
Preparing for FRP

Shapes, Regions, and Drawing

Shape types from the Text

 data Shape = Rectangle Float Float
 | Ellipse Float Float
 | RtTriangle Float Float
 | Polygon [(Float,Float)]
 deriving Show

• Deriving Show
– tells the system to build an show function for the type Shape

• Using Shape - Functions returning shape objects

circle radius = Ellipse radius radius
square side = Rectangle side side

Functions over Shape
• Functions over shape can be defined using pattern matching

area :: Shape -> Float

area (Rectangle s1 s2) = s1 * s2
area (Ellipse r1 r2) = pi * r1 * r2
area (RtTriangle s1 s2) = (s1 *s2) / 2
area (Polygon (v1:pts)) = polyArea pts
 where polyArea :: [(Float,Float)] -> Float
 polyArea (v2 : v3 : vs) = triArea v1 v2 v3 +
 polyArea (v3:vs)
 polyArea _ = 0

Note use of prototype
Note use of nested patterns
Note use of wild card pattern (matches anything)

A

B

C

D

E

F

Poly = [A,B,C,D,E,F]

Area = Area(Triangle [A,B,C]) +
 Area(Poly[A,C,D,E,F])

TriArea

triArea v1 v2 v3 =
 let a = distBetween v1 v2
 b = distBetween v2 v3
 c = distBetween v3 v1
 s = 0.5*(a+b+c)
 in sqrt (s*(s-a)*(s-b)*(s-c))

distBetween (x1,y1) (x2,y2)
 = sqrt ((x1-x2)^2 + (y1-y2)^2)

Interacting with the world through graphics

• Our first example of an action is found in
chapter 3

• The action is to pop up a window and to draw
pictures in the window.

Hello World with Graphics Lib

module Main where
import SOE

ex0 =
 runGraphics(
 do { w <- openWindow "First window" (300,300)
 ; drawInWindow w (text (100,200) "hello world")
 ; k <- getKey w
 ; closeWindow w
 })

This imports a
library,

SOE,
it contains many

functions

Graphics Operators
• openWindow :: String -> (Int,Int) -> IO

Window
– opens a titled window of a particular size

• drawInWindow :: Window -> Graphic -> IO ()
– Takes a window and a Graphic object and draws it
– Note the return type of IO()

• getKey :: Window -> IO Char
– Waits until any key is pressed and then returns that character

• closeWindow :: Window -> IO ()
– closes the window

• try it out

A Bug in the code?
getKey :: Window -> IO Char
getKey win = do
 ch <- getKeyEx win True
 if (ch == '\x0') then return ch
 else getKeyEx win False

getKey :: Window -> IO Char
getKey win = do
 ch <- getKeyEx win True
 if not(ch == '\x0') then return ch
 else getKeyEx win False

An Action to Wait for a Space
spaceClose :: Window -> IO ()

spaceClose w =

 do { k <- getKey w

 ; if k == ' ' then closeWindow w

 else spaceClose w

 }

ex1 =

 runGraphics(

 do { w <- openWindow "Second Program" (300,300)

 ; drawInWindow w (text (100,200) "hello Again")

 ; spaceClose w

 })

Drawing Primitive Shapes
• The Graphics libraries contain primitives for drawing a few

primitive shapes.
• We will build complicated drawing programs from these

primitives

ellipse :: Point -> Point -> Graphic
shearEllipse ::
 Point -> Point -> Point -> Graphic
line :: Point -> Point -> Graphic
polygon :: [Point] -> Graphic
polyline :: [Point] -> Graphic

Coordinate Systems
(0,0)

Increasing x-axis

Increasing y-axis

Example Program
ex2 =
 runGraphics(
 do { w <- openWindow "Draw some shapes" (300,300)
 ; drawInWindow w (ellipse (0,0) (50,50))
 ; drawInWindow w
 (shearEllipse (0,60) (100,120) (150,200))
 ; drawInWindow w
 (withColor Red (line (200,200) (299,275)))
 ; drawInWindow w
 (polygon [(100,100),(150,100),(160,200)])
 ; drawInWindow w
 (withColor Green
 (polyline [(100,200),(150,200),
 (160,299),(100,200)]))
 ; spaceClose w
 })

The Result ; drawInWindow w
 (ellipse (0,0) (50,50))

; drawInWindow w
 (shearEllipse (0,60)
 (100,120)
 (150,200))

; drawInWindow w
 (withColor Red
 (line (200,200)
 (299,275)))

; drawInWindow w
 (polygon [(100,100),
 (150,100),
 (160,200)])

; drawInWindow w
 (withColor Green
 (polyline
 [(100,200),(150,200),
 (160,299),(100,200)]))

Building Programs
• We’d like to build bigger things from these small pieces
• Perhaps things such as fractals

– Example:
Sierpinski’s Triangle
a repeated drawing of
a triangle at repeatedly
smaller sizes.

• Key Idea
Separate pure computation
from action

 size / 2

Geometry Isosceles Right Triangles
(x,y-size)

size hyp

size

size * size + size * size = hyp * hyp

(x+ (size / 2), y - (size / 2))
(x, y - (size / 2))

(x , y) (x+ size, y)

Remember y increases
as we go down the page

Draw 1 Triangle

fillTri x y size w =
 drawInWindow w
 (withColor Blue
 (polygon [(x,y),
 (x+size,y),
 (x,y-size)]))

minSize = 8

(x,y)
size

Sierpinski’s Triangle

sierpinskiTri w x y size =
 if size <= minSize
 then fillTri x y size w
 else let size2 = size `div` 2
 in do { sierpinskiTri w x y size2
 ; sierpinskiTri w x (y-size2) size2
 ; sierpinskiTri w (x + size2) y size2
 }
ex3 =
 runGraphics(
 do { w <- openWindow "Sierpinski's Tri" (400,400)
 ; sierpinskiTri w 50 300 256
 ; spaceClose w
 })

(x,y-size)

(x+ (size / 2),
 y - (size / 2)) (x, y - (size / 2))

(x , y) (x+ size, y)

Question?

• What’s the largest triangle sierpinskiTri

ever draws?

• How come the big triangle is drawn?

Abstraction

• Drawing a polygon in a particular window, with a
particular color is a pretty common thing. Lets give it a
name.

drawPoly w color points =
 drawInWindow w
 (withColor color (polygon
points))

Draw a snowflake

side

Geometry of Snow flakes
• Snow flakes are six sided
• They have repeated patterns
• An easy six sided figure is the Star of David

– Constructed from two equilateral triangles

side

height

radius

Radius = 2/3 * height
height = sqrt(side*side - (side*side)/4)

2 triangles with common center

Compute the corners
eqTri side (x,y) =
 let xf = fromIntegral x
 yf = fromIntegral y
 sideDiv2 = side / 2.0
 height = sqrt(side*side -
 (sideDiv2 * sideDiv2))
 h1third = height / 3.0
 h2third = h1third * 2.0
 f (a,b) = (round a,round b)
 in (map f [(xf, yf - h2third),
 (xf - sideDiv2,yf + h1third),
 (xf + sideDiv2,yf + h1third)],
 map f [(xf - sideDiv2,yf - h1third),
 (xf + sideDiv2,yf - h1third),
 (xf,yf + h2third)])

(x,y)

side

Now repeat twice and draw
drawStar color1 color2 w side (x,y) =
 do { let (a,b) = eqTri side (x,y)
 ; drawPoly w color1 a
 ; drawPoly w color2 b
 }

ex4 =
 runGraphics(
 do { w <- openWindow "Star of david”
 (400,400)
 ; drawStar Red Green w 243 (200,200)
 ; spaceClose w
 })

For a snowflake repeat many times

snow1 w color size (x,y) =

 if size <= minSize

 then return ()

 else do { drawStar color color

 w (fromIntegral size) (x,y)

 ; sequence_ (map smaller allpoints)

 }

 where (triangle1,triangle2) =

 eqTri (fromIntegral size) (x,y)

 allpoints = (triangle1 ++ triangle2)

 smaller x = snow1 w color (size `div` 3) x

To Draw pick appropriate sizes

ex5 =
 runGraphics(
 do { w <- openWindow "SnowFlake 1”
 (400,400)
 ; snow1 w Red 243 (200,200)
 ; spaceClose w
 })
 Why 243?

Multiple Colors
snow2 w colors size (x,y) =
 if size <= minSize
 then return ()
 else do { drawPoly w (colors !! 0) triangle2
 ; drawPoly w (colors !! 1) triangle1
 ; sequence_ (map smaller allpoints)
 }
 where (triangle1,triangle2) = eqTri (fromIntegral size) (x,y)
 allpoints = (triangle1 ++ triangle2)
 smaller x = snow2 w (tail colors) (size `div` 3) x

ex6 =
 runGraphics(
 do { w <- openWindow "Snowflake" (400,400)
 ; snow2 w (cycle[Red,Blue,Green,Yellow]) 243 (200,200)
 ; spaceClose w
 })

What Happened?
• The list of colors was too short for the depth of the

recursion

ex6 =
 runGraphics(
 do { w <- openWindow "Snowflake 2" (400,400)
 ; snow2 w [Red,Blue,Green,Yellow,White] 243 (200,200)
 ; spaceClose w
 })

ex7 = runGraphics(
 do { w <- openWindow "Snowflake" (400,400)
 ; snow2 w (cycle [Red,Blue,Green,Yellow])
 243 (200,200)
 ; spaceClose w
 })

Lets make it better
snow3 w colors size (x,y) =
 if size <= minSize
 then return ()
 else do { drawPoly w (colors !! 0) triangle2
 ; drawPoly w (colors !! 1) triangle1
 ; snow3 w colors (size `div` 3) (x,y)
 ; sequence_ (map smaller allpoints) }
 where (triangle1,triangle2) = eqTri (fromIntegral size) (x,y)
 allpoints = (triangle1 ++ triangle2)
 smaller x = snow3 w (tail colors) (size `div` 3) x

ex8 =
 runGraphics(
 do { w <- openWindow "Snowflake" (400,400)
 ; snow3 w (cycle [Red,Blue,Green,Yellow,White]) 243 (200,200)
 ; spaceClose w })

Recall the Shape Datatype
data Shape = Rectangle Side Side
 | Ellipse Radius Radius
 | RtTriangle Side Side
 | Polygon [Vertex]
 deriving Show

type Vertex = (Float,Float)

-- We call this Vertex (instead of Point) so
-- as not to confuse it with Graphics.Point

type Side = Float
type Radius = Float

Properties of Shape

• Note that some shapes are position independent
– Rectangle Side Side
– RtTriangle Side Side
– Ellipse Radius Radius

• But the Polygon [Vertex] Shape is defined in terms of
where it appears in the plane.

• Shape’s Size and Radius components are measured in inches.

• The Window based drawing mechanism of the last lecture was
based upon pixels.

Considerations
• Where to draw position independent shapes?

– Randomly?
– In the upper left corner (the window origin)
– In the middle of the window

• We choose to draw them in the middle of the window.
• We consider this the shape module origin

• So our model has both a different notion of “origin” and of

coordinate system (pixels vs inches)

• We need to handle this.
– Many systems draw about 100 pixels per inch.

Visualize
Window Coordinate system

Shape Coordinate system

(200,200) pixels
or
(1,-1) inches

Coercion Functions

inchToPixel :: Float -> Int
inchToPixel x = round (100*x)

pixelToInch :: Int -> Float
pixelToInch n = (intToFloat n) / 100

intToFloat :: Int -> Float
intToFloat n = fromInteger (toInteger n)

Setting up the Shape window

xWin, yWin :: Int
xWin = 600
yWin = 500

trans :: Vertex -> Point
trans (x,y) = (xWin2 + inchToPixel x,
 yWin2 - inchToPixel y)

xWin2, yWin2 :: Int
xWin2 = xWin `div` 2
yWin2 = yWin `div` 2

(xWin2,
 yWin2)

(xWin,
 yWin)

Translating Points

trans :: Vertex -> Point
trans (x,y) = (xWin2 + inchToPixel x,
 yWin2 - inchToPixel y)

transList :: [Vertex] -> [Point]
transList [] = []
transList (p:ps) = trans p : transList ps

Translating Shapes

shapeToGraphic :: Shape -> Graphic
shapeToGraphic (Rectangle s1 s2)
 = let s12 = s1/2
 s22 = s2/2
 in polygon
 (transList [(-s12,-s22),(-s12,s22),
 (s12,s22),(s12,-s22)])
shapeToGraphic (Ellipse r1 r2)
 = ellipse (trans (-r1,-r2)) (trans (r1,r2))
shapeToGraphic (RtTriangle s1 s2)
 = polygon (transList [(0,0),(s1,0),(0,s2)])
shapeToGraphic (Polygon pts)
 = polygon (transList pts)

Note, first three are
position independent,

centered about the
origin

Convert a Shape (Rectangle, Ellipse, …) into a graphic Draw object
(using the window functions line, polygon, … see file Draw.hs)

Define some test Shapes
sh1,sh2,sh3,sh4 :: Shape

sh1 = Rectangle 3 2
sh2 = Ellipse 1 1.5
sh3 = RtTriangle 3 2
sh4 = Polygon [(-2.5,2.5),
 (-1.5,2.0),
 (-1.1,0.2),
 (-1.7,-1.0),
 (-3.0,0)]

Draw a Shape
ex9

 = runGraphics (

 do w <- openWindow "Drawing Shapes" (xWin,yWin)

 drawInWindow w

 (withColor Red (shapeToGraphic sh1))

 drawInWindow w

 (withColor Blue (shapeToGraphic sh2))

 spaceClose w

)

Draw multiple Shapes
type ColoredShapes = [(Color,Shape)]

shs :: ColoredShapes
shs = [(Red,sh1),(Blue,sh2),
 (Yellow,sh3),(Magenta,sh4)]

drawShapes :: Window -> ColoredShapes -> IO ()
drawShapes w [] = return ()
drawShapes w ((c,s):cs)
 = do drawInWindow w
 (withColor c (shapeToGraphic s))
 drawShapes w cs

Make an Action
ex10
 = runGraphics (
 do w <- openWindow
 "Drawing Shapes" (xWin,yWin)
 drawShapes w shs
 spaceClose w)

Another Example
ex11
 = runGraphics (
 do w <- openWindow "Drawing Shapes" (xWin,yWin)
 drawShapes w (reverse coloredCircles)
 spaceClose w
)

conCircles = map circle [0.2,0.4 .. 1.6]

coloredCircles =
 zip [Black, Blue, Green, Cyan, Red, Magenta, Yellow,

White]
 conCircles

The Region datatype
• A region represents an area on the two dimensional

plane
• Its represented by a tree-like data-structure

-- A Region is either:
data Region =
 Shape Shape -- primitive shape
 | Translate Vector Region -- translated region
 | Scale Vector Region -- scaled region
 | Complement Region -- inverse of region
 | Region `Union` Region -- union of regions
 | Region `Intersect` Region -- intersection of regions
 | Empty
 deriving Show

Regions and Trees
• Why is Region tree-like?

• What’s the strategy for writing functions over Regions?

• Is there a fold-function for Regions?

– How many parameters does it have?
– What is its type?

• Can one make infinite regions?

• What does a region mean?

The Region datatype
• A region represents an area on the two dimensional

plane

-- A Region is either:
data Region =
 Shape Shape -- primitive shape
 | Translate Vector Region -- translated region
 | Scale Vector Region -- scaled region
 | Complement Region -- inverse of region
 | Region `Union` Region -- union of regions
 | Region `Intersect` Region -- intersection of regions
 | Empty
 deriving Show

type Vector = (Float, Float)

Why Regions?

• Regions are interesting because

– They allow us to build complicated “shapes” from simple ones

– They illustrate the use of tree-like data structures

• What makes regions tree-like?

– They “solve” the problem of only having rectangles and ellipses
centered about the origin.

– They make a beautiful analogy with mathematical sets

What is a region?

• A Region is all those points that lie within some area
in the 2 dimensional plane.

• This often (almost always?) an infinite set.
• An efficient representation is as a characteristic

function.

• What do they look like? What do they represent?

Translate (u,v) r

r

(u,v)

(1,-1)

(3,-3)

(3,-1)

(1,-3)

(2,1)

(1,2)

(-1,-1)

scale (x,y) r =
 [(a*x,b*y) | (a,b) <- r]

r Complement r

Region Characteristic functions

• We define the meaning of a region by its characteristic
function.

containsR :: Region -> Coordinate -> Bool

• How would you write this function?

– Recursion, using pattern matching over the structure of a Region
– What are the base cases of the recursion?

• Start with a characteristic function for a
primitive Shape

Rectangle
(Rectangle s1 s2) `containsS` (x,y)
 = let t1 = s1/2
 t2 = s2/2
 in -t1<=x && x<=t1 && -t2<=y && y<=t2

s1

s2 t1 t2

Ellipse

(Ellipse r1 r2) `containsS` (x,y)
 = (x/r1)^2 + (y/r2)^2 <= 1

r1

r2

Left of a line that bisects the plane

A = (ax,ay)

B = (bx,by) For a Ray specified by two points
(A,B), and facing in the direction
from A to B, a Vertex (px,py) is to
the left of the line when:

isLeftOf :: Vertex -> Ray -> Bool
(px,py) `isLeftOf` ((ax,ay),(bx,by))
 = let (s,t) = (px-ax, py-ay)
 (u,v) = (px-bx, py-by)
 in s*v >= t*u

(px,py)

Inside a (Convex) Polygon

A Vertex, P, is inside a (convex)
polygon if it is to the left of
every side, when they are
followed in (counter-clockwise)
order

P

Polygon

(Polygon pts) `containsS` p
 = let shiftpts = tail pts ++ [head pts]
 leftOfList =
 map isLeftOfp(zip pts shiftpts)
 isLeftOfp p' = isLeftOf p p'
 in foldr (&&) True leftOfList

RtTriangle

(RtTriangle s1 s2) `containsS` p
 = (Polygon [(0,0),(s1,0),(0,s2)])
 `containsS` p

s1

(0,0)

(0,s2)

(s1,0)

s2

Putting it all together
containsS :: Shape -> Vertex -> Bool
(Rectangle s1 s2) `containsS` (x,y)
 = let t1 = s1/2
 t2 = s2/2
 in -t1<=x && x<=t1 && -t2<=y && y<=t2
(Ellipse r1 r2) `containsS` (x,y)
 = (x/r1)^2 + (y/r2)^2 <= 1
(Polygon pts) `containsS` p
 = let shiftpts = tail pts ++ [head pts]
 leftOfList =
 map isLeftOfp(zip pts shiftpts)
 isLeftOfp p' = isLeftOf p p'
 in foldr (&&) True leftOfList
(RtTriangle s1 s2) `containsS` p
 = (Polygon [(0,0),(s1,0),(0,s2)]) `containsS` p

containsR using patterns
containsR :: Region -> Vertex -> Bool
(Shape s) `containsR` p =
 s `containsS` p
(Translate (u,v) r) `containsR` (x,y) =
 r `containsR` (x-u,y-v)
(Scale (u,v) r) `containsR` (x,y) =
 r `containsR` (x/u,y/v)
(Complement r) `containsR` p =
 not (r `containsR` p)
(r1 `Union` r2) `containsR` p =
 r1 `containsR` p || r2 `containsR` p
(r1 `Intersect` r2) `containsR` p =
 r1 `containsR` p && r2 `containsR` p
Empty `containsR` p = False

Pictures
• Drawing Pictures

– Pictures are composed of Regions
• Regions are composed of shapes

– Pictures add Color

data Picture = Region Color Region
 | Picture `Over` Picture
 | EmptyPic
 deriving Show

Must be careful to use SOEGraphics, but
SOEGraphics has its own Region datatype.

import SOEGraphics hiding (Region)
import qualified SOEGraphics as G (Region)

Recall our Region datatype
data Region =
 Shape Shape -- primitive shape
 | Translate Vector Region -- translated region
 | Scale Vector Region -- scaled region
 | Complement Region -- inverse of region
 | Region `Union` Region -- union of regions
 | Region `Intersect` Region -- intersection of regions
 | Empty
 deriving Show

How will we draw things like the intersection of two regions, or the

complement of two regions. These are hard things to do, and require
hardware support to do efficiently. The G.Region type interfaces to this
hardware support.

G.Region
• The G.Region datatype interfaces to the hardware. It is

essentially a two dimensional array or “bit-map”,
storing a binary value for each pixel in the window.

Hardware support
• There is efficient hardware support for

combining two bit-maps using binary operators.

• Operations are fast, but data (space) intensive,
and this space needs to be explicitly allocated
and de-allocated.

+ =

Interface

createRectangle :: Point -> Point -> IO G.Region
createEllipse :: Point -> Point -> IO G.Region
createPolygon :: [Point] -> IO G.Region

andRegion :: G.Region -> G.Region -> IO G.Region
orRegion :: G.Region -> G.Region -> IO G.Region
xorRegion :: G.Region -> G.Region -> IO G.Region
diffRegion :: G.Region -> G.Region -> IO G.Region
deleteRegion :: G.Region -> IO ()

drawRegion :: G.Region -> Graphic

These functions are defined in the SOE library
module.

Drawing G.Region
• To draw things quickly, turn them into a G.Region,

then turn the G.Region into a graphic object and
then use all the machinery we have built up so far.

drawRegionInWindow::Window -> Color -> Region -> IO ()

drawRegionInWindow w c r =
 drawInWindow w

 (withColor c (drawRegion (regionToGRegion r)))

• All we need to define then is:
regionToGRegion
– we’ll come back to regionToGRegion in a minute

Drawing Pictures

• Pictures combine multiple regions into one big
picture. They provide a mechanism for placing one
sub-picture on top of another.

drawPic :: Window -> Picture -> IO ()

drawPic w (Region c r) = drawRegionInWindow w c r
drawPic w (p1 `Over` p2) = do { drawPic w p2
 ; drawPic w p1
 }
drawPic w EmptyPic = return ()

Overview
• We have a rich calculus of Shapes, which we can draw, take the

perimeter of, and tell if a point lies within.
• We extend this with a richer type Region, which allows more

complicated ways of combination (intersection, complement, etc.).
– We gave Region a mathematical semantics as a set of points in the 2-

dimensional plane.
– We defined some interesting operators like containsR which is the

characteristic function for a region.
– The rich combination ability make Region hard to draw efficiently, so we use

a lower level datatype supported by the hardware: G.Region which is
essentially a bit-map.

• We enrich this even further with the Picture type.
• G.Region is low level, relying on features like overwriting, and explicit

allocation and deallocation of memory.
– We think of Region, as a highlevel interface to G.Region which hides the low

level details.

Turning a Region into a G.Region
Experiment with a smaller problem to illustrate a lurking efficiency problem.

data NewRegion = Rect Side Side -- Abstracts G.Region

regToNReg1 :: Region -> NewRegion
regToNReg1 (Shape (Rectangle sx sy))
 = Rect sx sy
regToNReg1 (Scale (x,y) r)
 = regToNReg1 (scaleReg (x,y) r)
 where scaleReg (x,y) (Shape (Rectangle sx sy))
 = Shape (Rectangle (x*sx) (y*sy))
 scaleReg (x,y) (Scale s r)
 = Scale s (scaleReg (x,y) r)

Note, scaleReg
distributes over

Scale

Problem

• Consider

(Scale (x1,y1)
 (Scale (x2,y2)
 (Scale (x3,y3)
 ... (Shape (Rectangle sx sy))
 …)))

• If the Scale level is N-deep, how many
traversals does regToNReg1 do of the
Region tree?

You’ve probably seen this before
• Believe it or not you probably have encountered this

problem before. Recall the definition of reverse
reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]
 where [] ++ zs = zs

 (y:ys) ++ zs = y : (ys ++ zs)

• How did we solve this? Use an extra accumulating
parameter.
reverse xs = revhelp xs []
 where revhelp [] zs = zs

 revhelp (x:xs) zs = revhelp xs (x:zs)

Accumulate a complex Scale

regToNReg2 :: Region -> NewRegion

regToNReg2 r = rToNR (1,1) r

 where rToNR :: (Float,Float) -> Region -> NewRegion

 rToNR (x1,y1) (Shape (Rectangle sx sy))

 = Rect (x1*sx) (y1*sy)

 rToNR (x1,y1) (Scale (x2,y2) r)

 = rToNR (x1*x2,y1*y2) r

• To solve our original problem Repeat this for all the
constructors of Region (not just Shape and Scale)
and use G.Region instead of NewRegion, We also
need to handle translation as well as scaling

Final Version
regToGReg1 :: Vector -> Vector -> Region -> G.Region
regToGReg1 trans sca (Shape s) = shapeToGRegion trans sca s
regToGReg1 (x,y) sca (Translate (u,v) r)
 = regToGReg1 (x+u, y+v) sca r
regToGReg1 trans (x,y) (Scale (u,v) r)
 = regToGReg1 trans (x*u, y*v) r
regToGReg1 trans sca Empty = createRectangle (0,0) (0,0)
regToGReg1 trans sca (r1 `Union` r2)
 = let gr1 = regToGReg1 trans sca r1
 gr2 = regToGReg1 trans sca r2
 in orRegion gr1 gr2

• Assuming of course we can write:
shapeToGRegion :: Vector -> Vector -> Shape -> G.Region

and write rules for Intersect, Complement etc.

A matter of style

• While the function on the previous page shows how to
solve the problem, there are several stylistic issues that
could make it more readable and understandable.

• The style of defining a function by patterns, becomes
cluttered when there are many parameters (other than the
one which has the patterns).

• The pattern of explicitly allocating and deallocating (bit-
map) G.Region’s will be repeated in cases for intersection
and for complement, so we should abstract it, and give it a
name.

Abstract the low level bit-map details

primGReg trans sca r1 r2 op
 = let gr1 = regToGReg trans sca r1
 gr2 = regToGReg trans sca r2
 in op gr1 gr2

Redo with a case expression
regToGReg :: Vector -> Vector -> Region -> G.Region
regToGReg (trans @ (x,y)) (sca @ (a,b)) shape =
 case shape of
 (Shape s) -> shapeToGRegion trans sca s
 (Translate (u,v) r) -> regToGReg (x+u, y+v) sca r
 (Scale (u,v) r) -> regToGReg trans (a*u, b*v) r
 (Empty) -> createRectangle (0,0) (0,0)
 (r1 `Union` r2) -> primGReg trans sca r1 r2 orRegion
 (r1 `Intersect` r2) -> primGReg trans sca r1 r2 andRegion
 (Complement r) -> primGReg trans sca winRect r diffRegion
 where winRect :: Region
 winRect = Shape (Rectangle
 (pixelToInch xWin) (pixelToInch yWin))

regionToGRegion :: Region -> G.Region
regionToGRegion r = regToGReg (0,0) (1,1) r

Pattern renaming

Shape to G.Region: Rectangle
xWin2 = xWin `div` 2

yWin2 = yWin `div` 2

shapeToGRegion1

 :: Vector -> Vector -> Shape -> IO G.Region

shapeToGRegion1 (lx,ly) (sx,sy) (Rectangle s1 s2)

 = createRectangle (trans(-s1/2,-s2/2)) (trans (s1/2,s2/2))

 where trans (x,y) = (xWin2 + inchToPixel ((x+lx)*sx),

 yWin2 - inchToPixel ((y+ly)*sy))

(xWin2,
 yWin2)

(xWin,
 yWin)

s1

s2 s1/2 S2/2

Translation details

scaling details

Ellipse
shapeToGRegion1 (lx,ly) (sx,sy) (Ellipse r1 r2)

 = createEllipse (trans (-r1,-r2)) (trans (r1, r2))

 where trans (x,y) =

 (xWin2 + inchToPixel ((x+lx)*sx),

 yWin2 - inchToPixel ((y+ly)*sy))

r1

r2

Polygon and RtTriangle

shapeToGRegion1 (lx,ly) (sx,sy) (Polygon pts)

 = createPolygon (map trans pts)

 where trans (x,y) =

 (xWin2 + inchToPixel ((x+lx)*sx),

 yWin2 - inchToPixel ((y+ly)*sy))

shapeToGRegion1 (lx,ly) (sx,sy) (RtTriangle s1 s2)
 = createPolygon (map trans [(0,0),(s1,0),(0,s2)])
 where trans (x,y) =

 (xWin2 + inchToPixel ((x+lx)*sx),
 yWin2 - inchToPixel ((y+ly)*sy))

A matter of style, again
• shapeToGRegion1 has the same problems as regToGReg1

– The extra translation and scaling parameters
obscure the pattern matching

– There is a repeated pattern, we should give it a
name.

 shapeToGRegion (lx,ly) (sx,sy) s =
 case s of
 Rectangle s1 s2 -> createRectangle
 (trans (-s1/2,-s2/2))
 (trans (s1/2,s2/2))
 Ellipse r1 r2 -> createEllipse
 (trans (-r1,-r2))
 (trans (r1, r2))
 Polygon pts -> createPolygon (map trans pts)
 RtTriangle s1 s2 -> createPolygon
 (map trans [(0,0),(s1,0),(0,s2)])
 where trans (x,y) = (xWin2 + inchToPixel ((x+lx)*sx),
 yWin2 - inchToPixel ((y+ly)*sy))

Drawing Pictures, Sample Regions

draw :: Picture -> IO ()
draw p
 = runGraphics (
 do w <- openWindow "Region Test" (xWin,yWin)
 drawPic w p
 spaceClose w
)

r1 = Shape (Rectangle 3 2)
r2 = Shape (Ellipse 1 1.5)
r3 = Shape (RtTriangle 3 2)
r4 = Shape (Polygon [(-2.5,2.5), (-3.0,0),
 (-1.7,-1.0),
 (-1.1,0.2), (-1.5,2.0)])

Sample Pictures

reg1 = r3 `Union` --RtTriangle
 r1 `Intersect` -- Rectangle
 Complement r2 `Union` -- Ellispe
 r4 -- Polygon
pic1 = Region Cyan reg1

ex12 = draw
 “first region picture”
 pic1

Recall the precedence
of Union and Intersect

More Pictures
reg2 = let circle = Shape (Ellipse 0.5 0.5)
 square = Shape (Rectangle 1 1)
 in (Scale (2,2) circle)
 `Union` (Translate (2,1) square)
 `Union` (Translate (-2,0) square)
pic2 = Region Yellow reg2

ex13 =
 draw “Ex 13” pic2

Another Picture

pic3 = pic2 `Over` pic1

ex14 = draw “ex14” pic3

Separate computation from action
oneCircle = Shape (Ellipse 1 1)
manyCircles
 = [Translate (x,0) oneCircle | x <- [0,2..]]
fiveCircles = foldr Union Empty (take 5 manyCircles)
pic4 = Region Magenta (Scale (0.25,0.25) fiveCircles)
ex15 = draw “Ex15” pic4

Ordering Pictures
pictToList :: Picture -> [(Color,Picture.Region)]

pictToList EmptyPic = []
pictToList (Region c r) = [(c,r)]
pictToList (p1 `Over` p2)
 = pictToList p1 ++ pictToList p2

pic6 = pic4 `Over` pic2 `Over` pic1 `Over` pic3

Recovers the Regions from top to bottom
possible because Picture is a datatype that can be analysed

An Analogy
pictToList EmptyPic = []

pictToList (Region c r) = [(c,r)]

pictToList (p1 `Over` p2)

 = pictToList p1 ++ pictToList p2

drawPic w (Region c r) = drawRegionInWindow w c r

drawPic w (p1 `Over` p2) = do { drawPic w p2

 ; drawPic w p1}

drawPic w EmptyPic = return ()

• Something to prove:
sequence .

(map (uncurry (drawRegionInWindow w))) . Reverse . pictToList

= drawPic w

Pictures that React
• Find the Topmost Region in a picture that “covers” the

position of the mouse when a left button click appears.
• Search the picturelist for the the first Region that contains the

mouse position.
• Re-arrange the list, bring that one to the top

adjust :: [(Color,Picture.Region)] -> Vertex ->
 (Maybe (Color,Picture.Region)
 , [(Color,Picture.Region)])

adjust [] p = (Nothing, [])
adjust ((c,r):regs) p =
 if r `containsR` p
 then (Just (c,r), regs)
 else let (hit, rs) = adjust regs p
 in (hit, (c,r) : rs)

Doing it Non-recursively

adjust2 regs p
 = case (break (\(_,r) -> r `containsR` p) regs) of
 (top,hit:rest) -> (Just hit, top++rest)
 (_,[]) -> (Nothing, [])

break:: (a -> Bool) -> [a] -> ([a],[a])
 is from the Prelude.

Break even [1,3,5,4,7,6,12]
([1,3,5],[4,7,6,12])

Putting it all together
loop :: Window -> [(Color,Picture.Region)] -> IO ()
loop w regs =
 do clearWindow w
 sequence [drawRegionInWindow w c r |
 (c,r) <- reverse regs]
 (x,y) <- getLBP w
 case (adjust regs (pixelToInch (x – (xWin `div` 2)),
 pixelToInch ((yWin `div` 2) - y))) of
 (Nothing, _) -> closeWindow w
 (Just hit, newRegs) -> loop w (hit : newRegs)

draw2 :: Picture -> IO ()
draw2 pic
 = runGraphics (
 do w <- openWindow "Picture demo" (xWin,yWin)
 loop w (pictToList pic))

Try it out

p1,p2,p3,p4 :: Picture
p1 = Region Magenta r1
p2 = Region Cyan r2
p3 = Region Green r3
p4 = Region Yellow r4

pic :: Picture
pic = foldl Over EmptyPic
[p1,p2,p3,p4]

main = draw2 pic

A matter of style, 3
loop2 w regs
 = do clearWindow w
 sequence [drawRegionInWindow w c r |
 (c,r) <- reverse regs]
 (x,y) <- getLBP w
 let aux (_,r) = r `containsR`
 (pixelToInch (x-xWin2),
 pixelToInch (yWin2-y))
 case (break aux regs) of
 (_,[]) -> closeWindow w
 (top,hit:bot) -> loop w (hit : (top++bot))

draw3 :: Picture -> IO ()
draw3 pic
 = runGraphics (
 do w <- openWindow "Picture demo" (xWin,yWin)
 loop2 w (pictToList pic))

	Preparing for FRP
	Shape types from the Text
	Functions over Shape
	Slide Number 4
	TriArea
	Interacting with the world through graphics
	Hello World with Graphics Lib
	Graphics Operators
	A Bug in the code?
	An Action to Wait for a Space
	Drawing Primitive Shapes
	Coordinate Systems
	Example Program
	The Result
	Building Programs
	Geometry Isosceles Right Triangles
	Draw 1 Triangle
	Sierpinski’s Triangle
	Question?
	Abstraction
	Draw a snowflake
	Geometry of Snow flakes
	2 triangles with common center
	Compute the corners
	Now repeat twice and draw
	For a snowflake repeat many times
	To Draw pick appropriate sizes
	Multiple Colors
	What Happened?
	Lets make it better
	Recall the Shape Datatype
	Properties of Shape
	Considerations
	Visualize
	Coercion Functions
	Setting up the Shape window
	Translating Points
	Translating Shapes
	Define some test Shapes
	Draw a Shape
	Slide Number 41
	Draw multiple Shapes
	Make an Action
	Another Example
	Slide Number 45
	The Region datatype
	Regions and Trees
	The Region datatype
	Why Regions?
	What is a region?
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Region Characteristic functions
	Rectangle
	Ellipse
	Left of a line that bisects the plane
	Inside a (Convex) Polygon
	Polygon
	RtTriangle
	Putting it all together
	containsR using patterns
	Pictures
	Recall our Region datatype
	G.Region
	Hardware support
	Interface
	Drawing G.Region
	Drawing Pictures
	Overview
	Turning a Region into a G.Region
	Problem
	You’ve probably seen this before
	Accumulate a complex Scale
	Final Version
	A matter of style
	Abstract the low level bit-map details
	Redo with a case expression
	Shape to G.Region: Rectangle
	Ellipse
	Polygon and RtTriangle
	A matter of style, again
	Drawing Pictures, Sample Regions
	Sample Pictures
	More Pictures
	Another Picture
	Separate computation from action
	Ordering Pictures
	An Analogy
	Pictures that React
	Doing it Non-recursively
	Putting it all together
	Try it out
	A matter of style, 3

