
Advanced Functional Programming

Tim Sheard 1 Lecture 11

Advanced Functional
Programming

Continuations
•Continuation passing style

•Continuation monad

•Throw and catch

•Callcc

Advanced Functional Programming

Tim Sheard 2 Lecture 11

Continuations

For any function f, of type
f :: a -> b -> c

Its continuation style is
 f :: a -> b -> (c -> ans) -> ans

This allows the user to control the flow of
control in the program. A program in
continuation passing style (CPS) has all
functions in this style.
e.g. (+) :: Int -> Int -> (Int -> ans) -> ans

Advanced Functional Programming

Tim Sheard 3 Lecture 11

Lists in CPS

-- old (direct) style
append [] xs = xs
append (y:ys) xs = y : (append ys xs)

-- CPS style
consC :: a -> [a] -> ([a] -> ans) -> ans
consC x xs k = k(x:xs)

appendC :: [a] -> [a] -> ([a] -> ans) -> ans
appendC [] xs k = k xs
appendC (y:ys) xs k =
 appendC ys xs (\ zs -> consC y zs k)

Advanced Functional Programming

Tim Sheard 4 Lecture 11

Flattening Trees in CPS

data Tree a = Tip a | Fork (Tree a) (Tree a)

-- direct style
flat :: Tree a -> [a]
flat (Tip x) = x : []
flat (Fork x y) = flat x ++ flat y

-- CPS style
flatC :: Tree a -> ([a] -> ans) -> ans
flatC (Tip x) k = consC x [] k
flatC (Fork x y) k =
 flatC y (\ zs ->
 flatC x (\ ws -> appendC ws zs k))

Remember this
pattern

Advanced Functional Programming

Tim Sheard 5 Lecture 11

What’s this good for?

Is it efficient?

tree1 = Fork (Fork (Tip 1) (Tip 2))
 (Fork (Tip 3) (Tip 4))

double 0 x = x
double n x = double (n-1) (Fork x x)

Try both versions on some big trees

ex1 = length(flat (double 14 tree1))
ex2 = length(flatC (double 14 tree1) id)

How many nodes in
this tree

Advanced Functional Programming

Tim Sheard 6 Lecture 11

Test results

Main> :set +s
Main> ex1
65536
(1179828 reductions, 2359677 cells, 10 garbage collections)
Main> ex2
65536
(2425002 reductions, 5505325 cells, 34 garbage collections)

Clearly the continuation example uses more
resources!

Why use it?

Advanced Functional Programming

Tim Sheard 7 Lecture 11

Advantages of CPS

Use continuations for explicit control of control flow
Consider a function

prefix :: (a -> Bool) -> [a] -> Maybe[a]

(prefix p xs) returns the longest prefix of xs, ys such
that
(all p ys) &&
not(p (head (drop (length ys) xs)))

 I.e. the next element does not have the property p.
Return nothing if all elements meet p.
ex3 = prefix even [2,4,6,5,2,4,8]

Main> ex3
Just [2,4,6]

ex4 = prefix even [2,4,6,8,10,12,14]

Main> ex4
Nothing

Advanced Functional Programming

Tim Sheard 8 Lecture 11

Code

prefix :: (a -> Bool) -> [a] -> Maybe [a]
prefix p [] = Nothing
prefix p (x:xs) = if p x
 then cons x (prefix p xs)
 else Just []
 where cons x Nothing = Nothing
 cons x (Just xs) = Just(x:xs)

• What happens if everything in the list

meets p?
• How many calls to cons?
• Can we do better? Use continuations!

Advanced Functional Programming

Tim Sheard 9 Lecture 11

Prefix in CPS

prefixC :: (a -> Bool) -> [a] ->
 (Maybe [a] -> Maybe ans) -> Maybe ans

prefixC p [] k = Nothing
prefixC p (x:xs) k =
 if p x
 then prefixC p xs (cons x k)
 else k (Just [])
 where cons x k (Just xs) = k (Just(x:xs))
 cons x k Nothing =
 error "This case is never called“

How many times is cons called if p is never false?
The continuation denotes normal control flow, by never using it we

can short circuit the normal flow!

Note the discarded
continuation!

 prefixC is tail recursive!

Advanced Functional Programming

Tim Sheard 10 Lecture 11

Style

prefixC p [] k = Nothing
prefixC p (x:xs) k =
 if p x
 then prefixC p xs (cons x k)
 else k (Just [])
 where cons x k (Just xs) = k (Just(x:xs))
 cons x k Nothing =
 error "This case is never called“

prefixC p [] k = Nothing
prefixC p (x:xs) k =
 if p x
 then prefixC p xs (\ (Just xs) ->
 k(Just(x:xs)))
 else k (Just [])

Advanced Functional Programming

Tim Sheard 11 Lecture 11

The continuation monad

data Cont ans x = Cont ((x -> ans) -> ans)
runCont (Cont f) = f

instance Monad (Cont ans) where
 return x = Cont (\ f -> f x)
 (Cont f) >>= g =
 Cont(\ k -> f (\ a -> runCont (g a)
 (\ b -> k b)))

throw :: a -> Cont a a
throw x = Cont(\ k -> x)

force :: Cont a a -> a
force (Cont f) = f id

Advanced Functional Programming

Tim Sheard 12 Lecture 11

Prfefix in Monadic style

prefixK :: (a -> Bool) -> [a] -> Cont (Maybe[a]) (Maybe[a])

prefixK p [] = throw Nothing
prefixK p (x:xs) =
 if p x then do { Just xs <- prefixK p xs
 ; return(Just(x:xs)) }
 else return(Just [])

• Note how throw is a global abort.

• Its use is appropriate whenever local

failure, implies global failure.

Advanced Functional Programming

Tim Sheard 13 Lecture 11

Pattern Matching

data Term = Int Int | Pair Term Term

data Pat = Pint Int
 | Ppair Pat Pat
 | Pvar String
 | Por Pat Pat

type Sub = Maybe[(String,Term)]

instance Show Term where
 show (Int n) = show n
 show (Pair x y) =
 "("++show x++","++show y++")"

Advanced Functional Programming

Tim Sheard 14 Lecture 11

Match function

match :: Pat -> Term -> Sub

match (Pint n) (Int m) =
 if n==m then Just[] else Nothing
match (Ppair p q) (Pair x y) =
 match p x .&. match q y
match (Pvar s) x = Just[(s,x)]
match (Por p q) x = match p x .|. match q x
match p t = Nothing

Advanced Functional Programming

Tim Sheard 15 Lecture 11

Example tests

t1 = Pair (Pair (Int 5) (Int 6)) (Int 7)
p1 = Ppair (Pvar "x") (Pvar "y")
p2 = Ppair p1 (Pint 1)
p3 = Ppair p1 (Pint 7)
p4 = Por p2 p3

Main> match p1 t1
Just [("x",(5,6)),("y",7)]
Main> match p2 t1
Nothing
Main> match p3 t1
Just [("x",5),("y",6)]
Main> match p4 t1
Just [("x",5),("y",6)]

Advanced Functional Programming

Tim Sheard 16 Lecture 11

Match in CPS

matchC :: Pat -> Term -> (Sub -> Maybe ans) -> Maybe ans
matchC (Pint n) (Int m) k =
 if n==m then k(Just[]) else Nothing
matchC (Ppair p q) (Pair x y) k =
 matchC p x (\ xs ->
 matchC q y (\ ys ->
 k(xs .&. ys)))
matchC (Pvar s) x k = k(Just[(s,x)])
matchC (Por p q) x k =
 matchC p x (\ xs ->
 matchC q x (\ ys ->
 k(xs .|. ys)))

• Why does this return nothing?
ex8 = matchC p4 t1 id
Main> ex8
Nothing

Note the discarded
continuation!

Advanced Functional Programming

Tim Sheard 17 Lecture 11

Two continuations

• Here is an example with 2 continuations
• A success continuation, and a failure continuation

matchC2 :: Pat -> Term -> (Sub -> Sub) -> (Sub -> Sub) ->

Sub
matchC2 (Pint n) (Int m) good bad =
 if n==m then good(Just[]) else bad Nothing
matchC2 (Ppair p q) (Pair x y) good bad =
 matchC2 p x (\ xs ->
 matchC2 q y (\ ys ->
 good(xs .&. ys)) bad) bad
matchC2 (Pvar s) x good bad = good(Just[(s,x)])
matchC2 (Por p q) x good bad =
 matchC2 p x good (\ xs ->
 matchC2 q x good bad)
matchC2 _ _ good bad = bad Nothing

Advanced Functional Programming

Tim Sheard 18 Lecture 11

Tests

t1 = Pair (Pair (Int 5) (Int 6)) (Int 7)
p1 = Ppair (Pvar "x") (Pvar "y")
p2 = Ppair p1 (Pint 1)
p3 = Ppair p1 (Pint 7)
p4 = Por p2 p3

ex9 = matchC2 p4 t1 id id

Main> ex10
Just [("x",5),("y",6)]

Advanced Functional Programming

Tim Sheard 19 Lecture 11

Fixing matchC

matchK :: Pat -> Term -> (Sub -> Maybe ans) -> Maybe ans

matchK (Pint n) (Int m) k =
 if n==m then k(Just[]) else Nothing
matchK (Ppair p q) (Pair x y) k =
 matchK p x (\ xs ->
 matchK q y (\ ys ->
 k(xs .&. ys)))
matchK (Pvar s) x k = k(Just[(s,x)])
matchK (Por p q) x k =
 case matchK p x id of
 Nothing -> matchK q x k
 other -> k other

• Note the pattern here of "catching" a possible
local failure, and then picking up where that left
off

Note the intermediate id
continuation

Not the ultimate use of the
original continuation

Advanced Functional Programming

Tim Sheard 20 Lecture 11

Catch and Throw

throw :: a -> Cont a a
throw x = Cont(\ k -> x)

catch :: Cont a a -> Cont b a
catch (Cont f) = Cont g
 where g k = k(f id)

• Throw causes the current computation to be

abandonned. (catch x) runs x in a new
continuation and then applies the continuation to
the result.

• (catch x) == x when x does not throw.

Advanced Functional Programming

Tim Sheard 21 Lecture 11

Match in monadic style
matchK2 :: Pat -> Term -> Cont Sub Sub

matchK2 (Pint n) (Int m) =
 if n==m then return(Just[])
 else throw Nothing
matchK2 (Ppair p q) (Pair x y) =
 do { a <- matchK2 p x
 ; b <- matchK2 q y
 ; return(a .&. b) }
matchK2 (Pvar s) x = return(Just[(s,x)])
matchK2 (Por p q) x =
 do { a <- catch(matchK2 p x)
 ; case a of
 Nothing -> matchK2 q x
 other -> return other
 }

Advanced Functional Programming

Tim Sheard 22 Lecture 11

Interpreters in CPS
data Exp = Var String
 | Lam String Exp
 | App Exp Exp
 | Num Int
 | Op (Int -> Int -> Int) Exp Exp

data V = Fun (V -> (V -> V) -> V)
 | N Int

plus,times,minus :: Exp -> Exp -> Exp

plus x y = Op (+) x y
times x y = Op (*) x y
minus x y = Op (-) x y

extend :: Eq a => (a -> b) -> b -> a -> a -> b

extend env v a b = if a==b then v else env b

Advanced Functional Programming

Tim Sheard 23 Lecture 11

Eval in CPS

eval :: (String -> V) -> Exp -> (V -> V) -> V
eval env (Var s) k = k(env s)
eval env (App x y) k =
 eval env x (\ (Fun f) ->
 eval env y (\ z ->
 f z k))
eval env (Lam s x) k =
 k(Fun (\ v k2 -> eval (extend env v s) x k2))
eval env (Num n) k = k(N n)
eval env (Op f x y) k =
 eval env x (\ (N a) ->
 eval env y (\ (N b) ->
 k (N(f a b))))

Advanced Functional Programming

Tim Sheard 24 Lecture 11

Eval in monadic style

type C x = Cont U x
data U = Fun2 (U -> C U)
 | N2 Int

eval2 :: (String -> U) -> Exp -> C U
eval2 env (Var s) = return(env s)
eval2 env (App f x) =
 do { Fun2 g <- eval2 env x
 ; y <- eval2 env x
 ; g y }
eval2 env (Lam s x) =
 return(Fun2(\ v -> eval2 (extend env v s) x))
eval2 env (Op f x y) =
 do { N2 a <- eval2 env x
 ; N2 b <- eval2 env y
 ; return(N2(f a b)) }
eval2 env (Num n) = return(N2 n)

Note that the value datatype (U) must be
expressed using the monad

Advanced Functional Programming

Tim Sheard 25 Lecture 11

CPS is good when the language
has fancy control structures

data Exp = Var String
 | Lam String Exp
 | App Exp Exp
 | Num Int
 | Op (Int -> Int -> Int) Exp Exp
 | Raise Exp
 | Handle Exp Exp

type C3 x = Cont W x
data W = Fun3 (W -> C3 W)
 | N3 Int
 | Err W

Advanced Functional Programming

Tim Sheard 26 Lecture 11

eval3 :: (String -> W) -> Exp -> C3 W
eval3 env (Var s) = return(env s)
eval3 env (App f x) =
 do { Fun3 g <- eval3 env x
 ; y <- eval3 env x; g y }
eval3 env (Lam s x) =
 return(Fun3(\ v -> eval3 (extend env v s) x))
eval3 env (Op f x y) =
 do { N3 a <- eval3 env x
 ; N3 b <- eval3 env y
 ; return(N3(f a b)) }
eval3 env (Num n) = return(N3 n)
eval3 env (Raise e) =
 do { x <- eval3 env e; throw(Err x) }
eval3 env (Handle x y) =
 do { x <- catch (eval3 env x)
 ; case x of
 Err v -> do { Fun3 g <- eval3 env y; g v }
 v -> return v
 }

	Advanced Functional Programming
	Continuations
	Lists in CPS
	Flattening Trees in CPS
	What’s this good for?
	Test results
	Advantages of CPS
	Code
	Prefix in CPS
	Style
	The continuation monad
	Prfefix in Monadic style
	Pattern Matching
	Match function
	Example tests
	Match in CPS
	Two continuations
	Tests
	Fixing matchC
	Catch and Throw
	Match in monadic style
	Interpreters in CPS
	Eval in CPS
	Eval in monadic style
	CPS is good when the language �has fancy control structures
	Slide Number 26

