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Announcements 

Remember Midterm exam on May 8th. 
 
Today’s lecture is drawn from the paper 

A Tutorial on (Co)Algebras and (Co)Induction 
     by Bart Jacobs and Jan Rutten 
EATCS Bulletin 62 (1997) pp. 222-259 
See link on papers page on class website 
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Algebras and Functors 

An F-algebra over a carrier sort x is set of functions 
(and constants) that consume an F x object to 
produce another x object.  

In Haskell we can simulate this by a data definition 
for a functor (F x) and a function (F x) -> x 

 

data Algebra f c = Algebra (f c -> c) 
 

data F1 x = Zero | One | Plus x x 
 

data ListF a x = Nil | Cons a x 
 
Note how the constructors of the functor play the 

roles of the constants and functions. 
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Examples 

f :: F1 Int -> Int 
f Zero = 0 
f One = 1 
f (Plus x y) = x+y 
 
g :: F1 [Int] -> [Int] 
g Zero = [] 
g One = [1] 
g (Plus x y) = x ++ y 
 
alg1 :: Algebra F1 Int 
alg1 = Algebra f 
 
alg2 :: Algebra F1 [Int] 
alg2 = Algebra g 
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More Examples 

data ListF a x = Nil | Cons a x 
 
h :: ListF b Int -> Int 
h Nil = 0 
h (Cons x xs) = 1 + xs 
 
alg3 :: Algebra (ListF a) Int 
alg3 = Algebra h 
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Initial Algebra 

An initial Algebra is the set of terms we can obtain 
be iteratively applying the functions to the 
constants and other function applications.  

This set can be simulated in Haskell by the data 
definition: 

 
data Initial alg = Init (alg (Initial alg)) 
 

Here the function is : 
 Init :: alg (Init alg) -> Init alg 
    f :: T   x          -> x 

Note how this fits the (T x -> x) pattern. 
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Example elements of Initial Algebras 

ex1 :: Initial F1 
ex1 = Init(Plus (Init One) (Init Zero)) 
 
ex2 :: Initial (ListF Int) 
ex2 = Init(Cons 2 (Init Nil)) 
 
initialAlg :: Algebra f (Initial f) 
initialAlg = Algebra Init 
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Defining Functions 

We can write functions by a case analysis over the 
functions and constants that generate the initial 
algebra 

 
len :: Num a => Initial (ListF b) -> a 
len (Init Nil) = 0 
len (Init (Cons x xs)) = 1 + len xs 
 
app :: Initial (ListF a) ->  
       Initial (ListF a) -> Initial (ListF a) 
app (Init Nil) ys = ys 
app (Init (Cons x xs)) ys =  
    Init(Cons x (app xs ys)) 
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F-algebra homomorphism 

An F-algebra, f, is said to be initial to any other algebra, g, 
if there is a UNIQUE homomorphism, from f to g (this is 
an arrow in the category of F-algebras).  

We can show the existence of this homomorphism by 
building it as a datatype in Haskell.  

Note: that for each "f", (Arrow f a b) denotes an arrow in 
the category of f-algebras. 

 
data Arrow f a b =  
    Arr (Algebra f a) (Algebra f b) (a->b) 
  -- plus laws about the function (a->b) 
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F-homomorphism laws 
For every Arrow  
  (Arr (Algebra f) (Algebra g) h)  
it must be the case that 
 
valid :: (Eq b, Functor f) =>  
         Arrow f a b -> f a -> Bool 
valid (Arr (Algebra f) (Algebra g) h) x = 
      h(f x) == g(fmap h x) 
 

  

a b 

F b F a 
Fmap h 

 h 

 f  g 
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Existence of h 

To show the existence of "h" for any F-Algebra 
means we can compute a function with the 
type (a -> b) from the algebra. To do this we 
first define cata: 

 
cata :: Functor f => (Algebra f b) -> Initial f -> b 

cata (Algebra phi) (Init x) =  
     phi(fmap (cata (Algebra phi)) x) 
 

exhibit :: Functor f =>  
    Algebra f a -> Arrow f (Initial f) a 
exhibit x = Arr initialAlg x (cata x) 

Initial 
Algebra 

Arbitrary 
Algebra 

Function 
 a -> b 
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Writing functions as cata’s 

Lots of functions can be written directly as 
cata's 

 
len2 x = cata (Algebra phi) x 
   where phi Nil = 0 
         phi (Cons x n) = 1 + n 
 
app2 x y = cata (Algebra phi) x 
  where phi Nil = y 
        phi (Cons x xs) = Init(Cons x xs) 
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Induction Principle 

With initiality comes the inductive proof method. So 
to prove something (prop x) where x::Initial A 
we proceed as follows 

 
prop1 :: Initial (ListF Int) -> Bool 
prop1 x =  
   len(Init(Cons 1 x)) == 1 + len x 

 
Prove:  prop1 (Init Nil) 
Assume prop1 xs 
Then  prove:  prop1 (Init (Cons x xs)) 
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Induction Proof Rules 

For an arbitrary F-Algebra, we need a 
function from  

   F(Proof prop x) -> Proof prop x 
 
data Proof p x  
   = Simple (p x) 
    | forall f .  
        Induct (Algebra f (Proof p x)) 
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CoAlgebras 

An F-CoAlgebra over a carrier sort x is set 
of functions (and constants) whose types 
consume x to produce an F-structure  

 
data CoAlgebra f c = CoAlgebra (c -> f c) 
unCoAlgebra (CoAlgebra x) = x 
 
countdown :: CoAlgebra (ListF Int) Int 
countdown = CoAlgebra f 
  where f 0 = Nil 
        f n = Cons n (n-1) 
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Stream CoAlgebra 

The classic CoAlgebra is the infinite stream 
 
 
data StreamF n x = C n x 
 

Note that if we iterate StreamF, there is No 
nil object, all streams are infinite. What 
we get is an infinite set of observations 
(the n-objects in this case). 
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Examples 

We can write CoAlgebras by expanding a "seed" 
into an F structure filled with new seeds.  

   seed -> F seed 
The non-parameterized slots can be filled with 

things computed from the seed. These are 
sometimes called observations. 

 
endsIn0s ::  
 CoAlgebra (StreamF Integer) [Integer] 
endsIn0s = CoAlgebra f 
  where f [] = C 0 [] 
        f (x:xs) = C x xs 
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More Examples 

split :: CoAlgebra F1 Integer 
split = CoAlgebra f 
  where f 0 = Zero 
        f 1 = One 
        f n = Plus (n-1) (n-2) 
 
fibs :: CoAlgebra (StreamF Int) (Int,Int) 
fibs = CoAlgebra f 
  where f (x,y) = C (x+y) (y,x+y) 
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Final CoAlgebras 

Final CoAlgebras are sequences (branching trees?) 
of observations of the internal state. This allows 
us to iterate all the possible observations. 
Sometimes these are infinite structures. 

 
data Final f = Final (f (Final f)) 
 
unFinal :: Final a -> a (Final a) 
unFinal (Final x) = x 
 
finalCoalg :: CoAlgebra a (Final a) 
finalCoalg = CoAlgebra unFinal 
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Example Final CoAlgebra elements 

 
f1 :: Final (ListF a) 
f1 = Final Nil 
 
ones :: Final (StreamF Integer) 
ones = Final(C 1 ones) 
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Iterating 

We can write functions producing elements 
in the sort of Final CoAlgebras by 
expanding a "seed" into an F structure  
filled with observations and recursive calls 
in the "slots”. Note then, that all thats 
really left is the observations. 

 
nats :: Final (StreamF Integer) 
nats = g 0  
  where g n = Final (C n (g (n+1))) 
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More Examples 

data NatF x = Z | S x 
 
omega :: Final NatF 
omega = f undefined 
  where f x = Final(S(f x)) 
 
n :: Int -> Final NatF 
n x = f x 
  where f 0 = Final Z 
        f n = Final(S (f (n-1))) 
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CoHomomorphisms 
A CoHomomorphism is an arrow in the category of F-CoAlgebras 

 
data CoHom f a b =  
  CoHom (CoAlgebra f a) (CoAlgebra f b) (a->b) 

 

For every arrow in the category 
 (CoHom (CoAlgebra f) (CoAlgebra g) h) 
it must be the case that 
 
covalid :: (Eq (f b), Functor f) => CoHom f a b -> a -> Bool 
covalid (CoHom (CoAlgebra f) (CoAlgebra g) h) x =  fmap h (f x) == g(h x) 

a b 

F b F a 
Fmap h 

 h 

 f  g 
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Final CoAlegbra 

A F-CoAlgebra, g, is Final if for any other F-
CoAlgebra, f, there is a unique F-CoAlgebra 
homomorphism, h, from f to g.  

We can show its existence be building a function 
that computes it from the CoAlgebra, f. 

 
ana :: Functor f =>  
      (CoAlgebra f seed) -> seed -> (Final f) 
ana (CoAlgebra phi) seed =  
 Final(fmap (ana (CoAlgebra phi)) (phi seed)) 
 
exhibit2 :: Functor f =>  
   CoAlgebra f seed -> CoHom f seed (Final f) 
exhibit2 x = CoHom finalCoalg x (ana x) 
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Examples 
We use ana to iteratively unfold any coAgebra to 

record its observations 
 
final1 = ana endsIn0s 
final2 = ana split 
final3 = ana fibs 
 
 
 
tak :: Num a => a -> Final (StreamF b) -> [b] 
tak 0 _ = [] 
tak n (Final (C x xs)) = x : tak (n-1) xs 
 
fibs5 = tak 5 (final3 (1,1)) 

endsIn0s = CoAlgebra f 
  where f [] = C 0 [] 
        f (x:xs) = C x xs 
 
split = CoAlgebra f 
  where f 0 = Zero 
        f 1 = One 
        f n = Plus (n-1) (n-2) 
 
fibs :: CoAlgebra (StreamF Int) (Int,Int) 
fibs = CoAlgebra f 
  where f (x,y) = C (x+y) (y,x+y) 
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CoAlgebras and ObjectOrientation 
Lets use CoAlgebras to represent Points in the 2-D 

plane as we would in an OO-language 
 
data P x = P { xcoord :: Float 
             , ycoord :: Float 
             , move :: Float -> Float -> x} 
 
pointF :: (Float,Float) -> P (Float,Float) 
pointF (x,y) =  P { xcoord = x 
                  , ycoord = y 
                  , move = \ m n -> (m+x,n+y) } 
 
type Point = CoAlgebra P (Float,Float) 
 
point1 :: Point 
point1 = CoAlgebra pointF 
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