
Advanced Functional Programming

Tim Sheard 1 Lecture 15

Advanced Functional
Programming

Tim Sheard

Algebraic and CoAlgebraic Programs

•F Algebras

•Initial and Final Algebras

•Induction and CoInduction

Advanced Functional Programming

Tim Sheard 2 Lecture 15

Announcements

Remember Midterm exam on May 8th.

Today’s lecture is drawn from the paper

A Tutorial on (Co)Algebras and (Co)Induction
 by Bart Jacobs and Jan Rutten
EATCS Bulletin 62 (1997) pp. 222-259
See link on papers page on class website

Advanced Functional Programming

Tim Sheard 3 Lecture 15

Algebras and Functors

An F-algebra over a carrier sort x is set of functions
(and constants) that consume an F x object to
produce another x object.

In Haskell we can simulate this by a data definition
for a functor (F x) and a function (F x) -> x

data Algebra f c = Algebra (f c -> c)

data F1 x = Zero | One | Plus x x

data ListF a x = Nil | Cons a x

Note how the constructors of the functor play the

roles of the constants and functions.

Advanced Functional Programming

Tim Sheard 4 Lecture 15

Examples

f :: F1 Int -> Int
f Zero = 0
f One = 1
f (Plus x y) = x+y

g :: F1 [Int] -> [Int]
g Zero = []
g One = [1]
g (Plus x y) = x ++ y

alg1 :: Algebra F1 Int
alg1 = Algebra f

alg2 :: Algebra F1 [Int]
alg2 = Algebra g

Advanced Functional Programming

Tim Sheard 5 Lecture 15

More Examples

data ListF a x = Nil | Cons a x

h :: ListF b Int -> Int
h Nil = 0
h (Cons x xs) = 1 + xs

alg3 :: Algebra (ListF a) Int
alg3 = Algebra h

Advanced Functional Programming

Tim Sheard 6 Lecture 15

Initial Algebra

An initial Algebra is the set of terms we can obtain
be iteratively applying the functions to the
constants and other function applications.

This set can be simulated in Haskell by the data
definition:

data Initial alg = Init (alg (Initial alg))

Here the function is :
 Init :: alg (Init alg) -> Init alg
 f :: T x -> x

Note how this fits the (T x -> x) pattern.

Advanced Functional Programming

Tim Sheard 7 Lecture 15

Example elements of Initial Algebras

ex1 :: Initial F1
ex1 = Init(Plus (Init One) (Init Zero))

ex2 :: Initial (ListF Int)
ex2 = Init(Cons 2 (Init Nil))

initialAlg :: Algebra f (Initial f)
initialAlg = Algebra Init

Advanced Functional Programming

Tim Sheard 8 Lecture 15

Defining Functions

We can write functions by a case analysis over the
functions and constants that generate the initial
algebra

len :: Num a => Initial (ListF b) -> a
len (Init Nil) = 0
len (Init (Cons x xs)) = 1 + len xs

app :: Initial (ListF a) ->
 Initial (ListF a) -> Initial (ListF a)
app (Init Nil) ys = ys
app (Init (Cons x xs)) ys =
 Init(Cons x (app xs ys))

Advanced Functional Programming

Tim Sheard 9 Lecture 15

F-algebra homomorphism

An F-algebra, f, is said to be initial to any other algebra, g,
if there is a UNIQUE homomorphism, from f to g (this is
an arrow in the category of F-algebras).

We can show the existence of this homomorphism by
building it as a datatype in Haskell.

Note: that for each "f", (Arrow f a b) denotes an arrow in
the category of f-algebras.

data Arrow f a b =
 Arr (Algebra f a) (Algebra f b) (a->b)
 -- plus laws about the function (a->b)

Advanced Functional Programming

Tim Sheard 10 Lecture 15

F-homomorphism laws
For every Arrow
 (Arr (Algebra f) (Algebra g) h)
it must be the case that

valid :: (Eq b, Functor f) =>
 Arrow f a b -> f a -> Bool
valid (Arr (Algebra f) (Algebra g) h) x =
 h(f x) == g(fmap h x)

a b

F b F a
Fmap h

 h

 f g

Advanced Functional Programming

Tim Sheard 11 Lecture 15

Existence of h

To show the existence of "h" for any F-Algebra
means we can compute a function with the
type (a -> b) from the algebra. To do this we
first define cata:

cata :: Functor f => (Algebra f b) -> Initial f -> b

cata (Algebra phi) (Init x) =
 phi(fmap (cata (Algebra phi)) x)

exhibit :: Functor f =>
 Algebra f a -> Arrow f (Initial f) a
exhibit x = Arr initialAlg x (cata x)

Initial
Algebra

Arbitrary
Algebra

Function
 a -> b

Advanced Functional Programming

Tim Sheard 12 Lecture 15

Writing functions as cata’s

Lots of functions can be written directly as
cata's

len2 x = cata (Algebra phi) x
 where phi Nil = 0
 phi (Cons x n) = 1 + n

app2 x y = cata (Algebra phi) x
 where phi Nil = y
 phi (Cons x xs) = Init(Cons x xs)

Advanced Functional Programming

Tim Sheard 13 Lecture 15

Induction Principle

With initiality comes the inductive proof method. So
to prove something (prop x) where x::Initial A
we proceed as follows

prop1 :: Initial (ListF Int) -> Bool
prop1 x =
 len(Init(Cons 1 x)) == 1 + len x

Prove: prop1 (Init Nil)
Assume prop1 xs
Then prove: prop1 (Init (Cons x xs))

Advanced Functional Programming

Tim Sheard 14 Lecture 15

Induction Proof Rules

For an arbitrary F-Algebra, we need a
function from

 F(Proof prop x) -> Proof prop x

data Proof p x
 = Simple (p x)
 | forall f .
 Induct (Algebra f (Proof p x))

Advanced Functional Programming

Tim Sheard 15 Lecture 15

CoAlgebras

An F-CoAlgebra over a carrier sort x is set
of functions (and constants) whose types
consume x to produce an F-structure

data CoAlgebra f c = CoAlgebra (c -> f c)
unCoAlgebra (CoAlgebra x) = x

countdown :: CoAlgebra (ListF Int) Int
countdown = CoAlgebra f
 where f 0 = Nil
 f n = Cons n (n-1)

Advanced Functional Programming

Tim Sheard 16 Lecture 15

Stream CoAlgebra

The classic CoAlgebra is the infinite stream

data StreamF n x = C n x

Note that if we iterate StreamF, there is No
nil object, all streams are infinite. What
we get is an infinite set of observations
(the n-objects in this case).

Advanced Functional Programming

Tim Sheard 17 Lecture 15

Examples

We can write CoAlgebras by expanding a "seed"
into an F structure filled with new seeds.

 seed -> F seed
The non-parameterized slots can be filled with

things computed from the seed. These are
sometimes called observations.

endsIn0s ::
 CoAlgebra (StreamF Integer) [Integer]
endsIn0s = CoAlgebra f
 where f [] = C 0 []
 f (x:xs) = C x xs

Advanced Functional Programming

Tim Sheard 18 Lecture 15

More Examples

split :: CoAlgebra F1 Integer
split = CoAlgebra f
 where f 0 = Zero
 f 1 = One
 f n = Plus (n-1) (n-2)

fibs :: CoAlgebra (StreamF Int) (Int,Int)
fibs = CoAlgebra f
 where f (x,y) = C (x+y) (y,x+y)

Advanced Functional Programming

Tim Sheard 19 Lecture 15

Final CoAlgebras

Final CoAlgebras are sequences (branching trees?)
of observations of the internal state. This allows
us to iterate all the possible observations.
Sometimes these are infinite structures.

data Final f = Final (f (Final f))

unFinal :: Final a -> a (Final a)
unFinal (Final x) = x

finalCoalg :: CoAlgebra a (Final a)
finalCoalg = CoAlgebra unFinal

Advanced Functional Programming

Tim Sheard 20 Lecture 15

Example Final CoAlgebra elements

f1 :: Final (ListF a)
f1 = Final Nil

ones :: Final (StreamF Integer)
ones = Final(C 1 ones)

Advanced Functional Programming

Tim Sheard 21 Lecture 15

Iterating

We can write functions producing elements
in the sort of Final CoAlgebras by
expanding a "seed" into an F structure
filled with observations and recursive calls
in the "slots”. Note then, that all thats
really left is the observations.

nats :: Final (StreamF Integer)
nats = g 0
 where g n = Final (C n (g (n+1)))

Advanced Functional Programming

Tim Sheard 22 Lecture 15

More Examples

data NatF x = Z | S x

omega :: Final NatF
omega = f undefined
 where f x = Final(S(f x))

n :: Int -> Final NatF
n x = f x
 where f 0 = Final Z
 f n = Final(S (f (n-1)))

Advanced Functional Programming

Tim Sheard 23 Lecture 15

CoHomomorphisms
A CoHomomorphism is an arrow in the category of F-CoAlgebras

data CoHom f a b =
 CoHom (CoAlgebra f a) (CoAlgebra f b) (a->b)

For every arrow in the category
 (CoHom (CoAlgebra f) (CoAlgebra g) h)
it must be the case that

covalid :: (Eq (f b), Functor f) => CoHom f a b -> a -> Bool
covalid (CoHom (CoAlgebra f) (CoAlgebra g) h) x = fmap h (f x) == g(h x)

a b

F b F a
Fmap h

 h

 f g

Advanced Functional Programming

Tim Sheard 24 Lecture 15

Final CoAlegbra

A F-CoAlgebra, g, is Final if for any other F-
CoAlgebra, f, there is a unique F-CoAlgebra
homomorphism, h, from f to g.

We can show its existence be building a function
that computes it from the CoAlgebra, f.

ana :: Functor f =>
 (CoAlgebra f seed) -> seed -> (Final f)
ana (CoAlgebra phi) seed =
 Final(fmap (ana (CoAlgebra phi)) (phi seed))

exhibit2 :: Functor f =>
 CoAlgebra f seed -> CoHom f seed (Final f)
exhibit2 x = CoHom finalCoalg x (ana x)

Advanced Functional Programming

Tim Sheard 25 Lecture 15

Examples
We use ana to iteratively unfold any coAgebra to

record its observations

final1 = ana endsIn0s
final2 = ana split
final3 = ana fibs

tak :: Num a => a -> Final (StreamF b) -> [b]
tak 0 _ = []
tak n (Final (C x xs)) = x : tak (n-1) xs

fibs5 = tak 5 (final3 (1,1))

endsIn0s = CoAlgebra f
 where f [] = C 0 []
 f (x:xs) = C x xs

split = CoAlgebra f
 where f 0 = Zero
 f 1 = One
 f n = Plus (n-1) (n-2)

fibs :: CoAlgebra (StreamF Int) (Int,Int)
fibs = CoAlgebra f
 where f (x,y) = C (x+y) (y,x+y)

Advanced Functional Programming

Tim Sheard 26 Lecture 15

CoAlgebras and ObjectOrientation
Lets use CoAlgebras to represent Points in the 2-D

plane as we would in an OO-language

data P x = P { xcoord :: Float
 , ycoord :: Float
 , move :: Float -> Float -> x}

pointF :: (Float,Float) -> P (Float,Float)
pointF (x,y) = P { xcoord = x
 , ycoord = y
 , move = \ m n -> (m+x,n+y) }

type Point = CoAlgebra P (Float,Float)

point1 :: Point
point1 = CoAlgebra pointF

	Advanced Functional Programming
	Announcements
	Algebras and Functors
	Examples
	More Examples
	Initial Algebra
	Example elements of Initial Algebras
	Defining Functions
	F-algebra homomorphism
	F-homomorphism laws
	Existence of h
	Writing functions as cata’s
	Induction Principle
	Induction Proof Rules
	CoAlgebras
	Stream CoAlgebra
	Examples
	More Examples
	Final CoAlgebras
	Example Final CoAlgebra elements
	Iterating
	More Examples
	CoHomomorphisms
	Final CoAlegbra
	Examples
	CoAlgebras and ObjectOrientation

