
Cse536 Functional Programming 

1 4/7/2014 

Reactive Animations 
•Todays Topics 

– Simple Animations - Review 
–Reactive animations 
–Vocabulary 
– Examples 
– Implementation 

» behaviors 
» events 

•Reading from Hudak’s The Haskell School of Expression 
– Read Chapter 15 - A Module of Reactive Animations 
– Read Chapter 17 – Rendering Reactive Animations 



Cse536 Functional Programming 

2 4/7/2014 

Review: Behavior 
• A   Behavior a   can be thought of abstractly as a 

function from Time to a.  
• In the chapter on functional animation, we animated 
Shape’s,  Region’s,  and  Picture’s. 

• For example: 
 
dot = (ell 0.2 0.2) 
ex1 = paint red (translate (0, time / 2) dot) 
 

Try It 
 
 
ex2 = paint blue (translate (sin time,cos time) dot) 

X  
coord 

Y 
coord 



Cse536 Functional Programming 

3 4/7/2014 

Abstraction 
 

• The power of animations is the ease with which they 
can be abstracted over, to flexibly create new 
animations from old. 
 
wander x y color = paint color (translate (x,y) dot) 
 
ex3 = wander (time /2) (sin time) red 
 



Cse536 Functional Programming 

4 4/7/2014 

Example: The bouncing ball 
• Suppose we wanted to animate a ball bouncing 

horizontally from wall to wall 
 
 
 
 
 
 

• The Y position is constant, but the x position varies 
like: 

0 +N -N 



Cse536 Functional Programming 

5 4/7/2014 

Y axis 

X axis 

X axis 

time 

Time `mod` N 

Period         0                   1                    2                   3                    4 

modula x y = (period,w) 
    where (whole,fract) = properFraction x 
          n = whole `mod` y 
          period = (whole `div` y) 
          w = (fromIntegral (toInteger n)) 
              + fract 

 



Cse536 Functional Programming 

6 4/7/2014 

X axis 

Time `mod` N 

X axis 

1  id 2   (N-) 3 negate 4   (-N) 



Cse536 Functional Programming 

7 4/7/2014 

Implementation 
 
 
bounce t = f fraction 
   where (period,fraction) = modula t 2 
         f = funs !! (period `mod` 4) 
         funs = [id,(2.0 -),negate,(\x -> x - 2.0)]  
 
 
ex4 = wander (lift1 bounce time) 0 yellow 
 

• Remember this example. Reactive 
animations will make this much easier to do. 



Cse536 Functional Programming 

8 4/7/2014 

Reactive Animations 
• With a reactive animation, things do more than just 

change and move with time according to some 
algorithm. 

• Reactive programs “react” to user stimuli, and real-
time events, even virtual events, such as: 

– key press 
– button press 
– hardware interrupts 
– virtual event - program variable takes on some particular value 

• We will try and illustrate this first by example, and 
then only later explain how it is implemented 

• Example: 
 

color0 = red `switch` (lbp ->> blue) 
moon = (translate (sin time,cos time) dot) 
ex5 = paint color0 moon 



Cse536 Functional Programming 

9 4/7/2014 

A Reactive Vocabulary 
• Colors 

– Red,Blue,Yellow,Green,White :: Color 
– red, blue, yellow, green, white :: Behavior Color 

 
• Shapes and  Regions 

– Shape :: Shape -> Region 
– shape :: Behavior Shape -> Behavior Region 
 

– Ellipse,Rectangle :: Float -> Float -> Region 
– ell, rec :: Behavior Float -> Behavior Float -> 
Behavior Region 
 

– Translate :: (Float,Float) -> Region -> Region 
– translate :: (Behavior Float, Behavior Float)            
-> Behavior Region -> Behavior Region 



Cse536 Functional Programming 

10 4/7/2014 

Operator and Event Vocabulary 
• Numeric and Boolean Operators 

–  (+), (*) :: Num a => Behavior a -> Behavior a -> 
Behavior a 

– negate :: Num a => Behavior a -> Behavior a 
 

– (>*),(<*),(>=*),(<=*) :: Ord a => Behavior a -> 
Behavior a -> Behavior Bool 

– (&&*),(||*) :: Behavior Bool -> Behavior Bool -> 
Behavior Bool 

• Events 
– lbp :: Event ()         -- left button press 
– rbp :: Event ()         -- right button press 
– key :: Event Char       -- key press 
– mm  :: Event Vertex     -- mouse motion 



Cse536 Functional Programming 

11 4/7/2014 

Combinator Vocabulary 
 

• Event Combinators 
– (->>) :: Event a -> b -> Event b 
– (=>>) :: Event a -> (a->b) -> Event b 

 
– (.|.) :: Event a -> Event a -> Event a 
– withElem  :: Event a -> [b] -> Event (a,b) 
– withElem_ :: Event a -> [b] -> Event b 

 
• Behavior and Event Combinators 

– switch :: Behavior a -> Event(Behavior a) -> Behavior a 
– snapshot_ :: Event a -> Behavior b -> Event b 
– step :: a -> Event a -> Behavior a 
– stepAccum :: a -> Event(a -> a) -> Behavior a 



Cse536 Functional Programming 

12 4/7/2014 

Analyse Ex3. 
red,blue :: Behavior Color 
lbp :: Event () 
(->>) :: Event a -> b -> Event b 
switch :: Behavior a -> Event(Behavior a) -> Behavior a 
 

 
 
 

 
 
 

 

Event () Behavior Color 

color0 = red `switch` (lbp ->> blue) 
 

Event (Behavior Color) 

Behavior Color 



Cse536 Functional Programming 

13 4/7/2014 

Either (.|.)  and  withElem 
 
color1 = red `switch`  
              (lbp `withElem_` cycle [blue,red]) 
 
ex6 = paint color1 moon 
 
 
 
 
color2 = red `switch`  
             ((lbp ->> blue) .|. (key ->> yellow)) 
 
ex7 = paint color2 moon 
 
 



Cse536 Functional Programming 

14 4/7/2014 

Key and Snapshot 
color3 = white `switch` (key =>> \c -> 
           case c of ‘r' -> red 
                     ‘b' -> blue 
                     ‘y' -> yellow  
                     _   -> white  ) 
ex8 = paint color3 moon 
 
 
color4 = white `switch` ((key `snapshot` color4) =>> 
\(c,old) -> 

           case c of ‘r' -> red 
                     ‘b' -> blue 
                     ‘y' -> yellow  
                     _   -> constB old) 
ex9 = paint color4 moon 



Cse536 Functional Programming 

15 4/7/2014 

Step :: a -> Event a -> Behavior a 
size '2' = 0.2  -- size :: Char -> Float 
size '3' = 0.4 
size '4' = 0.6 
size '5' = 0.8 
size '6' = 1.0 
size '7' = 1.2 
size '8' = 1.4 
size '9' = 1.6 
size _ = 0.1 
 
growCircle :: Char -> Region 
growCircle x = Shape(Ellipse (size x) (size x)) 
 
ex10 =  paint red (Shape(Ellipse 1 1)  
                     `step` (key =>> growCircle)) 



Cse536 Functional Programming 

16 4/7/2014 

stepAccum :: a -> Event(a -> a) -> Behavior a 
 

• stepAccum takes a value and an event of a function. 
Everytime the event occurs, the function is applied 
to the old value to get a new value. 
 

power2 :: Event(Float -> Float) 
power2 = (lbp ->> \ x -> x*2)     .|.  
         (rbp ->> \ x -> x * 0.5) 
 
dynSize = 1.0 `stepAccum` power2 
ex11 = paint red (ell dynSize dynSize) 



Cse536 Functional Programming 

17 4/7/2014 

Integral 
• The combinator: 

–     integral :: Behavior Float -> Behavior Float 

has a lot of interesting uses. 
 
 
 
 
 
 
If   F :: Behavior Float  (think function from 

time to Float) then   integral F z   is the area 
under the curve gotten  by plotting  F  from 0 to  z 

F x 

time axis 

z 

Integral F z 



Cse536 Functional Programming 

18 4/7/2014 

Bouncing Ball revisited 
• The bouncing ball has a constant velocity (either to 

the right, or to the left). 
• Its position can be thought of as the integral of its 

velocity. 
 
 
 
 
 

• At time t, the area under the curve is t, so the x 
position is t as well. If the ball had constant velocity 
2, then the area under the curve is 2 * t, etc. 

If velocity is a constant 1 

 1      2     3    4     5     6    7     8   …. 



Cse536 Functional Programming 

19 4/7/2014 

Bouncing Ball again 
 
 

ex12 = wander x 0 yellow 
       where xvel = 1 `stepAccum` (hit ->> negate) 
             x = integral xvel 
             left = x <=* -2.0 &&* xvel <*0 
             right = x >=* 2.0  &&* xvel >*0  
             hit = predicate (left ||* right) 
  



Cse536 Functional Programming 

20 4/7/2014 

Mouse Motion 
• The variable mm :: Event Vertex 
• At every point in time it is an event that returns the 

mouse position. 
 
 

mouseDot =  
   mm =>> \ (x,y) ->  
            translate (constB x,constB y)            
                      dot 
 
ex13 = paint red (dot `switch` mouseDot) 



Cse536 Functional Programming 

21 4/7/2014 

How does this work? 
• Events are “real-time”  actions that “happen” in the 

world. How do we mix Events and behaviors in some 
rational way. 

• The Graphics Library supports a basic type that 
models these actions. 
type Time = Float 

 
data G.Event  
  = Key       { char :: Char, isDown :: Bool } 
  | Button    { pt :: Vertex, isLeft, isDown :: Bool } 
  | MouseMove { pt :: Vertex } 
  | Resize 
  | Closed 
deriving Show  

 

type UserAction = G.Event 



Cse536 Functional Programming 

22 4/7/2014 

Type of Behavior 
• In simple animations, a Behavior was a function 

from time. But if we mix in events, then it must be a 
function from time and a list of events. 

• First try: 
 
 newtype Behavior1 a = 
  Behavior1 ([(UserAction,Time)] -> Time -> a) 
 

User  Actions are time stamped. Thus the value of a 
behavior (Behavior1 f) at time t is, f uas t, 
where uas is the list of user actions. 

Expensive because f has to “whittle” down uas at 
every sampling point (time t), to find the events it is 
interested in. 



Cse536 Functional Programming 

23 4/7/2014 

Solution 
• Sample at monotonically increasing times, and keep 

the events in time order. 
 

• Analogy: suppose we have two lists xs and ys and 
we want to test for each element in ys whether it is a 
member of xs 

 
– inList :: [Int] -> Int -> Bool 
– result :: [Bool]                                      -- Same length as ys 
– result1 :: map (inList xs) ys 

 

• What’s the cost of this operation?  
 

• This is analagous to sampling a behavior at many 
times. 



Cse536 Functional Programming 

24 4/7/2014 

If xs and ys are ordered ... 
 
result2 :: [Bool] 
result2 = manyInList xs ys 
 
manyInList :: [Int] -> [Int] -> [Bool] 
manyInList [] _ = [] 
manyInList _ [] = [] 
manyInList (x:xs) (y:ys) =    
      if y<x  
         then manyInList xs (y:ys)             
         else (y==x) : manyInList (x:xs) ys 



Cse536 Functional Programming 

25 4/7/2014 

Behavior: Second try 
 
newtype Behavior2 a = 
   Behavior2 ([(UserAction,Time)] ->  
                [Time] ->  
                   [a]) 

 
• See how this has structure similar to the manyInList 

problem? 
manyInList :: [Int] -> [Int] -> [Bool] 



Cse536 Functional Programming 

26 4/7/2014 

Refinements 
newtype Behavior2 a = 
   Behavior2 ([(UserAction,Time)] -> [Time] -> [a]) 
 
newtype Behavior3 a = 
   Behavior3 ([UserAction] -> [Time] -> [a]) 
 
newtype Behavior4 a = 
   Behavior4 ([Maybe UserAction] -> [Time] -> [a]) 
 

• Final Solution 
 
newtype Behavior a  
  = Behavior (([Maybe UserAction],[Time]) -> [a]) 
 



Cse536 Functional Programming 

27 4/7/2014 

Events 
 
newtype Event a = 
   Event (([Maybe UserAction],[Time]) -> [Maybe a]) 

 
 

• Note there is an isomorphism between the two types 
         Event a   and     Behavior (Maybe a) 
 

• We can think of an event, that at any particular time 
t, either occurs, or it doesn’t. 

• Exercise:  Write the two functions that make up the 
isomorphism: 

– toEvent :: Event a -> Behavior (Maybe a) 
– toBeh :: Behavior(Maybe a) -> Event a 



Cse536 Functional Programming 

28 4/7/2014 

Intuition 
• Intuitively it’s useful to think of a   Behavior m   as 

transforming two streams, one of user actions, the 
other of the corresponding time (the two streams 
always proceed in lock-step) , into a stream of  m  
things. 

• User actions include things like 
– left and right button presses 
– key presses 
– mouse movement 

• User Actions also include the “clock tick” that is 
used to time the animation. 

 [ leftbutton, key ‘x’, clocktick, mousemove(x,y), …] 

[ 0.034,       0.65,   0.98,      1.29, . . .      ]      

[ M1, m2, m3, … ] 



Cse536 Functional Programming 

29 4/7/2014 

The Implementation 
time :: Behavior Time 
time = Behavior (\(_,ts) -> ts) 
 
 
 
 
constB :: a -> Behavior a 
constB x = Behavior (\_ -> repeat x) 

([ua1,ua2,ua3, …],[t1,t2,t3, …]) --->  

            [t1, t2, t3, …] 

([ua1,ua2,ua3, …],[t1,t2,t3, …]) --->  

            [x, x, x, …] 



Cse536 Functional Programming 

30 4/7/2014 

Simple Behaviors 
 
red, blue :: Behavior Color 
red    = constB Red 
blue   = constB Blue 
 
lift0 :: a -> Behavior a 
lift0 = constB 

 



Cse536 Functional Programming 

31 4/7/2014 

Notation 
• We often have two versions of a function: 

 
xxx :: Behavior a -> (a -> b) -> T b 
 
xxx_ :: Behavior a ->  b -> T b 

 
• And two versions of some operators: 

 
(=>>) :: Event a -> (a->b) -> Event b 
 
(->>) :: Event a -> b -> Event b 



Cse536 Functional Programming 

32 4/7/2014 

Lifting ordinary functions 
($*) :: Behavior (a->b) -> Behavior a -> Behavior b 
Behavior ff $* Behavior fb 
  = Behavior (\uts -> zipWith ($) (ff uts) (fb uts) 
        where f $ x = f x 
 
 
 
 
 
lift1 :: (a -> b) -> (Behavior a -> Behavior b) 
lift1 f b1  = lift0 f $* b1 
 
lift2 :: (a -> b -> c) ->  
            (Behavior a -> Behavior b -> Behavior c) 
lift2 f b1 b2  = lift1 f b1 $* b2 

([t1,t2,t3, …],[f1,f2,f3, …]) --->  

([t1,t2,t3, …],[x1,x2,x3, …]) ---> 

([t1,t2,t3, …],[f1 x1, f2 x2, f3 x3, …] 



Cse536 Functional Programming 

33 4/7/2014 

Button Presses 
data G.Event  
  = Key       { char :: Char, isDown :: Bool } 
  | Button    { pt :: Vertex, isLeft, isDown :: Bool } 
  | MouseMove { pt :: Vertex } 

 
lbp :: Event () 
lbp = Event (\(uas,_) -> map getlbp uas) 
   where getlbp (Just (Button _ True True)) = Just () 
         getlbp _                           = Nothing 

([Noting, Just (Button …), Nothing, Just(Button …), …], 

 [t1,t2,t3, …]) --->  

            [Nothing, Just(), Nothing, Just(), …] 

Color0 = red `switch` (lbp --> blue) 



Cse536 Functional Programming 

34 4/7/2014 

Key Strokes 
key :: Event Char 
key = Event (\(uas,_) -> map getkey uas) 
      where getkey (Just (Key ch True)) = Just ch 
            getkey _                    = Nothing

    

([leftbut, key ‘z’ True, clock-tick, key ‘a’ True …], 

 [t1,      t2,           t3,         t4,          …]) 

      

           --->  

 

            [Nothing, Just ‘z’, Nothing, Just ‘a’, …] 



Cse536 Functional Programming 

35 4/7/2014 

Mouse Movement 
mm :: Event Vertex 
mm = Event (\(uas,_) -> map getmm uas) 
     where getmm (Just (MouseMove pt))  
                    = Just (gPtToPt pt) 
           getmm _  = Nothing 
 
 
 
 
 
mouse :: (Behavior Float, Behavior Float) 
mouse = (fstB m, sndB m) 
          where m = (0,0) `step` mm 
    

([Noting, Just (MouseMove …), Nothing, Just(MouseMove …), …], 

 [t1,t2,t3, …]) --->  

            [Nothing, Just(x1,y1), Nothing, Just(x2,y2), …] 

( (uas,ts) --> [x1,x2, …], 

  (uas,ts) --> [y1, y2, …] ) 



Cse536 Functional Programming 

36 4/7/2014 

Behavior and Event Combinators 
switch :: Behavior a -> Event (Behavior a) -> Behavior a 

Behavior fb `switch` Event fe = 
  memoB 
    (Behavior 
       (\uts@(us,ts) -> loop us ts (fe uts) (fb uts))) 
 where loop (_:us) (_:ts) ~(e:es) (b:bs) = 
      b : case e of  
            Nothing -> loop us ts es bs 
            Just (Behavior fb')  
               -> loop us ts es (fb' (us,ts)) 
 

([Noting,Just (Beh [x,y,...] …),Nothing,Just(Beh [m,n,…])…], 

 [t1,t2,t3, …]) --->  

            [fb1, fb2, x, y, m, n …] 



Cse536 Functional Programming 

37 4/7/2014 

Event Transformer (map?) 
 
(=>>) :: Event a -> (a->b) -> Event b 
 
Event fe =>> f = Event (\uts -> map aux (fe uts)) 
  where aux (Just a) = Just (f a) 
        aux Nothing  = Nothing 
 
(->>) :: Event a -> b -> Event b 
 
e ->> v = e =>> \_ -> v 
 

([Noting, Just (Ev x), Nothing, Just(Ev y), …] --> f --> 

            [Nothing, Just(f x), Nothing, Just(f y), …] 



Cse536 Functional Programming 

38 4/7/2014 

withElem 
withElem  :: Event a -> [b] -> Event (a,b) 
 
 
withElem (Event fe) bs  
 = Event (\uts -> loop (fe uts) bs) 
      where loop (Just a  : evs) (b:bs) 
                = Just (a,b) : loop evs bs 
            loop (Nothing : evs)    bs  
                = Nothing    : loop evs bs 
 
withElem_ :: Event a -> [b] -> Event b 
withElem_ e bs = e `withElem` bs =>> snd 
 

Infinite list 

([Noting, Just x, Nothing, Just y, …]) ---> [b0,b1,b2,b3, …] -> 

            [Nothing, Just(x,b0), Nothing, Just(y,b1), …] 



Cse536 Functional Programming 

39 4/7/2014 

Either one event or another 
 
(.|.) :: Event a -> Event a -> Event a 
 
Event fe1 .|. Event fe2  
  = Event (\uts -> zipWith aux (fe1 uts) (fe2 uts)) 
      where aux Nothing  Nothing  = Nothing 
            aux (Just x) _        = Just x 
            aux _        (Just x) = Just x 

([Noting, Just x, Nothing, Just y, …]) --->  

 [Nothing, Just a, Just b, Nothing, …] ---> 

            [Nothing, Just x, Just b, Just y, …] 



Cse536 Functional Programming 

40 4/7/2014 

Snapshot 
snapshot :: Event a -> Behavior b -> Event (a,b) 
 
Event fe `snapshot` Behavior fb 
  = Event (\uts -> zipWith aux (fe uts) (fb uts)) 
      where aux (Just x) y = Just (x,y) 
            aux Nothing  _ = Nothing 
 
snapshot_ :: Event a -> Behavior b -> Event b 
snapshot_ e b = e `snapshot` b =>> snd 
 

[Nothing, Just x, Nothing, Just y, …] --->  

[b1,     b2,     b3,      b4,     …] ---> 

        [Nothing, Just(x,b2), Nothing, Just(y,b4), …] 



Cse536 Functional Programming 

41 4/7/2014 

step and stepAccum 
step :: a -> Event a -> Behavior a 
a `step` e = constB a `switch` e =>> constB 
 
 
 
 
 
stepAccum :: a -> Event (a->a) -> Behavior a 
a `stepAccum` e = b  
   where b = a `step` 
                 (e `snapshot` b =>> uncurry ($)) 
 

X1 -> [Nothing, Just x2, Nothing, Just x3, …] --->  

      [x1,     x1,      x2,      x2,     x3, ...] 

X1 -> [Noting, Just f, Nothing, Just g, …] --->  

      [x1,     x1,     f x1,    (f x1), g(f x1), ...] 



Cse536 Functional Programming 

42 4/7/2014 

predicate 
predicate :: Behavior Bool -> Event () 
 
predicate (Behavior fb)  
  = Event (\uts -> map aux (fb uts)) 
    where aux True  = Just () 
          aux False = Nothing 

[True,   True,   False,   True,   False, …] --->  

[Just(), Just(), Nothing, Just(), Nothing, ...] 



Cse536 Functional Programming 

43 4/7/2014 

integral 
integral :: Behavior Float -> Behavior Float 
integral (Behavior fb) 
  = Behavior (\uts@(us,t:ts) ->  
               0 : loop t 0 ts (fb uts)) 
      where loop t0 acc (t1:ts) (a:as)  
                 = let acc' = acc + (t1-t0)*a 
                   in acc' : loop t1 acc' ts as 

F x 

time axis 

z 

Integral F z 

t0   t1   t2   t3   t4 

([ua0,ua1,ua2,ua3, …],[t0,t1,t2,t3, …]) --->  

   [0, Area t0-t1, Area t0-t2, Area t0-t3, …] 



Cse536 Functional Programming 

44 4/7/2014 

Putting it all together 
reactimate :: String -> Behavior Graphic -> IO () 
reactimate title franProg 
  = runGraphics $ 
    do w <- openWindowEx title (Just (0,0)) (Just (xWin,yWin)) 
              drawBufferedGraphic 
       (us,ts,addEvents) <- windowUser w 
       addEvents 
       let drawPic (Just g) =  
             do setGraphic w g 
                quit <- addEvents 
                if quit  
                  then return True 
                  else return False 
           drawPic Nothing  = return False 
       let Event fe = sample `snapshot_` franProg 
       run drawPic (fe (us,ts)) 
       closeWindow w 
   



Cse536 Functional Programming 

45 4/7/2014 

where 
    run f (x:xs) = do 
      quit <- f x 
      if quit 
        then return () 
        else run f xs 
    run f [] = return () 

 



Cse536 Functional Programming 

46 4/7/2014 

The Channel Abstraction 
  

(us,ts,addEvents) <- windowUser w 
 

• us, and ts are infinite streams made with channels. 
• A Channel is a special kind of abstraction, in the 

multiprocessing paradigm. 
• If you “pull” on the tail of a channel, and it is null, 

then you “wait” until something becomes available. 
• addEvents :: IO () is a action which adds the 

latest user actions, thus extending the streams us 
and ts 



Cse536 Functional Programming 

47 4/7/2014 

Making a Stream from a Channel 
 
makeStream :: IO ([a], a -> IO ()) 
makeStream = do 
  ch <- newChan 
  contents <- getChanContents ch 
  return (contents, writeChan ch) 
 



Cse536 Functional Programming 

48 4/7/2014 

A Reactive window 
windowUser :: Window -> IO ([Maybe UserAction], [Time], IO Bool) 
windowUser w 
  = do (evs, addEv) <- makeStream 
       t0 <- timeGetTime 
       let addEvents = 
             let loop rt = do 
                   mev <- maybeGetWindowEvent w 
                   case mev of 
                     Nothing -> return False 
                     Just e  -> case e of 
                        Key ' ' True -> return True 
                        Closed -> return True 
                        _ -> addEv (rt, Just e) >> loop rt 
             in do t <- timeGetTime 
                   let rt = w32ToTime (t-t0) 
                   quit <- loop rt 
                   addEv (rt, Nothing) 
                   return quit 
       return (map snd evs, map fst evs, addEvents) 



Cse536 Functional Programming 

49 4/7/2014 

The “Paddle Ball” Game 
paddleball vel = walls `over` paddle `over` ball vel 
 
walls = let upper = paint blue  
                (translate ( 0,1.7) (rec 4.4 0.05)) 
            left  = paint blue  
                (translate (-2.2,0) (rec 0.05 3.4)) 
            right = paint blue  
                (translate ( 2.2,0) (rec 0.05 3.4)) 
        in upper `over` left `over` right 
 
paddle = paint red  
        (translate (fst mouse, -1.7) (rec 0.5 0.05)) 
 
x `between` (a,b) = x >* a &&* x <* b 



Cse536 Functional Programming 

50 4/7/2014 

The “reactive” ball 
pball vel = 
 let xvel    = vel `stepAccum` xbounce ->> negate 
     xpos    = integral xvel 
     xbounce = when (xpos >*  2 ||* xpos <* -2) 
     yvel    = vel `stepAccum` ybounce ->> negate 
     ypos    = integral yvel 
     ybounce = when (ypos >* 1.5  
               ||* ypos      `between` (-2.0,-1.5) &&* 
                   fst mouse `between`  
                          (xpos-0.25,xpos+0.25)) 
 in paint yellow (translate (xpos, ypos) (ell 0.2 0.2)) 

 
main = test (paddleball 1) 


	Reactive Animations
	Review: Behavior
	Abstraction
	Example: The bouncing ball
	Slide Number 5
	Slide Number 6
	Implementation
	Reactive Animations
	A Reactive Vocabulary
	Operator and Event Vocabulary
	Combinator Vocabulary
	Analyse Ex3.
	Either (.|.)  and  withElem
	Key and Snapshot
	Step :: a -> Event a -> Behavior a
	stepAccum :: a -> Event(a -> a) -> Behavior a
	Integral
	Bouncing Ball revisited
	Bouncing Ball again
	Mouse Motion
	How does this work?
	Type of Behavior
	Solution
	If xs and ys are ordered ...
	Behavior: Second try
	Refinements
	Events
	Intuition
	The Implementation
	Simple Behaviors
	Notation
	Lifting ordinary functions
	Button Presses
	Key Strokes
	Mouse Movement
	Behavior and Event Combinators
	Event Transformer (map?)
	withElem
	Either one event or another
	Snapshot
	step and stepAccum
	predicate
	integral
	Putting it all together
	Slide Number 45
	The Channel Abstraction
	Making a Stream from a Channel
	A Reactive window
	The “Paddle Ball” Game
	The “reactive” ball

