  
 

data Balance:: Nat -> Nat -> Nat -> * where 
  Same :: Balance n n n 
  Less :: Balance n (Succ n) (Succ n) 
  More :: Balance (Succ n) n (Succ n) 
 
data Avl:: Nat -> * where 
  TipA:: Avl Zero 
  NodeA:: Balance i j k -> Avl i -> Int ->  
          Avl j -> Avl (Succ k) 
 
data AVL = forall h. AVL (Avl h) 

A witness type that witnesses 
only the legal height 

differences. 







Insertion 
insert :: Int -> AVL -> AVL 
insert x (AVL t) = case ins x t of L t -> AVL t; R t -> AVL t 
 
ins :: Int -> Avl n -> (Avl n + Avl (Succ n)) 
ins x TipA = R(NodeA Same TipA x TipA) 
ins x (NodeA bal lc y rc) 
  | x == y = L(NodeA bal lc y rc) 
  | x < y  = case ins x lc of 
               L lc -> L(NodeA bal lc y rc) 
               R lc -> 
                 case bal of 
                   Same -> R(NodeA More lc y rc) 
                   Less -> L(NodeA Same lc y rc) 
                   More -> rotr lc y rc -- rebalance 
  | x > y  = case ins x rc of 
               L rc -> L(NodeA bal lc y rc) 
               R rc -> case bal of 
                        Same -> R(NodeA Less lc y rc) 
                        More -> L(NodeA Same lc y rc) 
                        Less -> rotl lc y rc -- rebalance 

Note the rotations in red 







Example code 
The rest is in the accompanying Haskell file 

data (+) a b = L a | R b 
 
rotr :: Avl(Succ(Succ n)) -> Int -> Avl n -> 
           (Avl(Succ(Succ n))+Avl(Succ(Succ(Succ n)))) 
-- rotr Tip u a = unreachable 
rotr (NodeA Same b v c) u a = R(NodeA Less b v (NodeA More c u a)) 
rotr (NodeA More b v c) u a = L(NodeA Same b v (NodeA Same c u a)) 
-- rotr (NodeA Less b v TipA) u a = unreachable 
rotr (NodeA Less b v (NodeA Same x m y)) u a = 
      L(NodeA Same (NodeA Same b v x) m (NodeA Same y u a)) 
rotr (NodeA Less b v (NodeA Less x m y)) u a = 
      L(NodeA Same (NodeA More b v x) m (NodeA Same y u a)) 
rotr (NodeA Less b v (NodeA More x m y)) u a =  
     L(NodeA Same (NodeA Same b v x) m (NodeA Less y u a)) 
 



At the top level 

• Insertion may make the height of the tree 
grow. 

• Hide the height of the tree as an existentially 
quantified index. 
 

data AVL = forall h. AVL (Avl h) 



2-3-Tree 
•  a tree where every node with children (internal node) has either 

two children (2-node) and one data element or three children (3-
nodes) and two data elements. Nodes on the outside of the tree 
(leaf nodes) have no children and zero, one or two data elements 
 

data Tree23:: Nat -> * -> * where 
  Three :: (Tree23 n a) -> a ->  
           (Tree23 n a) -> a ->  
           (Tree23 (Succ n) a) 
  Two:: (Tree23 n a) -> a ->  
        (Tree23 n a) -> (Tree23 (Succ n) a) 
  Leaf1 :: a -> (Tree23 Zero a) 
  Leaf2 :: a -> a -> (Tree23 Zero a) 
  Leaf0 :: (Tree23 Zero a) 



Witnessing equality 

• Sometimes we need to prove that two types are equal.  
• We need a type that represents this proposition. 
• We call this a witness, since legal terms with this type 

only witness that the two types are the same. 
• This is sometimes called provable equality (since it is 

possible to write a function that returns an element of 
this type). 
 

data Equal:: k -> k -> * where 
  Refl :: Equal x x 



Representation types 
data Rep:: * -> * where 
 Int:: Rep Int 
 Char:: Rep Char 
 Float:: Rep Float 
 Bool :: Rep Bool 
 Pair:: Rep a -> Rep b -> Rep (a,b) 
 List :: Rep a -> Rep [a] 

 
• Some times this is called a Universe, since it 

witnesses only those types representable. 



Generic Programming 
eq:: Rep a -> a -> a -> Bool  
eq Int  x y  = x==y 
eq Char x y  = x==y 
eq Float x y = x==y 
eq Bool  x y = x==y 
eq (Pair t1 t2)(a,b) (c,d) =  
 (eq t1 a c) &&  (eq t2 b d) 
eq (List t) xs ys  
  | not(length xs == length ys) = False 
  | otherwise = and (zipWith (eq t) xs ys) 



Using provable equality 

• We need a program to inspect two Rep types 
(at runtime) to possible produce a proof that 
the types that they represent are the same. 
 

test:: Rep a -> Rep b -> Maybe(Equal a b) 

 
• This is sort of like an equality test, but reflects 

in its type that the two types are really equal. 



Code for test 
test:: Rep a -> Rep b -> Maybe(Equal a b) 
test Int Int = Just Refl 
test Char Char = Just Refl 
test Float Float = Just Refl 
test Bool Bool = Just Refl 
test (Pair x y) (Pair m n) = 
  do { Refl <- test x m 
     ; Refl <- test y n 
     ; Just Refl } 
test (List x) (List y) =  
  do { Refl <- test x y 
     ; Just Refl} 
test _ _ = Nothing  

When we pattern match against 
Refl, the compiler know that the 
two types are statically equal in 

the scope of the match. 



Well typed terms 
data Exp:: * -> * where 
  IntE :: Int -> Exp Int 
  CharE:: Char -> Exp Char 
  PairE :: Exp a -> Exp b -> Exp (a,b) 
  VarE:: String -> Rep t -> Exp t 
  LamE:: String -> Rep t ->  
         Exp s -> Exp (t -> s) 
  ApplyE:: Exp (a -> b) ->  
           Exp a -> Exp b 
  FstE:: Exp(a,b) -> Exp a 
  SndE:: Exp(a,b) -> Exp b 



Typing judgements 

• Well typed terms have the exact same 
structure as a typing judgment. 

• Consider the constructor ApplyE 
ApplyE:: Exp (a -> b) -> Exp a -> Exp b 

Compare it to the typing judgement 
 

 

bxf
axbaf

:
:: →



Tagless interpreter 

• An interpreter gives a value to a term. 
• Usually we need to invent a value datatype like 

data Value  
  = IntV Int  
| FunV (Value -> Value)  
| PairV Value Value 
 

• We also need to store Values in an environment 
– data Env = E [(String,Value)] 

 



Valueless environments 
data Env where 
  Empty :: Env 
  Extend :: String -> Rep t -> t -> 
            Env -> Env 

 
Note that the type variable “t” is existentially 

quantified. 
Given a pattern (Extend var rep t more) There is 

not much we can do with t, since we do not know 
its type.   



Tagless interpreter 
eval:: Exp t -> Env -> t   
eval (IntE n) env = n 
eval (CharE c) env = c 
eval (PairE x y) env = (eval x env, eval y env) 
eval (VarE s t) Empty =  
   error ("Variable not found: "++s) 
eval (LamE nm t body) env =  
   (\ v -> eval body (Extend nm t v env))  
eval (ApplyE f x) env = (eval f env) (eval x env) 
eval (FstE x) env = fst(eval x env) 
eval (SndE x) env = snd(eval x env) 
eval (v@(VarE s t1)) (Extend nm t2 value more)  
  | s==nm = case test t1 t2 of  
              Just Refl -> value 
              Nothing -> error "types don't match" 
  | otherwise = eval v more 



Units of measure 
data TempUnit = Fahrenheit  
              | Celsius  
              | Kelvin 
 
data Degree:: TempUnit -> * where 
 F:: Float -> Degree Fahrenheit 
 C:: Float -> Degree Celsius 
 K:: Float -> Degree Kelvin 
 
add:: Degree u -> Degree u -> Degree u 
add (F x) (F y) = F(x+y) 
add (C x) (C y) = C(x+y) 
add (K x) (K y) = K(x+y) 



N-way zip 

zipN 1 (+1) [1,2,3]   [2,3,4] 
 
zipN 2 (+) [1,2,3] [4,5,6]  
     [5,7,9] 
 
zipN 3 (\ x y z -> (x+z,y))[2,3]  
   [5,1] [6,8]  
     [(8,5),(11,1)] 



The Natural Numbers with strange types 

data Zip :: * -> * -> * where 
  Z:: Zip a [a] 
  S:: Zip b c ->  Zip (a -> b) ([a] -> c) 
 
 
Z :: Zip a [a] 
 
(S Z) :: Zip (a -> b) ([a] -> [b]) 
 
(S (S Z)) :: 
   Zip (a -> a1 -> b) ([a] -> [a1] -> [b]) 
 
(S(S (S Z))) ::  
     Zip (a -> a1 -> a2 -> b)  
         ([a] -> [a1] -> [a2] -> [b]) 



Why these types. 

f :: (a -> b -> c -> d) 
(f x) :: (b -> c -> d) 
(f x y) :: (c -> d) 
(f x y z) :: d 
 
(zip f) :: ([a] -> [b] -> [c] -> [d]) 
(zip f xs) :: ([b] -> [c] -> [d]) 
(zip f xs ys) :: ([c] -> [d]) 
(zip f xs ys za) :: [d] 
 



zero’ = Z 
one’ = S Z 
two’ = S (S Z) 
 
help:: Zip a b -> a -> b -> b 
help Z x xs = x:xs 
help (S n) f rcall = 
 (\ ys -> case ys of 
           (z:zs) -> help n (f z) (rcall zs) 
           other -> skip n)  
 



Code 
skip:: Zip a b -> b 
skip Z = [] 
skip (S n) = \ ys -> skip n 
 
zipN:: Zip a b -> a -> b 
zipN Z = \ n -> [n] 
zipN (n@(S m)) =  
  let zip f = help n f (\ x -> zip f x) 
  in zip 


	GADTs
	ADT  vs GADT
	GADTs relax the range restriction
	Examples
	Length indexed lists
	Promotion
	Length indexed lists again
	GADTs as proof objects
	The Curry-Howard isomorphism
	Proofs and witnesses
	Paths and Trees
	Well formed paths
	Using a path. No possibility of failure
	Balanced Trees
	Red Black Trees
	Red Black Tree as a GADT
	AVL Trees
	Slide Number 18
	Slide Number 19
	Insertion
	Slide Number 21
	Slide Number 22
	Example code�The rest is in the accompanying Haskell file
	At the top level
	2-3-Tree
	Witnessing equality
	Representation types
	Generic Programming
	Using provable equality
	Code for test
	Well typed terms
	Typing judgements
	Tagless interpreter
	Valueless environments
	Tagless interpreter
	Units of measure
	N-way zip
	The Natural Numbers with strange types
	Why these types.
	Slide Number 40
	Code

