
Implicit Parameters: Dynamic Scoping with Static Types

Je�rey R. Lewis� Mark B. Shields� Erik Meijery John Launchbury�

�Oregon Graduate Institute of Science & Technology
yUniversity of Utrecht

Abstract

This paper introduces a language feature, called implicit pa-
rameters, that provides dynamically scoped variables within
a statically-typed Hindley-Milner framework. Implicit pa-
rameters are lexically distinct from regular identi�ers, and
are bound by a special with construct whose scope is dy-
namic, rather than static as with let. Implicit parameters
are treated by the type system as parameters that are not
explicitly declared, but are inferred from their use.

We present implicit parameters within a small call-by-name
�-calculus. We give a type system, a type inference algo-
rithm, and several semantics. We also explore implicit pa-
rameters in the wider settings of call-by-need languages with
overloading, and call-by-value languages with e�ects. As a
witness to the former, we have implemented implicit param-
eters as an extension of Haskell within the Hugs interpreter,
which we use to present several motivating examples.

1 A Scenario: Pretty Printing

You have just �nished writing the perfect pretty printer. It
takes as input a document to be laid out, and produces a
string.

pretty :: Doc -> String

You have done the hard part|your code is lovely, concise
and modular, and your pretty printer produces output that
is somehow even prettier than anything you would bother
to do by hand. You're thinking: JFP: Functional Pearl.

But, there are just a few fussy details left.

For example, you were not focusing on the unimportant de-
tails, so you hard-coded the width of the display to be 78

characters. The annoying thing is that the check to see if
you have exceeded the display width is buried deep within
the code.

... if i >= 78 then ...

It is on line 478 of one thousand lines of code, and it is 5
levels deep in the recursion. You have basically two choices.
You can de�ne a global named width, and use it on line 478,
or you can add an extra parameter to nearly every function
in the pretty printer and percolate width up through all the
levels of recursion. Neither choice is very satisfactory.

All this fuss is especially annoying because the change that
you wish to make is conceptually rather small, yet imple-
menting it will require a signi�cant change to the program.
What you would really like to do is get the best of both|
make the de�nition parameterized, but not have to thread
the additional parameter through all that code. What you
would like to use is an implicit parameter.

With the system proposed in this paper, you only need to
change line 478, the place where the display width is checked
(and perhaps a handful of type signatures|this is discussed
in Section 5.4). The rest of the pretty printer will remain
completely una�ected. The idea is to introduce a parameter
to the program whose presence is inferred, rather than the
programmer having to spell it out everywhere.

To introduce an implicit parameter, we change line 478 as
follows:

... if i >= ?width then ...

The ? is an annotation on an identi�er that indicates an
implicit parameter. After this small change, when we ask
what the type of pretty is again, the answer is now:

pretty :: (?width :: Int) => Doc -> String

This means that pretty is a function from Doc to String

with an implicit parameter named width, of type Int. All
we had to do was use the implicit parameter, and its pres-
ence was inferred.

The most striking di�erence between implicit and regular
explicit parameters is that once an implicit parameter is in-
troduced, it is propagated automatically. In other words,
when a function with implicit parameters is called, its im-
plicit parameters are inherited by the caller. If we examine
the de�nition of pretty, we �nd that it is de�ned in terms
of a function worker, which is itself implicitly parameterized
by ?width.

pretty d = worker d []

worker :: (?width :: Int) =>

Doc -> [Doc] -> String

Without lifting a �nger, as we saw by type of pretty, the
width parameter is propagated to become a parameter of
pretty as well.

If an implicit parameter is used twice in the same context,
then the two uses will be merged. Thus, if we used pretty

twice, to get something twice as pretty, we would still only
have one width parameter:

twice_as_pretty d = pretty d ++ pretty d

twice_as_pretty :: (?width :: Int) =>

Doc -> String

Implicit parameters are bound using the with construct. We
can express the original behavior of pretty, with the �xed
width of 78, as:

pretty with ?width = 78 :: Doc -> String

Of course, we did not need to extend the language just to
set the display width to 78 in the end. The point is that the
user is in control of the display width. Maybe their display
is only 40 characters wide, or maybe they need, at one point,
to halve the display width:

less_pretty = pretty with ?width = ?width / 2

less_pretty :: (?width :: Int) => Doc -> String

Notice that this means that with bindings are not recursive,
and thus the implicit parameters can be easily re-bound.

The merging of multiple uses of an implicit parameter in the
same scope is not always what you want, but it is easy to
work around by renaming. For example, consider laying out
two documents side by side, with di�erent display widths.

beside x y =

let lhs = pretty d1 with ?width = ?xwidth

rhs = pretty d2 with ?width = ?ywidth

in

zipConcat (fill ?xwidth (lines lhs))

(lines rhs)

beside :: (?xwidth :: Int, ?ywidth :: Int) =>

Doc -> Doc -> String

1.1 The rest of the paper

In Section 2, we introduce a type system for implicit param-
eters, followed in Section 3 by two semantics for implicit
parameters. In Section 4 we o�er several illuminating ex-
amples. Section 5 discusses some of the issues associated
with adding implicit parameters to a full language. This is
followed in Section 6 by related work, and �nally, we close
in Section 7 with future directions.

2 Types for Implicit Parameters

We now formalize implicit parameters by presenting a type
system and inference algorithm for a small language.

2.1 Syntax and Types

Figure 1 presents the syntax and types of �IP, a call-by-name
�-calculus with let-bound polymorphism, implicit variables

�-vars x ; y ; z
let-vars p; q
Implicit vars ?x ; ?y ; ?z
Terms t ; u; v ::= x j p j ?x

j �x : t j t u
j let p = u in t
j t with ?x = u

Type vars �; �
Types �; � ::= �

j � ! �
Schemes �; ' ::= 8�: C)�
Contexts C ;D ::= ?x1: �1; : : : ; ?xn : �n

?x1; : : : ; ?xn distinct
Type contexts � ::= x1:�1; : : : ; xn :�n

x1; : : : ; xn distinct

C ; � ` t : �

MVAR
x : � 2 �

C ; � ` x : �

PVAR
p: 8�:D)� 2 � D [� 7! �] � C

C ; � ` p: �[� 7! �]

IVAR
?x : � 2 C

C ; � ` ?x : �

APP
C ; � ` t : � ! � C ; � ` u: �

C ; � ` (t u): �

ABS
C ; �; x : � ` t : �

C ; � ` (�x : t): � ! �

LET

D ; � ` u: � � = gen(D ;�; �)
C ; �; p:� ` t : �

C ; � ` (let p = u in t): �

WITH
Cn?x ; ?x : �; � ` t : � C ; � ` u: �

C ; � ` (t with ?x = u): �

Figure 1: Well-typed �IP terms.

?x , and with bindings. Syntactically, with associates to the
left.

The type system is an extension of a standard Hindley-
Milner type system. What distinguishes it is primarily the
presence of a new context C for implicit parameters. The
C context keeps track of the implicit parameters which are
used in a given term. In addition, type schemes, used to de-
scribe the types of let-bound variables, have been extended
to include implicit parameter contexts. This implies that
the notion of \generalization", which in traditional Hindley-
Milner determines which type variables to quantify over,
now also includes the abstraction of implicit parameters.
We write gen(C ;�; �) to denote the principal type scheme

2

associated with � in the context of C and �.

gen(C ;�; �) = 8�:C)�
where � = (tvars(C) [tvars(�)) n tvars(�)

As an aid to presenting our axiomatic semantics in Sec-
tion 3.2, we choose to make a lexical distinction between
let-bound variables and �-bound variables. We use p and
q for the former, and x , y , and z for the latter. Such a
distinction is unnecessary in practice.

Unlike let-bound variables, the bindings in implicit param-
eter contexts are monomorphic. With let, we get to see
both what the variable is bound to, and everywhere it is
used; hence, we can generalize. Since this is a luxury that
we are not a�orded with dynamic scoping, we must restrict
implicit parameters to be monomorphic. From the type sys-
tem's perspective, implicit parameters are thus very much
like lambda-bound variables, whose binding sites just hap-
pen to be far removed from their usages.

The IVAR and WITH rules are the only ones that explic-
itly add and remove elements from the implicit parameter
context. The notation Cn?x denotes C with any binding
for ?x removed.

You may note that while IVAR corresponds to MVAR and
WITH corresponds to a LET writ backwards, there's no
corresponding APP or ABS rules for implicit parameters.
This, in combination with the fact that)types only appear
in type schemes, makes it clear that functions can't take
implicitly parameterized arguments. This is for the same
reasons that lambda-bound variables are not generalized:
we would have to either adandon type inference, or abandon
type safety. In section 6.1, we will discuss how this avoids
the worst sort of bugs that arise with dynamic scoping in
Lisp.

Of the standard rules, PVAR and LET are the only ones
that are modi�ed, outside of simply adding the implicit pa-
rameter context. The only real change to the PVAR rule is
to insist that the (instantiated) implicit parameters of the
variable must be included in the implicit parameter context
of the judgement.

The point to note about the LET rule is that the dynamic
context D , used in the judgement on u, is completely inde-
pendent of the dynamic context C used in the consequent.
The independence of D and C assures us that all implicit
parameters arising in u end up being associated with x .

2.2 Principal Types

We inherit from Hindley-Milner the problem that typings for
terms are not unique. Fortunately, our extension preserves
the property that terms have principal types, i.e. a unique
type that best represents the type for that term.

In Hindley-Milner, a polymorphic term may be given an
arbitrarily more speci�c type than its most general typing.
With implicit parameters, we similarly allow a term to be
given more implicit parameters than it actually uses. For
example, two valid typings of the constant 1 would be Int

and (?x : Bool))Int.

We extend the notion of \more general" type in Hindley-
Milner to mean, in addition, \with fewer implicit parame-
ters". That is, C) � is more general than D) �, written
C)� � D)�, if 9�: �C � D ^ �� � �.

�;C ; � ` t : �

MVAR
x : � 2 �

id; �; � ` x : �

PVAR
p: 8�:C)� 2 � � new

id;C [� 7! �]; � ` p: �[� 7! �]

IVAR
� new

id; ?x :�; � ` ?x :�

APP

�1;C1; � ` t : �1 ! �
�2;C2; � ` u: �2 (C ; �3) = mgu(C1;C2)

� = �1 t �2 t �3 tmgu(�1; �2)

�; �C ; � ` (t u): ��

ABS
�;C ; �; x :� ` t : � � new

�;C ; � ` (�x : t): ��! �

LET

�1;D ; � ` u: � � = gen(D ; �1�; �)
�2;C ; �; p:� ` t : � � = �1 t �2

�; �C ; � ` (let p = u in t): ��

WITH

�1;C1; � ` t : � � new
if ?x : �0 2 C1 then �1 = �0 else �1 = �

�2;C2; � ` u: �2
(C ; �3) = mgu(C1n?x ;C2)

� = �1 t �2 t �3 tmgu(�1; �2)

�; �C ; � ` (t with ?x = u): ��

Figure 2: Type Inference for �IP terms.

2.3 Type Inference

A type inference algorithm for implicit parameters is given in
Figure 2. It is presented in the deductive style of Remy [15].
An invocation is written as follows, where a down-arrow in-
dicates an input to the algorithm, and an up-arrow indicates
an output.

"

�;
"

C ;
#

� `
#

t :
"

�

The result of the algorithm is the principal implicitly-
parameterized type C)� of t .

We write mgu(�1; �2) to denote the most general idempotent
uni�er of types �1 and �2. On implicit parameter contexts,
we write mgu(C1;C2) to denote the pair (�;C), where C is
the smallest context containing both �C1 and �C2, and � is
de�ned as follows.

� =
G
fmgu(�1; �2) j ?x : �1 2 C1 ^ ?x : �2 2 C2g

As usual, substitutions form a semi-lattice on �, where �1 �
�2 if 9�0: �0�1 = �2, and we write �1 t �2 to denote the
least upper bound of two substitutions in this lattice. It
is understood that a type inference derivation is impossible
should any of these operations be unde�ned.

The relationship between the type system and the inference
algorithm is expressed by the following two theorems.

3

Theorem 1 Soundness

�;C ; � ` t : �) C ; �� ` t : �

Theorem 2 Completeness

C ; �� ` t : �) 9�0;C 0; � 0; �00:
�0;C 0; � ` t : � 0 ^
C � �00C 0 ^ � = �00� 0

�� = �00�0�

Proof proceeds by induction on the structure of derivations,
coupled with the usual tedious reasoning with type substi-
tutions.

Note that Theorem 2 implies that C 0) � 0 � C) � . Since
this holds for all possible types � of t , our algorithm yields
t 's principal type.

3 Semantics

In this section we develop an axiomatic semantics for �IP

which is suitable for program transformations. Rather than
continue by developing this into an operational semantics,
we instead present a type-directed translation of well-typed
�IP terms into a call-by-name �-calculus with let-bound
polymorphism. This translation preserves equality, and
forms the basis of our implementation of implicit param-
eters in Hugs.

3.1 Intuition

Before launching into a detailed axiomatic semantics, let's
�rst test our intuition against some simple examples. To
make things interesting we'll assume �IP has been extended
with integers and addition in the obvious way.

First, let's explore the interaction of with and let. Consider

(let p = ?y + 2 in p + (p with ?y = 1))
with ?y = 2

Does this equal 7 or 8? Recall that the LET rule in Figure 1
requires that p be generalized over its implicit parameter ?y .
This means each occurrence of p should be evaluated with its
own local environment. Hence we may rewrite this example
to

let p = ?y + 2
in (p + (p with ?y = 1)) with ?y = 2

which may be further simpli�ed to

let p = ?y + 2
in (p with ?y = 2) + (p with ?y = 1)

Now expand the de�nition of p

(?y + 2 with ?y = 2) + (?y + 2 with ?y = 1)

the we see the correct result is 7.

Abstracting from the particulars we see that

(let y = v in t) with ?x = u
=

let y = v in (t with ?x = u)

Note in particular that

(let y = v in t) with ?x = u
6=

let y = (v with ?x = u) in (t with ?x = u)

as otherwise our implicit parameters would simply be static
variables!

What about application and implicit variables? Consider

((�x : let p = ?y + x
in (p + x with ?y = 1)) (?y + 2))
with ?y = 2

Does this equal 9 or 7? Again, consulting Figure 1, we
see the ABS rule requires x to be a monotype. Thus, when
substituting the argument ?y+2 for the variable x , we must
take care to ensure ?y + 2 uses the binding ?y = 2 rather
than ?y = 1. If we don't substitute for ?y immediately, we
must reroute this correct binding via a fresh implicit variable
?z . Doing so yields

(let p = ?y + (?y + 2 with ?y = ?z)
in (p + (?y + 2 with ?y = ?z) with ?y = 1))

with ?z = ?y with ?y = 2

Now we can propagate the renaming of ?y to ?z

(let p = ?y+?z + 2)
in p+?z + 2 with ?y = 1))

with ?z = ?y with ?y = 2

propagate the binding ?y = 2 and hence ?z = 2

(let p = ?y+?z + 2)
in p + 2 + 2 with ?y = 1 with ?z = 2))

expand p

?y+?z + 2 + 2 + 2 with ?y = 1 with ?z = 2

and the correct answer is 9.

3.2 Axiomatic Semantics

Figure 3 presents the �-, �- and �-rules for well-typed �IP

terms. The �-rules are de�ned in terms of three substitution
operators, one for each binding form, and hence variable
class.

First, consider �-reduction for �-abstractions. We write
t [x 7! u] to denote substituting u for x in t . Since x is a
�-bound variable, it must be monomorphically typed. Thus,
though u may contain implicit parameters, they should be
provided by the surrounding context, and not from within
t . That is, just as we must take care to avoid static name
capture by renaming bound variables, we must also avoid
dynamic name capture by rebinding implicit variables.

This rebinding is most obvious in the de�nition of
(t with ?y = v) [x 7! u], where we have taken care to en-
sure that if u has an implicit parameter ?y , its binding will
bypass the binding of ?y to v via the fresh implicit variable
?z .

The case for (let q = v in t) [x 7! u] is similar, though
this time we must bypass all the implicit parameters of u,

4

� rules
(�x : t) u = t [x 7! u]

let p = u in t = t [p 7! u]
t with ?x = u = t [?x 7! u]

� rules
�x : t x = t

let p = t in p = t
?x with ?x = t = t

� rules
�x : t = �y : t [x 7! y]

let p = u in t = let q = u in t [p 7! q]

(plus congruent closure)

Substitution for �-vars
x [x 7! u] = u
y [x 7! u] = y
p [x 7! u] = p
?x [x 7! u] = ?x

(�y : t) [x 7! u] = �y : t [x 7! u]
where y 62 fvars(u)

(t v) [x 7! u] = (t [x 7! u]) (v [x 7! u])
(let q = v in t) [x 7! u] =

let q = v [x 7! u with ?y = ?z]

in (t [x 7! u] with ?z = ?y)
where q 62 fvars(u), C ; � ` u: �,

?y = vars(C), ?z fresh
(t with ?y = v) [x 7! u] =

t [x 7! u with?y = ?z] with ?y = v [x 7! u]
with ?z = ?y where ?z fresh

Substitution for let-vars

(let q = v in t) [p 7! u] =
let q = v [p 7! u] in t [p 7! u]

where q 62 fvars(u)
(t with ?y = v) [p 7! u] =

t [p 7! u] with ?y = v [p 7! u]
(remaining cases as for �-vars)

Substitution for implicit vars
x [?x 7! u] = x
p [?x 7! u] = p with ?x = u
?x [?x 7! u] = u
?y [?x 7! u] = ?y

(�y : t) [?x 7! u] = �y : t [?x 7! u]
where y 62 fvars(u)

(t v) [?x 7! u] =
(t [?x 7! u]) (v [?x 7! u])

(let q = v in t) [?x 7! u] = let q = v in t [?x 7! u]
where q 62 fvars(u)

(t with ?y = v) [?x 7! u] =
t [?x 7! u] with ?y = v [?x 7! u]

(t with ?x = v) [?x 7! u] = t with ?x = v [?x 7! u]

Figure 3: Axiomatic semantics for �IP.

lest they become captured by q . Notice that this rule will
change the type of q ! In particular, q will now depend on
the fresh implicit variables ?z , which are bound by the with
surrounding t . However, the overall term's type remains
unchanged.

Perhaps surprisingly, the rules for �-reduction of a let term
perform no such rebinding. This becomes obvious once we
recall that a let-bound term is always generalized on all of
its implicit parameters. Hence t [p 7! u] is essentially �-
calculus substitution.

Finally, the rules for �-reduction of with terms illustrate
how a dynamic environment is propagated into sub-terms.
Since implicit variables are lexically distinct from static vari-
ables, there is never a danger of a name capture, and so
(�y : t) [?x 7! u] need not rename y . Furthermore, since
implicit parameters are immutable, the dynamic environ-
ment need not be threaded state-like through the program.
Thus in (t v) [?x 7! u], we simply propagate u into both t
and v .

The most interesting rule comes with let. In
(let q = v in t) [?x 7! u], v has been generalized. Hence,
if v depends on the implicit variable ?x , the implicit binding
must be resolved for each occurrence of q in t , and may be
unrelated to the binding of ?x to u.

3.3 Translation Semantics

We also present a type-directed translation of �IP terms into
the familiar call-by-name �-calculus with let-bound poly-
morphism and tuples. As well as providing another seman-
tics, this translation provides a convenient mechanism for
adding implicit parameters to an existing language.

Our translation borrows the technique of dictionary passing
[16], used to give a semantics for overloading in Haskell.
In short, we encode C) � as C ! � , and treat implicit
parameter contexts as tuples of explicit parameters.

Figure 4 presents the translation, which is by induction over
a type derivation using the rules of Figure 1. The tuples
d which show up in the VAR and LET rules arise from
making the implicit parameters explicit. Note that in the
target language, ?x is just an ordinary variable|the ? is
retained to ensure introduced identi�ers are not confused
with those already in the source program.

Since a given term may be well-typed by more than one
type derivation, we must address the question of whether
the translation is coherent. For example, the term

let p = 1 in p + 2

could be translated to

let p = 1 in p + 2

should we choose the principle type for p, or to

let p = �?y : 1 in p ?y + 2

should we choose a more speci�c type for p. However, since
the only thing that arises is additional unused parameters
such as ?y , it is not diÆcult to see that there's no loss of
coherence.

Our axiomatic semantics is sound with respect to our trans-
lation semantics. We write [[t]] to denote the t 0 such that

5

C ; d

ICXT ?x1: �1; : : : ; ?xn : �n ; (?x1; : : : ; ?xn)

C ; � ` t ; t 0: �

MVAR
x : � 2 �

C ; � ` x ; x : �

PVAR
p: 8�:D)� 2 � D [� 7! �] � C D ; d

C ; � ` p ; p d : �[� 7! �]

IVAR
?x : � 2 C

C ; � ` ?x ;?x : �

APP

C ; � ` t ; t 0: � ! �
C ; � ` u ; u 0: �

C ; � ` t u ; t
0
u
0
: �

ABS
C ; �; x : � ` t ; t

0
: �

C ; � ` �x : t ; �x : t
0
: � ! �

LET

D ; � ` u ; u 0: � � = gen(D ;�; �)
C ; �; p:� ` t ; t 0: � D ; d

C ; � ` let p = u in t ;
let p = �d : u 0 in t 0: �

WITH

Cn?x ; ?x : �; � ` t ; t 0: �
C ; � ` u ; u 0: �

C ; � ` t with ?x = u ;
(�?x : t 0) u 0: �

Figure 4: Translation semantics for �IP.

C j� ` t ; t 0: � , where C , � and � are implied by context,
and write t 0 [u 0=x] to denote ordinary �-calculus substitu-
tion.

Lemma 3

t [x 7! u] = v) [[t]] [[[u]]=x] = [[v]]
t [p 7! u] = v) [[t]] [�d :[[u]]=p] = [[v]]

where D ; � ` u: � and D ; d
t [?x 7! u] = v) [[t]] [[[u]]=?x] = [[v]]

Theorem 4

t = u) [[t]] = [[u]]

All these proofs proceed by straightforward induction on the
structure of t .

4 Examples

So far we have presented the implicit parameter system as
an extension of a simple Hindley-Milner typed lambda cal-
culus. However, in practice it also integrates nicely with

full languages, particularly Haskell. We have demonstrated
this by extending the Hugs interpreter to include implicit
parameters. As suggested in Section 3.3, the implementa-
tion leverages o� of the existing type class mechanism, with
implicit parameters as a new kind of type predicate. The
resulting system is available in the distribution of Hugs 98
[8].

The chief advantage of having a real implementation is the
development of real examples. These enabled us to explore
whether the system we were exploring was merely a curios-
ity, or one which has real practical potential.

The rest of this section contains a variety of illustrative ex-
amples.

4.1 Auxiliary parameters in recursive de�nitions

In recursive function de�nitions, there are often parameters
that don't change between recursive calls. Out of conve-
nience, or as a small nod to eÆciency, these de�nitions are
often factored into a worker-wrapper arrangement, where
the worker (the recursive de�nition) is written as a local
function that is not explicitly parameterized over any of
these auxiliary parameters. For example:

append :: [a] -> [a] -> [a]

append xs ys = prepend xs

where prepend (x:xs) = x : prepend xs

prepend [] = ys

Unfortunately, this has the side e�ect of hiding the function
that is doing all the work (prepend) from the rest of the
program. Sometimes this is quite unnecessary, and can be a
considerable inconvenience. For example, we cannot access
prepend outside of the body of append either to examine
its type, or test it directly. Even worse, because standard
Haskell lacks the ability to express scoped type variables, we
cannot even give a type signature for prepend!

Using implicit parameters, we can factor the de�nition in
the same way, but prepend need not be hidden inside the
de�nition of append anymore.

append :: [a] -> [a] -> [a]

append xs ys = prepend xs with ?ys = ys

prepend :: (?ys :: [a]) => [a] -> [a]

prepend (x:xs) = x : prepend xs

prepend [] = ?ys

Now we can give a proper type to prepend, and reuse and
test it in isolation from append. This is obviously a triv-
ial example, but the principle scales naturally particularly
when writing monadic code, where a common pattern is to
generate state components, and then pass the references to
recursive worker code. Being able to pass the state context
implicitly simpli�es the body of the code.

To make this concrete, consider the following depth-�rst
traversal routine [9]. In this case, we actually pass the pro-
cedures for accessing the state, rather than the array itself.

data Rose a = Node a [Rose a]

dfs :: Graph -> [Vertex] -> [Rose Vertex]

dfs g vs = runST (

6

do {arr <- newSTArray (bounds ?g) False;

dfsLoop vs

with ?g = g

?marked = readSTArray arr

?mark = \v -> writeSTArray arr v True })

dfsLoop [] = return []

dfsLoop (v:vs)

= do {b <- ?marked v;

if b then dfsLoop vs else

do {?mark v;

ps <- dfsLoop (children ?g v);

qs <- dfsLoop vs;

return ((Node v ps) : qs)

} }

The auxilliary function dfsLoop looks as if it were de�ned in
a local de�nition, but it is a top level function and typable
in its own right:

dfsLoop :: (?g :: Graph,

?marked :: Vertex -> ST s Bool,

?mark :: Vertex -> ST s ())

=>

[Vertex] -> ST s [Rose Vertex]

4.2 Environments

When writing shell scripts, many of the parameters to the
script are passed in the environment. This is not simply be-
cause of the paucity of shell scripting languages, but rather
that the environment variables form a moderately stable
context for the execution of the script. It is similar with
GUI code. The large graphics context (gc) contains all the
relevant windowing information, including the default font,
color, and size, for example. Much of the time, the gc re-
mains unchanged, until, for example, some text needs to be
written in a di�erent color. The gc color is changed, the
text is written, and the color is changed back.

Typical shell environments are represented as lists of pairs.
We can implement shell environments using implicit param-
eters as follows:

type Environment = [(String,String)]

getEnv :: (?env :: Environment) =>

String -> String

getEnv var = case lookup ?env var of

Nothing -> ""

Just val -> val

Although shells also typically provide a way to change the
environment by side e�ect, the far more common idiom is
to make changes to the environment that only scope over
sub-processes, but do not propogate forward. This idiom
can be naturally mimicked using implicit parameters. Con-
sider a script that called a program which needed a di�erent
environment (the search path to be ordered di�erently, core
size changed, and so on).

setEnv :: (?env :: Environment) =>

String -> String -> Environment

setEnv v w = update ?env

where

update [] = [(v,w)]

update ((a,b):abs)

= if a==v then (a,w):abs

else (a,b):update abs

This might be used as in the following example:

foo x path

= (getEnv "PATH",

baz x with ?env=setEnv "PATH" path,

bar x)

The �rst and third components of the tuple have access to
the current value of PATH, but the call to baz is in the context
of PATH being bound to the contents of path.

Numerical methods provide another example where environ-
ments are useful. Here the environment is likely to contain
parameters to control factors such as desired accuracy (�),
what response to use to ill-conditioned problems, and so on.

4.3 File IO

When doing �le I/O in Haskell, the programmer is forced
to carry about �le handles. This adds quite a bit of clut-
ter. Using implicit parameters, we can model functionally
the nice situation in C, where there's a notion of standard
input and output streams, and a given stream can easily be
redirected to another stream.

The Haskell IO library provides primitives like getLine and
putStr that follow this convention, but provide no easy way
to redirect. Using implicit parameters, we could rede�ne
getLine and putStr as follows.

getLine :: (?stdIn :: FileHandle) => IO String

putStr :: (?stdOut :: FileHandle) =>

String -> IO ()

Using these, we de�ne a simple session:

session :: (?stdIn :: FileHandle,

?stdOut :: FileHandle) => IO ()

session =

do putStr "What is your name?\n"

s <- getLine

putStr ("Hello, " ++ s ++ "!\n")

If we postulate a mechanism that binds stdIn and stdOut

at the top-level to their respective defaults (a top-level with
declaration, for example) then, by default, getLine and
putStr would behave exactly as in Haskell. However, by
using with, the programmer can easily redirect stdOut else-
where, without having to change the session code at all:

do h <- openFile "foo"

session with ?stdOut = h

4.4 Linking Haskell and Java via JNI

The Java Native Interface (JNI) allows a two-way integra-
tion between Java and native code, programs written in
other languages such as C or Haskell [10]. On the native side,
the re
ection of a Java method has two extra parameters,
the JNIEnv pointer and the jobject pointer. The JNIEnv

7

pointer is a handle to a virtual method table through which
native methods can access parameters and objects in Java.
The jobject pointer is the this variable in Java.

Consider the following simple class that has a native method
that is supposed to display a prompt and return the user's
response:

class HaskellPrompt {

String prompt;

native String getLine();

}

This method can be implemented in Haskell using the func-
tion getLine :: JNIEnv -> Jobject -> IO JString that
as explained above gets two additional arguments, the en-
vironment pointer of type JNIEnv and the this pointer of
type Jobject to the HaskellPrompt instance on which the
getLine method is called.

In order to display the prompt we have to fetch its content
from the prompt �eld of the the object, and marshal its
value to a proper Haskell string. We then display it, read
the user's response, and unmarshal it back into a Java string
that is returned as the result of calling getLine.

The actual details in interacting with Java via JNI are rather
painful. To read the �eld a Java object, we �rst have to get
the fieldID from the the class reference of the object, the
�eld name and the �eld type using the JNIEnv entry

getFieldID :: JNIEnv -> Jclass ->

String -> String -> IO FieldId

and then read its value via:

getObjectField :: JNIEnv -> Jobject ->

FieldID -> IO Jobject

We can get the class reference of an object via the JNIEnv

entry:

getObjectClass :: JNIEnv -> Jobject -> IO Jclass

The functions getStringUTFChars and newStringUTF are
entries in the JNIEnv method table that translate between
Java and Haskell strings.

By calling all these functions in the right order, passing each
one of them the JNIEnv pointer, we can implement function
getLine in Haskell as follows:

getLine :: JNIEnv -> Jobject -> IO JString

getLine = \jnienv -> \that ->

do{ cls <- getObjectClass jnienv that

; fid <- getFieldID jnienv cls "prompt"

"Ljava/lang/String;"

; jprompt <- getObjectField jnienv that fid

; prompt <- getStringUTFChars jnienv jprompt

; putStr prompt; answer <- getLn

; newStringUTF jnienv answer

}

Explicitly passing around the JNIEnv argument becomes
rather tedious; we have to pass the same environment
pointer to each call to a JNI primitive. This is where implicit
parameters come to the rescue; we just make the JNIEnv

argument implicit, rather similar to the way we made the
environment in section 4.2 implicit.

All the functions in the JNIEnv method table get
(jnienv :: JNIEnv) as an implicit parameter

getObjectClass :: (?jnienv :: JNIEnv) =>

Jobject -> IO Jclass

getFieldID :: (?jnienv :: JNIEnv) =>

Jclass -> String -> String -> IO FieldId

getObjectField :: (?jnienv :: JNIEnv) =>

Jobject -> FieldID -> IO Jobject

getStringUTFChars :: (?jnienv :: JNIEnv) =>

JString -> IO String

newStringUTF :: (?jnienv :: JNIEnv) =>

String -> IO JString

The e�ect of making the jnienv implicit in the JNI primi-
tives is that all functions which use them automatically get
the jnienv as an implicit argument as well:

getLine :: (?jnienv :: JNIEnv) =>

Jobject -> IO JString

getLine = \that ->

do{ cls <- getObjectClass that

; fid <- getFieldID cls

"prompt" "Ljava/lang/String;"

; jprompt <- getObjectField that fid

; prompt <- getStringUTFChars jprompt

; putStr prompt; answer <- getLn

; newStringUTF answer

}

By using the expressive power of implicit parameters, we
have been able to abstract from the irrelevant details of
passing around the JNIEnv pointer. The resulting code is
of a conciseness that is diÆcult to achieve when working n
C or C++.

5 Implicit Parameters In-the-large

We now discuss some of the more subtle language design
issues associated with adding implicit parameters to a full
language such as Haskell or ML.

5.1 Call-by-need Languages

Call-by-need languages share the computational cost of eval-
uating let-bound terms by updating. For example

let x = fib 10 in (x, x)

�! let x = 55 in (55, x)

�! let x = 55 in (55, 55)

Now, consider a let-bound term de�ned using implicit pa-
rameters:

(let x = fib ?y in (x, x)) with ?y = 10

�! let x = fib ?y

in (x with ?y = 10, x with ?y = 10)

�! let x = fib ?y

in ((fib ?y) with ?y = 10,

(fib ?y) with ?y = 10)

�! let x = fib ?y in (fib 10, fib 10)

Clearly, the cost of evaluating fib 10 will not be shared.

The problem here is not one of semantics: clearly a let-
bound term with implicit parameters can only be fully eval-
uated when all such parameters have been supplied. In other

8

words, such a term is a value, and there's no computational
cost to share. Rather, the problem is that a programmer
is accustomed to being able to distinguish a value from a
computation by looking at its syntax alone, whereas in our
system the type is also important.

The designers of Haskell [14] also encountered this subtlety.
A let-bound term which contains unresolved overloading is
also a value as far as sharing is concerned, but this can
only be determined by knowing the term's type. Their so-
lution was to introduce the monomorphism restriction: a
let-bound term that looks like a computation must not be
generalized.

What would be the e�ect of adopting this restriction with
implicit parameters? Consider the following:

let x = z + 2

z = 2 * ?y

in (x with ?y = 1) + x

with ?y = 2

Since x looks like a computation, the monomorphism restric-
tion would kick in, and x would not be generalized. The
result is that ?y would be statically bound in x with the
binding ?y = 2, in stark disagreement with our axiomatic
semantics. Thus, in an e�ort to preserve sharing, we have
altered our language semantics|hardly a happy situation.

We conclude that, in the presence of implicit parameters,
the monomorphism restriction is the wrong solution to the
sharing problem. To address sharing, the programmer must
be given either knowledge or control, and not be subject
to editorial distinctions that the language designers might
make. To give the programmer knowledge, we suggest
that languages with implicit parameters (and, for that mat-
ter, Haskell-style overloading) need programming environ-
ments in which type information is immediately available to
the programmer|even whilst editing! Such environments
make distinguishing values from computations trivial. Al-
ternately, we could give the programmer more control by
providing two versions of let|a non-generalizing one which
promises sharing, and a generalizing one which doesn't. In
this way, the type checker can validate the programmer's
intuition with regards to sharing.

5.2 Call-by-value Languages

There is no technical diÆculty in adding implicit parameters
to a call-by-value language. The translation of Figure 4
may be used unchanged, though the axiomatic semantics of
Figure 3 must be weakened as usual.

Things become interesting when we consider an ML-like lan-
guage with side-e�ects. Consider

let x = print (fib 10) in (x, x)

which will output \55" once. Now, if we were to add an
implicit parameter

let x = print (fib ?y) in (x, x)) with ?y = 10

evaluation will output \55" twice. So the timing of the e�ect
depends on its type: once at let binding time if it is free
of implicit parameters, versus once per each use of x if it
contains implicit parameters.

This is exactly the same problem as for call-by-need above!
In call-by-need the lazy programmer was \surprised" by a
duplication of work. In call-by-value the eager programmer
was \surprised" by a duplication of side-e�ects. But again,
there is no surprise if the programmer knows the type of x.

ML has its own version of Haskell's monomorphism restric-
tion, namely the value restriction, although its motivation
is to prevent a loss of type-soundness [12]. Since any term
requiring implicit parameters is semantically a value, this
restriction may be somewhat relaxed in our system without
compromising soundness.

5.3 Haskell-style Overloading

In Section 3.3, we saw that our translation, which turns im-
plicit parameters into explicit parameters, is based on the
dictionary translation, which turns overloading into explicit
dictionary passing [16]. Thus, Haskell already has a form
of anonymous implicit parameters, and as a pleasant con-
sequence, implicit parameters and Haskell-style overloading
coexist happily. This is witnessed by our implementation of
implicit parameters within Hugs.

The work presented here is the �rst half of a larger research
programme to de-construct the complex type class system
of Haskell into simpler, orthogonal language features [11].
This paper elevates the dictionary translation into a self-
contained language feature, rather than just a semantics for
type classes left \under the hood."

Can we replace Haskell type classes with just implicit pa-
rameters alone? Almost! Following the original proposal for
type classes [16], we can encode class declarations as record
types, and instance declarations as values. For example,
consider the standard Functor class:

class Functor f where

map :: (a -> b) -> (f a -> f b)

We can encode the class itself as a datatype:

data Functor f = Functor

{ map_ :: forall a, b.

(a -> b) -> (f a -> f b) }

Then we introduce the class methods as implicitly parame-
terized values1:

map :: forall a, b . (?functor :: Functor f) =>

(a -> b) -> (f a -> f b)

map = map_ ?functor

But the type class system was primarily designed to solve
the problem of overloading, i.e. using an identi�er at more
than one type within the same scope. Consider the following
example in Haskell.

(map (+ 1) [1, 2, 3], map (+ 1) id)

This would have the type ([Int],Int -> Int). Unfortu-
nately, implicit parameters come with the constraint that
all instances of an implicit parameter must have the same

1This example assumes that implicit parameters may be given
higher-ranked polymorphic types when suÆcient type annotations are
provided.

9

type. Thus, this example would be ill-typed if map were im-
plemented using implicit parameters, since map is used at
two di�erent types.

So clearly our programme remains un�nished.

5.4 Signatures

Another
y in the ointment with respect to implicit param-
eters has to do with signatures. One of the selling points of
implicit parameters is that they provide a very low impact
way of adding additional parameters to an existing program.
However, consider the program that has been painstakingly
annotated with type signatures on most de�nitions. This
is, after all, considered \good style". Unfortunately, while
the programmer doesn't need to modify most functions that
have become implicitly parameterized, the types of those
functions change. Thus, a tedious global change to the type
annotations may be required.

Fortunately, this is easily mitigated in a way that is com-
patible with the use of type signatures, namely by allowing
type signatures which only partially constrain the context
of a type. An ellipses at the end of a context, for example,
could be used to indicate that there may be arbitrary ad-
ditional context elements that are not constrained. Thus,
you might say something like the following to indicate the
signature for pretty without constraining what might be in
its context.

pretty :: ... => Doc -> String

This solution is also well-suited to Haskell-style overloading,
which su�ers exactly the same problem.

6 Related Work

6.1 Dynamic Scoping in Lisp

We would be quite remiss if we didn't mention Lisp, which
introduced dynamic scoping in the beginning, albeit as a bug
that took decades to stamp out. Although most modern
Lisps now have static scoping of variables, MIT Scheme,
while being statically scoped, has a fluid-let construct
that dynamically binds variables by side-e�ect, and takes
scrupulous care to ensure that the previous binding is fully-
reinstated afterwards [4].

The biggest problem with dynamic scoping in Lisp involved
the use of higher-order functions, and is known a�ectionately
as the \downward funarg problem". A function passed as a
parameter to another function might, often unintentionally,
have its free variables captured by a local environment.

Implicit parameters provide the same functionality as dy-
namic scoping in Lisp, except that implicitly parameterized
functions are not �rst-class, and thus can't be passed as ar-
guments to functions|implicit parameters always
oat to-
wards outer contexts, they don't enter inner ones. Thus, we
would argue that implicit parameters give you the best of
dynamic scoping, while avoiding the its worst pitfalls. Fur-
thermore, this is the �rst type system that we know of that
records the use of dynamic parameters in the types.

6.2 Quali�ed Types

The system �IP is very close to the syntax-directed variant of
Jones' system OML [5], a formal system designed to capture
the essence of, and generalize, Haskell's type classes. Our
system di�ers from OML in two key ways: all instances of an
implicit parameter are assumed to be the same, and implicit
parameters have a local binding construct, with.

In OML, the label on an element of the context is asso-
ciated with a family of types (the collection of instances),
whereas with implicit parameters, it is associated with an
individual parameter. Thus, while with type classes, two
unconstrained uses of an overloaded construct must be as-
sumed to be di�erent, with implicit parameters they must
be assumed to be the same.

The signi�cance of a local binding construct is that it a�ects
the design choices we can make in the LET rule. Our system
follows the most conservative route of binding all implicit
parameters to the let-bound variable.

Haskell itself, however, allows some type predicates to es-
cape binding|in particular those whose type depends on
type variables bound in �. I.e., if we cannot generalize over
all type variables in a predicate, that predicate is not bound,
and becomes a predicate of the let as a whole. Following
this approach, we could have chosen the following LET rule.

C [D ; � ` u: � � = Gen(D ;�; �)
TV(D) \ TV(�) = ; C ; �; p: 8�:D)� ` t : �

C ; � ` let p = u in t : �

However, with this LET rule, our system would not have
principal types. Consider the term

let p = ?x in (p with ?x = 1)

This would have the following two typings: Int and
(?x:�)) �, depending on whether p captured ?x as an
implicit parameter or not (and thus whether the inner with
binding has any e�ect or not). Unfortunately, these two
types are incomparable, and their lub isn't a type for the
term.

This problem doesn't a�ect Haskell, because there is no lo-
cal binding mechanism corresponding to with. All instance
declarations in Haskell are global. The result is that any
constraint that arises due to use of a let-bound identi�er
in the body of a let will propagate out and become a con-
straint of the whole let anyway.

Since the ideas in this paper were �rst distributed, Mark
Jones has further re�ned OML to include the notion of func-
tional dependencies[7, 6]. The resulting system is a step to-
wards being able to encode both implicit parameters and
overloading within a single system.

6.3 Other related work

Odersky, et al. [13], proposed a system for overloading where
individual identi�ers are overloaded instead of whole classes
of operators, as in Haskell. Their proposal was intended
to overcome a number of diÆculties that arise with type
classes. Because individual identi�ers are overloaded, their
type constraints bear a striking similarity to implicit param-
eter contexts. However, their system is about overloading,
and lacks any local binding construct.

10

The Label-Selective Lambda-Calculus of Garrigue and Kaci
[3, 2] also allows both dynamic and static binding to coexist.
However, their system requires a change at the very foun-
dation of our languages, namely �-abstraction. It is unclear
as to how such a change would integrate well with existing
functional languages.

7 Future Work

Over the past ten years monads have become a popular way
to provide semantics for many systems, especially those in-
volving e�ects such as state and exceptions. We were in-
trigued, therefore, when it appeared that comonads were
the mathematical structure underlying implicit parameters.

The intuition is as follows: monads model the e�ect of per-
forming a computation, and are thus associated with out-
puts, or the right-hand sides of semantic type judgments.
Comonads, on the other hand, model the structure of en-
vironments, and are thus associated with inputs, or the
left-hand sides of judgements. For example, in separated
(multiplicative, intuitionistic) linear logic, comonads show
up when modeling the intuitionistic segment of the environ-
ment [1]. In our system, comonads are used to model the
implicit portion of the environment.

We are currently working on a categorical, comonadic
semantics for implicit parameters. Using it, we hope
to demonstrate that our translation semantics simply re-
presents the term language of a family of coKleisli categories
within the term language of the base category.

References

[1] Benton, N. A mixed linear and non-linear logic:
Proofs, terms and models. Tech. Rep. 352, University
of Cambridge Computer Laboratory, Oct. 1994.

[2] Garrigue, J. Dynamic binding and lexical binding in
a transformation calculus. In Proc. of the Fuji Inter-
national Workshop on Functional and Logic Program-
ming. (1995).

[3] Garrigue, J., and Kaci, H. The Typed Polymor-
phic Label-Selective Lambda-Calculus. In Conference
Record of POPL '94: 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(Portland, Oregon, 1994).

[4] Hanson, C. MIT Scheme Reference. Cambridge, MA:
MIT Press, Apr. 96.

[5] Jones, M. P. Quali�ed Types: Theory and Prac-
tice. Cambridge University Press, Cambridge, England,
1994.

[6] Jones, M. P. Exploring the design space for type-
based implicit parameterization. Tech. rep., Oregon
Graduate Institute, July 1999.

[7] Jones, M. P. Type classes with functional dependen-
cies, Oct. 1999. (Submitted for publication).

[8] Jones, M. P., and Peterson, J. C. Hugs 98 user
manual. http://www.haskell.org/hugs/, May 1999.

[9] King, D. J., and Launchbury, J. Structuring depth-
�rst search algorithms in Haskell. In ACM Symposium
on Principles of Programming Languages (San Fran-
cisco, California, Jan. 1995), pp. 344{354.

[10] Liang, S. The Java Native Interface (Programmer's
guide and Speci�cation). The Java Series. Addison Wes-
ley, 1999.

[11] Meijer, E., and Claessen, K. The design and imple-
mentation of Mondrian. In Proceedings of the Haskell
Workshop (1997).

[12] Milner, R., Tofte, M., Harper, R., and Mac-
Queen, D. The De�nition of Standard ML { Revised.
The MIT Press, 1997.

[13] Odersky, M., Wadler, P., and Wehr, M. A second
look at overloading. In Proceedings of the 1995 Confer-
ence on Functional Programming Languages and Com-
puter Architecture (San Diego, California, June 1995),
ACM Press.

[14] Peyton Jones, S., and Hughes, J. Haskell
98: A non-strict, purely functional language.
http://haskell.cs.yale.edu/onlinereport/, Jan.
1999.

[15] Remy, D. Typechecking records and variants in a nat-
ural extension of ML. In Conference Record of the Six-
teenth Annual ACM Symposium on Principles of Pro-
gramming Languages (Austin, Texas, Jan. 1989).

[16] Wadler, P., and Blott, S. How to make ad-hoc
polymorphism less ad hoc. In Conference Record of
the Sixteenth Annual ACM Symposium on Principles
of Programming Languages (1989).

11

