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Abstract. This report was originally prepared as notes for a short
course on Ωmega taught at the Central-European Functional Program-
ming School held in Cluj, Romania, between 25-30 June, 2007. It can be
viewed as a tutorial on the use of the Ωmega programming language.

It introduces readers to the types as propositions notion based upon the
Curry-Howard isomorphism. Such types can express precise properties of
programs. The Ωmega language allows us to use a single language for the
specification of designs, the definition of properties, the implementation
of programs, and the production of proofs that programs adhere to their
properties. Ωmega bundles all these in a coherent manner into a single
unified system that appears to the user to be a programming language.

1 Introduction

Ωmega is a language with an infinite hierarchy of computational levels:
value, type, kind, sort, etc. Data, and functions manipulating data, can
be introduced at any level. Data is introduced by declaring the type of
constructors, and functions are introduced by writing (possibly recursive)
pattern matching equations.

Terms at each level are classified by terms at the next level. Thus
values are classified by types, types are classified by kinds, kinds are
classified by sorts, etc. As discussed earlier, programmers are allowed
to introduce new terms and functions at every level, but any particular
program will have terms at only a finite number of levels. We illustrate
the level hierarchy for the many of the examples given in this paper in
Figure 1.

We maintain a strict phase distinction — the classification of a term at
level n cannot depend upon terms at lower levels. For example, no types
can depend on values, and no kinds can depend on types. We formal-
ize properties of programs by exploiting the Curry-Howard isomorphism.
Terms at computational level n, are used as proofs about terms at level
n+1. We use indexed types to maintain a strict and formal connection be-
tween the two levels, and singleton types to maintain the strict separation
between values and types.



2 A simple example

To illustrate the hierarchy of computational levels we give the following
two-level example which uses natural numbers as a type index to lists
that record their length in their type.

First, we introduce tree-like data (the natural numbers, Nat) at the
type level by using the data introduction form. This form is a generaliza-
tion over the data declaration in Haskell [21].

data Nat :: *1 where

Z :: Nat

S :: Nat ~> Nat

The line “data Nat :: *1 where” indicates that Nat is classified by *1
(rather than *0), which tells the programmer that Nat is a kind (rather
than a type), and that Z and S are types (rather than values) that are
classified as indicated. Think of the operator ~> as the operator that clas-
sifies functions at the type level. I.e. it is similar in use to the operator ->,
but used on kinds rather than types. Thus, S :: Nat ~> Nat indicates a
type constructor that takes a Nat as input and produces a Nat as output.

The classifiers *0, *1, *2, etc. indicate the level of a term. All values
are classified by types that are classified by *0. All types are classified by
kinds that are classified by *1. All kinds are classified by sorts that are
classified by *2, etc. This is illustrated with great detail in Figure 1.

Second, we write a function at the type level over this data (plus).
At the type level and higher, we distinguish function application from
constructor application by surrounding function application by braces
({ and }). For example, we write S x for constructor application, and
{plus x y} for function application.

plus:: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m} = S {plus n m}

Third, using the data introduction form at the value level, we intro-
duce the algebraic data structure (Seq). The types of such values are in-
dexed by the natural numbers. These indexes describe an invariant about
the constructed values — their length appears in their type — consider
the type of l1 below.

data Seq:: *0 ~> Nat ~> *0 where

Snil :: Seq a Z

Scons:: a -> Seq a n -> Seq a (S n)

l1 = (Scons 3 (Scons 5 Snil)) :: Seq Int (S(S Z))



Finally, we introduce an append function at the value level over Seq
values (app). The type of app describes one of its important properties
— there is a functional relationship between the lengths of its two inputs,
and the length of its output.

app:: Seq a n -> Seq a m -> Seq a {plus n m}

app Snil ys = ys

app (Scons x xs) ys = Scons x (app xs ys)

To see that the app is well typed, the type checker does the following. The
expected type is the type given in the function prototype. We compute
the type of both the left- and right-hand-side of the equation defining a
clause. We compare the expected type with the computed type for both
the left- and right-hand-sides. This comparison generates some neces-
sary equalities (for each side) to make the expected and computed types
equal. We assume the left-hand-side equalities to prove the right-hand-
side equalities. To see this in action, consider the second clause of the
definition of app.

expected type Seq a n → Seq a m → Seq a {plus n m}
equation app (Scons x xs) ys = Scons x (app xs ys)

computed type Seq a (S b) → Seq a m → Seq a (S {plus b m})
equalities n = (S b) ⇒ {plus n m}= S{plus b m}

The expected types are taken from the type declaration accompanying
the function definition. The computed type is computed1 from the known
types of the constructors and functions in the definition. The equalities
are generasted by equating the expected type and the computed type.
The left-hand-side equalities (to the left of the ⇒) let us assume n = S b.
The right-hand-side equalities, require us to establish that {plus n m}
= S{plus b m}. Using the assumption that n = S b, we are left with
the requirement that {plus (S b) m} = S{plus b m}, which is easy to
prove using the definition of plus.

The different levels of the objects introduced in this example (and
elsewhere in the paper) are plotted in Figure 1. The reader may wish to
consult the figure to help visualize the relationships involved.

Exercise 1. Write an Ωmega function that defines the length function
over sequences. length:: Seq a n -> Int. You will need to create a
file, and paste the definition for Seq into the file, as well as write the
length function. The Nat kind is predefined. You will need to include
1 Using an inference algorithm based upon algorithm-W



the function prototype, above, in your file (type inference is limited in
Ωmega). How might we reflect the fact that the resulting Int should
have size n? See Section 3.7.

Exercise 2. After you complete Exercise 1, create a table, as we did for
app above, with expected type, equations, computed type, and equations
to be discharged. How might we solve the equations produced?

3 Features of the Ωmega Language

Ωmega is modelled after the Haskell language. There are several impor-
tant differences between Ωmega and Haskell that give Ωmega its unique
power of expression. These include.

– Data Structures at All Levels. Kinds are a type system for clas-
sifying types. Sorts are a type system for classifying kinds. There is
no practical limit to this hierarchy. In Ωmega, programmers can in-
troduce new tree-like structures at any level. In Haskell all introduced
datatypes are classified by *0. I.e. the introduced types classify only
values. In Figure 1, Haskell types are illustrated by Tree, which is
a type constructor which classifies its constructor functions (Fork,
Node, and Tip) which are values. In Ωmega, the data declaration is
generalized to all levels.

– GADTs. Generalized Algebraic Datatypes allow constructor func-
tions to have more general types than the types supported by the
data declaration in Haskell. GADTs are important because the addi-
tional generality allows the programmer to express properties of types
as witness types, proof objects, or singleton types. GADTs are the
machinery that support the Curry-Howard isomorphism in Ωmega.
In Figure 1, the types Seq, LE, and Even require the generality intro-
duced by GADTs.

– Functions at All Levels. Ωmega supports functions over tree- struc-
tured data at all levels. Such functions are written by pattern match-
ing equations, in much the same manner one writes functions over
data at the value level in Haskell. We restrict the form of such defi-
nitions to be inductively sequential (See Appendix B). This ensures
a sound and complete strategy for answering certain type-checking
time questions by the use of narrowing. The class of inductively se-
quential functions is a large one, in fact every Haskell function has an



← value name space | type name space →
value | type | kind | sort

| Tree :: *0 ~> *0 :: *1

Fork :: Tree a -> Tree a -> Tree a :: *0 :: *1

Node :: a -> Tree a :: *0 :: *1

Tip :: Tree a :: *0 :: *1

| Z :: Nat :: *1

| S :: Nat ~> Nat :: *1

| plus :: Nat ~> Nat ~> Nat :: *1

| {plus 1t 3t } :: Nat :: *1

| Seq :: *0 ~> Nat ~> *0 :: *1

Snil :: Seq a Z :: *0 :: *1

Scons :: a -> Seq a b -> Seq a (S b) :: *0 :: *1

app :: Seq a n -> Seq a m ->

Seq a {plus n m} :: *0 :: *1

| Tp :: Shape :: *1

| Nd :: Shape :: *1

| Fk :: Shape :: *1

| Tree :: Shape ~> *0 ~> *0 :: *1

Tip :: Tree Tp a :: *0 :: *1

Node :: a -> Tree Nd a :: *0 :: *1

Fork :: Tree x a -> Tree y a ->

Tree (Fk x y) a :: *0 :: *1

find :: (a -> a -> Bool) -> a ->

Tree sh a -> [Path sh a] :: *0 :: *1

| T :: Boolean :: *1

| F :: Boolean :: *1

| le :: Nat ~> Nat > Boolean :: *1

| {le 0t 2t} :: Boolean :: *1

| LE :: Nat ~> Nat > *0 :: *1

LeZ :: LE Z a :: *0 :: *1

LeS :: LE n m -> LE (S n) (S m) :: *0 :: *1

| Even :: Nat ~> *0 :: *1

EvenZ :: Even Z :: *0 :: *1

EvenSS :: Even n -> Even (S(S n)) :: *0 :: *1

Fig. 1. The level hierarchy for some of the examples in the paper.

inductively sequential definition. The inductively sequential restric-
tion affects the form of the equations, and not the functions that can
be expressed. In Figure 1, plus and le are functions at the type level.

– Code Constructing Quasi-Quotes. Ωmega supports the run-time
generation of code, along the lines of MetaML [24] and Template
Haskell [25]. The meta-programming ability of code generation al-
lows us to remove a layer of interpretation from our programs, that
makes them efficient as well as general.



Some of the following sections are labeled with Feature if they are an
addition to Haskell, Pattern if they are a paradigmatic use of the features
to accomplish a particular end, or Example if they illustrate an important
concept.

3.1 Feature: Kinds

We can introduce new tree-like data at any level, including the type level
and higher. The data declaration introduces both the constructors for
tree-like data and the object that classifies these structures. We indicate
the level where these objects reside using *0, *1, *2, etc. in the data
declaration. Consider the kinds Nat (introduced earlier), and Boolean:

data Shape :: *1 where

Tp:: Shape

Nd:: Shape

Fk:: Shape ~> Shape ~> Shape

data Boolean:: *1 where

T:: Boolean

F:: Boolean

Like the kind Nat defined earlier, Shape and Boolean also define new
kinds, and new types classified by these kinds. The new tree-like data
at the type level are constructed by the type-constants (Tp, Nd, T, F, Z),
and type constructors (Fk and S). The kinds Shape and Boolean classify
these structures, as shown explicitly in the declaration. For example T is
classified by Boolean, and Fk is a constructor from Shape to Shape to
Shape. Note that while Tp, Nd, T, and F live at the type level, there are no
values classified by them. Again, see Figure 1 to see where these objects
reside in the larger picture.

Even though there are no values classified by the types introduced by
Nat, Shape, and Boolean, they are very useful. Instead of using them to
classify values, we use them as indexes to value level data, i.e. types like
Proof {even n} and Seq a (S Z). The indexes like {even n} and S z
indicate static (type-checking time) properties of values. For example, a
value with type Seq a (S Z) is statically guaranteed to have length 1.

Exercise 3. Write a data declaration introducing a new kind called Color
with types Red and Black. Are there any values with type Red? Now write
a data declaration introducing a new type Tree which is indexed by Color
(this will be similar to the use of Nat in the declaration of Seq). There
should be some values classified by the type (Tree Red), and others
classified by the type (Tree Black).



3.2 Feature: Type Functions

Kind declarations allow us to introduce new tree-like structures at the
type level. We can use these structures to parameterize data at the value
level as we did with Nat indexing Seq. We may also compute over these
tree-like structures. Such functions are written by pattern matching equa-
tions, in much the same manner one writes functions over data at the value
level. Several useful functions over types defined earlier are:

even :: Nat ~> Boolean

{even Z} = T

{even (S Z)} = F

{even (S (S n))} = {even n}

le:: Nat ~> Nat ~> Boolean

{le Z n} = T

{le (S n) Z} = F

{le (S n) (S m)} = {le n m}

plus:: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m} = S {plus n m}

and:: Boolean ~> Boolean ~> Boolean

{and T x} = x

{and F x} = F

Like functions at the value level, the type functions plus, and, even, and
le are expressed using equations. The function and is a binary function
that combines two Booleans. The property even is a unary predicate that
distinguishes odd from even numbers, and the property le is a binary less-
than-or-equal-to predicate. All the functions are strict total (terminating)
functions at the type level. Termination is a necessary property of type
functions, though this is not currently checked by the system.

Exercise 4. Write an Ωmega function mult, which is the multiplication
function at the type level over natural numbers. It should be classified by
the kind mult:: Nat ~> Nat ~> Nat.

Exercise 5. Write the odd function classified by the kind Nat ~> Boolean.

Exercise 6. Write the or and not’ functions, that are classified by the
kinds (Boolean ~> Boolean ~> Boolean) and (Boolean ~> Boolean).
Use not’ rather than not since the name not is already predefined. Which
arguments of or should you pattern match over? Does it matter? Ex-
periment, Ωmega won’t allow some combinations. See Appendix B on
inductively sequential definitions and narrowing for the reason why.

3.3 Feature: GADTs

Generalized Algebraic Datatypes allow constructor functions to have more
general types than the types supported by data declaration in Haskell.



GADTs are important because the additional generality allows the pro-
grammer to express properties of types using type indexes and witnesses
(or proof objects). The data declaration in Ωmega defines generalized
algebraic datatypes (GADT). These are characterized by explicitly clas-
sifying constructors in a data declaration with their full types. The addi-
tional generality arises because the range of a constructor in a GADT is
not constrained to be the type constructor applied to only type variables.
For example consider the value level GADTs Seq, Path and Tree:

data Seq:: *0 ~> Nat ~> *0 where

Snil :: Seq a Z

Scons:: a -> Seq a n -> Seq a (S n)

data Path:: Shape ~> *0 ~> *0 where

None :: Path Tp a

Here :: b -> Path Nd b

Left :: Path x a -> Path (Fk x y) a

Right:: Path y a -> Path (Fk x y) a

data Tree :: Shape ~> *0 ~> *0 where

Tip:: Tree Tp a

Node:: a -> Tree Nd a

Fork:: Tree x a -> Tree y a -> Tree (Fk x y) a

Note that instead of ranges like (Seq a b), and (Path a b) where only
type variables like a, and b can be used as parameters, the ranges contain
sophisticated instantiations such as (Seq a (S n)) and (Path Nd). Note
that the second index to Seq (the one of kind Nat) is used to describe an
invariant about the length of the sequence, and the Shape index to Path,
indicates the shape of a tree in which that path is legal. This is one of
the many uses of GADTs – to enforce invariants about the structure of
data. Notice how the shape of tree1 appears in its type.

tree1 :: Tree (Fk (Fk Tp Nd) (Fk Nd Nd)) Int

tree1 = Fork (Fork Tip (Node 4)) (Fork (Node 4) (Node 3))

We can write pattern matching functions over GADTs just as we can over
algebraic datatypes. The only caveat is that we must specify the type of
the function using a prototype. Ωmega does type checking of functions
over GADTs rather than type inference.

Suppose we wanted to search a tree, returning all paths that lead to
a particular element. It would be nice to know that every path returned
was a legal path within the tree. For example (Left (Here 2)) is not a
legal path within the tree Tip. The Shape index allows us to specify that
our searching function always returns a value that obeys this legal path
invariant.



find:: (a -> a -> Bool) -> a -> Tree sh a -> [Path sh a]

find eq n Tip = []

find eq n (Node m) =

if eq n m then [Here n] else []

find eq n (Fork x y) =

map Left (find eq n x) ++

map Right (find eq n y)

The type of find guarantees that every path returned is a legal path
within the tree searched, because both the tree and every path in the list
has the same Shape, namely sh.

Exercise 7. Write an Ωmega function with type extract:: Path sh a
-> Tree sh a -> a, which extracts the value of type a, stored in the tree
at the location pointed to by the path. This function will pattern match
over two arguments simultaneously. Some combinations of patterns are
not necessary. Why? See section 3.10 for how you can document this fact.

Exercise 8. Replicate the shape index pattern for lists. Write two Ωmega
GADTs. One at the kind level which encodes the shape of lists, and one at
the type level for lists indexed by their shape. Also, write a find function
for your new types. find:: (a -> a -> Bool) -> a -> List sh a ->
Maybe(ListPath sh a), which returns the first path, if one exists.

Since every GADT is comprised of a sum of products, can you define
a single shape kind, that could be used for all parametric datatypes?

Exercise 9. Consider the GADT below.

data Rep :: *0 ~> *0 where

Int :: Rep Int

Prod :: Rep a -> Rep b -> Rep (a,b)

List :: Rep a -> Rep [a]

Construct a few terms. Do you note anything interesting about this
type? Write a function with the following prototype: showR:: Rep a ->
a -> String, which given values of type Rep a and a, displays the second
as a string. Extend this GADT with a few more constructors, then extend
your showR function as well.

3.4 Pattern: Witnesses

GADTs can be used to witness relational properties between types. This
is because the parameters to types introduced using the GADT mecha-
nism can play different roles. The natural number argument of the type
constructor Seq (from Section 2) plays a qualitatively different role than



type arguments in ordinary ADTs. Consider the declaration for a binary
tree datatype in Haskell:

data HTree a = HFork (HTree a) (HTree a) | HNode a | HTip

In this declaration the type parameter a is used to indicate that there
are sub components of HTrees that are of type a. In fact, HTrees are
parametric. Any type of value can be placed in the “sub component” of
type a. The type of the value placed there is reflected in the HTree’s
type. Contrast this with the n in (Seq a n), and the sh in (Tree sh a).
Instead, the parameter n is used to stand for an abstract property (the
length of the list represented), and the parameter sh is used to stand for
the shape of the tree. When we use a type parameter in this way we call
it a type index [40, 43] rather than a type parameter.

We can use indexes to GADTs to define value level data that we
can think of as proofs, or witnesses to type level properties. This is a
powerful idea. Consider the introduction of several new indexed types
Proof, Plus, LE and Even. Note that these are ordinary data structures
that exist at the value level, but describe properties at the type level.

data Proof:: Boolean ~> *0 where

Triv:: Proof T

data Plus:: Nat ~> Nat ~> Nat ~> *0

where

PlusZ:: Plus Z m m

PlusS:: Plus n m z ->

Plus (S n) m (S z)

data LE:: Nat ~> Nat ~> *0 where

LeZ:: LE Z n

LeS:: LE n m ->

LE (S n) (S m)

data Even:: Nat ~> *0 where

EvenZ:: Even Z

EvenSS:: Even n -> Even (S (S n))

These declarations introduce value-level constants (Triv, EvenZ, PlusZ,
and LeZ) and constructor functions (EvenSS, PlusS, and LeS). Values of
these types can be used as proofs about the natural numbers.

To make it easier to enter and display types of kind Nat, in Ωmega,
we have special syntactic sugar for them: Z = 0t, S Z = 1t, and S(S Z)
= 2t, etc. We may also write (1+x)t for S x, and (2+x)t for S(S x),
etc. We introduce this notation here (see Section 3.13 for more detail)
to emphasize that we should view LE, Plus and Even as relationships



between natural numbers. To emphasize this, let’s examine the types of
several values constructed with these constructors.

EvenZ:: Even 0t

(EvenSS EvenZ):: Even 2t

(EvenSS (EvenSS EvenZ)):: Even 4t

p1 ::Plus 2t 3t 5t

p1 = PlusS (PlusS PlusZ)

LeZ:: LE 0t a

(LeS LeZ):: LE 1t (1+a)t

(LeS (LeS LeZ)):: LE 2t (2+a)t

even2 :: Proof {even 2t}

even2 = Triv

The important thing to notice is that we may view ordinary values with
types (LE n m), (Even n), and (Proof {even n}) as proofs, since the
types of all legally constructed values witness only true statements about
n and m. For example we cannot build a term of type (Even 1t). This is
the essence of the Curry-Howard isomorphism.

We can view (EvenSS EvenZ):: Even 2t as either the statement
that (EvenSS EvenZ) has type (Even 2t), or that (EvenSS EvenZ) is
a proof of the property (Even 2t). In the same fashion, the type system
will reject ill-typed terms that witness false statements. For example,
consider the response when we try to type the term Triv with the type
(Proof {even 1t})

bad:: Proof {even 1t}

bad = Triv

While type checking in the scope of:

bad

We need to prove:

Equal {even 1t} T

From the truths:

And the rules:S,Z,

But, The equations: (F=T) => have no solution

All this follows directly from the introduction of new types as GADTs
and the ability to define them, and to compute over them, at arbitrary
levels.

Exercise 10. Construct terms with the types (Plus 2t 3t 5t), (Plus
2t 1t 3t), and (Plus 2t 6t 8t). What did you discover?

Exercise 11. Write an Ωmega function with the following prototype:
summandLessThanOrEqualToSum:: Plus a b c -> LE a c. Hint: it is a
recursive function. Can you write a similar function with type (Plus a
b c -> LE b c)?



3.5 Pattern: Witness vs. Type Function

The reader may have noticed that (Proof {even n}) and (Even n) are
two different ways to express the same notion. Either we write a (Boolean)
function at the type level (even), or introduce a witness type (Even) at
the value level.

The general principle of replacing a boolean function at the type level
with a witness object at the value level, can be further generalized (you
can try this in Exercise 12). The type function does not have to have
Boolean as its range. Instead, for every n-ary function at the type level, we
can build an (n + 1)-ary witness type. We express the equality between a
function call and its result: {function a b} = c as a relation: {Relation
a b c}.

The witness type turns the n-ary function into an (n + 1)-ary type
constructor. Each clause in the function definition is named by a con-
structor function in the witness. If the right-hand-side of a clause has m
recursive calls, the constructor function becomes an m-ary constructor.
The right-hand-side of each clause becomes the (n+1)st argument of the
range, where every recursive call to the function in the right-hand-side, is
replaced with a variable. Each recursive call becomes one of the m argu-
ments. The (n+1)st argument to these calls is the new variable replacing
the corresponding recursive call in the (n+1)st argument of the range. For
example: The clause of the binary function {plus (S n) m} = S {plus n m},
becomes a ternary predicate Plus (S n) m (S {plus n m}). By replacing the
recursive call with z, and making z be the (n+1)st parameter to the first
argument, we get the type of the unary constructor
PlusS:: Plus n m z -> Plus (S n) m (S z).

Exercise 12. Use the pattern above to define a GADT (a type constructor
with 2 arguments) that witnesses the even type function.

Witnesses and type functions express the same ideas, but can be used
in very different ways. Type functions are only useful at compile-time
(they’re static) and their structure cannot be observed (they can only be
applied, so we say they are extensional). Witnesses, on the other hand,
are actual data that is manipulated at run time (they’re dynamic). Their
structure can also be observed and taken apart (we say they’re inten-
sional). They are true data. A big difference between the two ways of
representing properties is the computational mechanisms used to ensure
that programs adhere to such properties.



3.6 Pattern: Singleton Types

Sometimes it is useful to direct computation at the type level, by writing
functions at the value level. Even though types cannot depend on values
directly, this can be simulated by the use of singleton types. The idea is
to build a completely separate isomorphic copy of the type in the value
world, but still retain a connection between the two isomorphic struc-
tures. This connection is maintained by indexing the value-world type
with the corresponding type-world kind. This is best understood by ex-
ample. Consider reflecting the kind Nat into the value-world by defining
the type constructor SNat using a data declaration.

data SNat:: Nat ~> *0 where

Zero:: SNat Z

Succ:: SNat n -> SNat (S n)

three = (Succ (Succ (Succ Zero))):: SNat(S(S(S Z)))

Here, the value constructors of the data declaration for SNat mirror the
type constructors in the kind declaration of Nat. We maintain the connec-
tion between the two isomorphic structures by the use of SNat’s natural
number index. This type index is in one-to-one correspondence with the
shape of the value. Thus, the type index of SNat exactly mirrors its shape.
For example, consider the example three above, and pay particular at-
tention to the structure of the type index, and the structure of the value
with that type.

This kind of relationship between values and types is called a sin-
gleton type because there is only one element of any singleton type. For
example only Succ (Succ Zero) inhabits the type SNat(S (S Z)). It is
possible to define a singleton type for any first order type (of any kind).
All singleton types always have kinds of the form I ~> *0 where I is the
index we are reflecting into the value world. We sometimes call singleton
types representation types. We cannot over emphasize the importance of
the singleton property. Every singleton type completely characterizes the
structure of its single inhabitant, and the structure of a value in a single-
ton type completely characterizes its type. Thus we can compute over a
value of a singleton type, and the computation at the value level can ex-
press a property at the type level. By using singleton types we completely
avoid the use of dependent types where types depend on values [32, 23].
The cost associated with this avoidance is the possible duplication of data
structures and functions at several levels.



3.7 Pattern: A pun: Nat’

We now define the type Nat’, which is identical structurally to the type
SNat. As such, the type Nat’ is also a singleton type representing the
natural numbers, but it relies on a feature of the Ωmega type system.
In Ωmega (as in Haskell) the name space for values is separate from the
name space for types. Thus it is possible to have the same name stand
for two things. One in the value space, and the other in the type space.
The pun is because we use the names S and Z in both the value and type
name spaces. We exploit this ability by writing:

data Nat’:: Nat ~> *0 where

Z:: Nat’ Z

S:: Nat’ n -> Nat’ (S n)

The value constructors Z:: Nat’ Z and S:: Nat’ n -> Nat’ (S n) are
ordinary values whose types mention the type constructors they pun.
The name space partition, and the relationship between Nat and Nat’ is
illustrated below.

← value name space | type name space →
value | type | kind | sort

| Z :: Nat :: *1

| S :: Nat ~> Nat :: *1

Z :: Nat’ Z :: *0 :: *1

S :: Nat’ m -> Nat’ (S m) :: *0 :: *1

In Nat’, the singleton relationship between a Nat’ value and its type is
emphasized even more strongly, as witnessed by the example three’.

three’ = (S(S(S Z))):: Nat’(S(S(S Z)))

Here the shape of the value, and the type index appear isomorphic. We
further exploit this pun, by extending the syntactic sugar for writing
natural numbers at the type level (0t, 1t, etc.) to their singleton types
at the value level. Thus we may write (2t:: Nat’ 2v). See Section 3.13
for details.

Exercise 13. Write the two Ωmega functions with types: same:: Nat’ n
-> LE n n, and predLE:: Nat’ n -> LE n (S n). Hint: they are sim-
ple recursive functions.

Exercise 14. Write the Ωmega function which witnesses the implication
stating the transitivity of the less-than-or-equal-to predicate. trans:: LE
a b -> LE b c -> LE a c. By the curry-Howard isomorphism a total
function between two witnesses



Hint: it is a recursive function with pattern matching over both argu-
ments. One of the cases is not reachable. Which one? Why? See Section
3.10 for how you can document this fact.

Exercise 15. In Exercise 11 we proposed writing a function with type
(Plus a b c -> LE b c). This turned out to be not possible given our
current knowledge. But, it is possible to write a function with type (Nat’
b -> Plus a b c -> LE b c). Write this function. What benefit does
the first Nat’ b argument provide? Hint: both the functions same and
predLE come in useful.

3.8 Pattern: Leibniz Equality

Terminating terms of type (Equal lhs rhs) are values witnessing the
equality of lhs and rhs. The type constructor Equal is defined as:

data Equal :: a ~> a ~> *0 where

Eq:: Equal x x

The type constructor Equal can be applied to any two types, as long
as both are classified by the same classifier a. The classifier a is largely
unconstrained. In Section 3.12 we discuss this in greater depth. Intuitively,
given a term w with type (Equal x y), we can think of w as a proof that
x and y are equal.

Note that Equal is a GADT, since in the type of the constructor Eq
the two type indexes are the same, and not just polymorphic variables
(i.e. the type of Eq is not (Equal x y) but is rather (Equal x x)). The
single constructor (Eq) has a polymorphic type (Equal x x). Ordinar-
ily, if the two arguments of Equal are type-constructor terms, the two
arguments must be the same (or they couldn’t be equal). But, if we al-
low type functions as arguments (see Section 3.2), since many functions
may compute the same result (even with different arguments), the two
terms can be syntactically different (but semantically the same). For ex-
ample (Equal 2t {plus 1t 1t}) is a well formed equality type since
2 is semantically equal to 1+1. The Equal type allows the programmer
to reify the type checkers notion of equality, and to pass this reified evi-
dence around as a value. The Equal type plays a large role in the theorem
declaration (see Section 6).

Exercise 16. Singleton types allow us to construct Equal objects at run-
time. Because of the one-to-one relationship between singleton values and
their types, knowing the shape of a value determines its type. In a similar



manner knowing the type of a singleton determines its shape. Write the
function in Ωmega that exploits this fact: sameNat:: Nat’ a -> Nat’ b
-> Maybe(Equal a b). We have written the first clause. You can finish
it.

sameNat:: Nat’ a -> Nat’ b -> Maybe(Equal a b)
sameNat Z Z = Just Eq

If one wonders how this function is typed, it is very instructive to con-
struct the typing box (as we did for app in Section 2) with expected types,
equations, computed types, and generated equalities.

3.9 Computing Programs and Properties Simultaneously

We can write programs that compute an indexed value along with a wit-
ness that the value has some additional property. For example, when we
add two static length lists, the resulting list has a length that is related
to the lengths of the two input lists, and we can simultaneously produce
a witness to this relationship.

data Plus:: Nat ~> Nat ~> Nat ~> *0 where

PlusZ:: Plus Z m m

PlusS:: Plus n m z -> Plus (S n) m (S z)

app1:: Seq a n -> Seq a m -> exists p . (Seq a p,Plus n m p)

app1 Snil ys = Ex(ys,PlusZ)

app1 (Scons x xs) ys = case (app1 xs ys) of

Ex(zs,p) -> Ex(Scons x zs,PlusS p)

The keyword Ex is the “pack” operator of Cardelli and Wegner [6]. Its
use turns a normal type (Seq a p,Plus n m p) into an existential type
exists p.(Seq a p,Plus n m p). The Ωmega compiler uses a bidirectional
type checking algorithm to propagate the existential type in the signa-
ture inwards to the Ex tagged expressions. This allows it to abstract over
the correct existentially quantified variables.

In a similar manner, given a proof that a ≤ b we can always find a c
such that a + c = b.
smaller :: Proof {le (S a) (S b)} -> Proof {le a b}

smaller Triv = Triv

diff:: Proof {le a b} -> Nat’ a -> Nat’ b ->

exists c .(Nat’ c,Equal {plus a c} b)

diff Triv Z m = Ex (m,Eq)

diff Triv (S m) Z = unreachable

diff (q@Triv) (S x) (S y) =

case diff (smaller q) x y of

Ex (m,Eq) -> Ex (m,Eq)



Exercise 17. The filter function drops some elements from a list. Thus,
the length of the resulting list cannot be known statically. But, we can
compute the length of the resulting list along with the list. Write the
Ωmega function with prototype:
filter :: (a->Bool) -> Seq a n -> exists m . (Nat’ m,Seq a m)

Since filter never adds elements to the list, that weren’t already in the
list, the result-list is never longer than the original list. We can compute
a proof of this fact as well. Write the Ωmega function with prototype:
filter :: (a->Bool) -> Seq a n -> exists m . (LE m n,Nat’ m,Seq a m)

Hint: You may find the functions predLE from Exercise 13 useful.

3.10 Feature: Unreachable Clauses

The keyword unreachable in the second clause of the definition for diff
states that type considerations preclude the flow of control ever reaching
the clause labeled unreachable. This is because the type information in
the function prototype for diff is propagated into the patterns of each
clause. In the second clause the following information is propagated.

Triv :: Proof {le a b}

(S m) :: Nat’ a

Z :: Nat’ b

We compute the type of (S m) to be (Nat’ (S m)), and we compute
the type of Z to be (Nat’ Z), combining this with the propagated type
information we see that a = (S m) and b = Z. Thus the type of Triv
must be Proof {le (S m) Z}. The type function application {le (S m)
Z} reduce to F, but the argument to Proof must be T. These sets of as-
sumptions are inconsistent. So the clause in the scope of these patterns is
unreachable. There are no well-typed arguments, to which we could apply
diff, that would exercise the second clause. The keyword unreachable
indicates to the compiler that we recognize this fact. The reachability of
all unreachable clauses is tested. If they are in fact reachable, an error
is raised. An unreachable clause, without the unreachable keyword also
raises an error.

The point of the unreachable clause is to document that the author of
the code knows that this clause is unreachable, and to help document that
the clauses exhaustively cover all possible cases. The function extract
from exercise 7 and the function trans from exercise 14 could use an
unreachable clause.



3.11 Feature: Staging

Ωmega supports staging annotations: brackets ([| _ |]), escape ($( _ )),
and the two staging functions lift::(forall a . a -> Code a) and
run::(forall a . (Code a) -> a) for building and manipulating code.
Ωmega uses the Template Haskell [25] conventions for creating code.
Brackets ([| _ |]) are a quasi-quotation mechanism, and escape ($( _ ))
escapes from the effects of quasi-quotation. For example.

inc x = x + 1

c1a = [| 4 + 3 |]

c2a = [| \ x -> x + $c1a |]

c3 = [| let f x = y - 1 where y = 3 * x in f 4 + 3 |]

c4 = [| inc 3 |]

c5 = [| [| 3 |] |]

c6 = [| \ x -> x |]

In the examples above, inc is a normal function. The variable c1a names
a piece of code with type Code Int. The variable c2a names a piece of code
with type Code(Int -> Int). It is constructed by splicing the code c1a into
the body of the lambda abstraction. The variable c3 names a piece of
code with type Code Int. It illustrates the ability to define rich pieces of
code with embedded let and where clauses. The variable c4 names a
piece of code with type Code Int. It illustrates that functions defined in
earlier stages (inc) can be lifted (or embedded) in code. The variable c5
names a piece of code with type Code (Code Int). It illustrates that code
can be nested.

The purpose of the staging mechanism is to have finer control over
evaluation order, which is exactly what we want to do when removing the
interpretive overhead of generic programming. Ωmega supports many of
the features of MetaML [24, 36].

Exercise 18. The traditional staged function is the power function. The
term (power 3 x) returns x to the third power. The unstaged power
function can be written as:

power:: Int -> Int -> Int

power 0 x = 1

power n x = x * power (n-1) x

Write a staged power function: pow:: Int -> Code Int -> Code Int
such that (pow 3 [|99|]) evaluates to [| 99 * 99 * 99 * 1 |]. This
can be written simply by placing staging annotations in the unstaged
version.



3.12 Feature: Level Polymorphism

Sometimes we wish to use the same structure at both the value and
type level. One way to do this is to build isomorphic, but different, data
structures at different levels. In Ωmega, we can define a structure to live
at many levels. We call this level polymorphism. For example a Tree type
that lives at all levels can be defined by:

data Tree :: level n . *n ~> *n where

Tip :: a ~> Tree a

Fork :: Tree a ~> Tree a ~> Tree a

Levels are not types. A level variable can only be used as an argument to
the * operator. Level abstraction can only be introduced in the kind part
of a data declaration, but level polymorphic functions can be inferred
from their use of constructor functions introduced in level polymorphic
data declarations.

In the example above, Ωmega adds the type constructor Tree at all
type levels, and the constructors Tip and Fork at the value level as well
at all type levels. We can illustrate this by evaluating a tree at the value
level, and by asking Ωmega for the kind of a similar term at the type
level.

prompt> Fork (Tip 3) (Tip 1)

(Fork (Tip 3) (Tip 1)) : Tree Int

prompt> :k Tip Int

Tip Int :: Tree *0

Another useful pattern is to define normal (*0) datatypes indexable by
types at all levels. For example consider the kind of the type constructor
Equal and the type of its constructor Eq from Section 3.8. Its type can
be more verbosely expressed as follows where the level polymorphism is
explicit (rather than inferred, as it is in Section 3.8).

Equal :: level b . forall (a:*(1+b)).a ~> a ~> *0

Eq :: level b . forall (a:*(1+b)) (c:a:*(1+b)).Equal c c

For all levels b, the type a is classified by a star at level 1+b. Some legal
instances are:

Equal :: forall (a:*1).a ~> a ~> *0 -- when b=0

Equal :: forall (a:*2).a ~> a ~> *0 -- when b=1



Without level polymorphism, the Equal type constructor could only wit-
ness equality between types at a single level, i.e. types classified by a::
*1 but not a:: *2. So (Equal Int Bool) is well formed but (Equal Nat
Tag) would not be, since both Nat and Tag2 are classified by *1:: *2.
For a useful example, the type of labelEq could not be expressed using
a level-monomorphic Equal datatype.

labelEq:: forall (a:Tag) (b:Tag). Label a -> Label b -> Maybe (Equal a b)

This is because the a and b are classified by Tag, and are not classified
by *0.

Exercise 19. A row is a list-like structure that associates a pair of ob-
jects. In Ωmega we write {‘a=Int,‘z=Bool}r for the row classified by
(Row Tag *0), which associates the Tag ‘a with Int, and ‘z with Bool.
In general we’d like not to restrict rows to any single level. Level poly-
morphism comes in handy here. Define a GADT, MyRow, that defines a
level polymorphic row type at level 1, but which is indexed by a pair of
types from any level. I.e. MyRow should be classified as follows:

MyRow :: level d b . forall (a:*(2+b)) (c:*(2+d)). a ~> c ~> *1

3.13 Feature: Syntactic Extension

Many languages supply syntactic sugar for constructing homogeneous se-
quences and heterogeneous tuples. For example in Haskell lists are of-
ten written with bracketed syntax, [1,2,3], rather than a constructor
function syntax, (Cons 1 (Cons 2 (Cons 3 Nil))), and tuples are of-
ten written as (5,"abc") and (2,True,[]) rather than (Pair 5 "abc")
and (Triple 2 True []). In Ωmega we supply special syntax for four
different kinds of data, and allow users to use this syntax for data they
define themselves. Ωmega has special syntax for list-like, natural-number-
like, pair-like, and record-like types. Some examples in the supported syn-
tax are: [4,5]i, (2+n)j, (4,True)k, and {"a"=5, "b"=6}h. In general,
the syntax starts with list-like, natural-number-like, record-like, or pair-
like syntax, and is terminated by a tag. A programmer may specify that
a user defined type should be displayed using the special syntax with a
given tag. Each tag is associated with a set of functions (a different set
for list-like, natural-number-like, record-like, and pair-like types). Each
term written using the special syntax (with tag i) expands into a call of

2 See Section 3.14.



the functions specified by tag i. For example 2i expands to S(S Z)) if the
functions associated with i are S and Z. We now explian the details for
each case.

The list-like syntax associates two functions with each tag. These
functions play the role of Nil and Cons. For example if the tag “i” is
associated with the functions (C,N), then the expansion is as follows.

[]i ---> N

[x,y,z]i ---> C x(C y (C z N))

[x;xs]i ---> (C x xs)

[x,y ; zs]i ---> C x (C y zs)

The semicolon may only appear before the last element in the square
brackets. In this case, the last element stands for the tail of the resulting
list.

The natural-number-like syntax associates two functions with each
tag. These functions play the role of Zero and Succ. For example if the
tag “i” is associated with the functions (Z,S), then the expansion is as
follows.

4i ---> S(S(S(S Z)))

0i ---> Z

(2+x)i ---> S(S x)

In earlier versions of Ωmega, before the addition of syntactic exten-
sions, values of the built in types Nat and Nat’, could be specified using
the syntax #4. For backward compatibility reasons, this is currently still
supported and is equivalent to either 4t (i.e. S(S(S(S Z)))) in the type
name space, and 4v (i.e. S(S(S(S Z)))) in the value name space.

The tuple-like syntax associates one function with each tag. This func-
tion plays the role of a binary constructor. For example if the tag “i” is
associated with the function P, then the expansion is as follows.

(a,b)i ---> P a b

(a,b,c)i ---> P a (P b c)

(a,b,c,d)i ---> P a (P b (P c d))

The record-like syntax associates two functions with each tag. These
functions play the role of the constant RowNil and the ternary function
RowCons. For example, if the tag “i” is associated with the functions
(RN,RC), then the expansion is as follows.

{}i ---> RN

{a=x,b=y}i ---> RC a x (RC b y RN)

{a=x;xs}i ---> (RC a x xs)

{a=x,b=y ; zs}i ---> RC a x (RC b y zs)



Syntactic extension can be applied to any GADT, at either the value
or type level. The new syntax can be used by the programmer for terms,
types, or patterns. Ωmega uses the new syntax to display such terms. The
constructor based mechanism can also still be used. The tags are specified
using a deriving clause in a GADT. See Section 5.9 for an example use of
this feature that makes Ωmega code easy to read and understand.

Exercise 20. Consider the GADT with syntactic extension “i”.

data Nsum:: *0 ~> *0 where

SumZ:: Nsum Int

SumS:: Nsum x -> Nsum (Int -> x)

deriving Nat(i)

What is the type of the terms 0i, 1i, and 2i? Can you write a function
with prototype: add:: Nsum i -> i, where (add n) is a function that
sums n integers. For example: add 3i 1 2 3 −→ 6.

3.14 Feature: Tags and Labels

Many object languages have a notion of name. To make representing
names in the type system easy we introduce the notion of Tags and Labels.
As a first approximation, consider the finite kind Tag and its singleton
type Label:

data Tag:: *1 where

A:: Tag

B:: Tag

C:: Tag

data Label:: Tag ~> *0 where

A:: Label A

B:: Label B

C:: Label C

Here, we again deliberately use the value-name space, type-name space
overloading. The names A, B, and C name different, but related, objects
at both the value and type level. At the value level, every Label has a
type index that reflects its value. I.e. A::Label A, and B::Label B, and
C::Label C. Now consider a countably infinite set of tags and labels. We
can’t define this explicitly, but we can build such a type as a primitive
inside of Ωmega. At the type level, every legal identifier whose name
is preceded by a back-tick (‘) is a type classified by the kind Tag. For
example the type ‘abc is classified by Tag. At the value level, every such
symbol ‘abc is classified by the type (Label ‘abc).



There are several functions that operate on labels. The first is labelEq
which compares two labels for equality. Since labels are singletons, a sim-
ple true or false answer would be useless. Instead labelEq returns a Leib-
niz proof of equality (see Section 3.8) that the Tag indexes of identical
labels are themselves equal.

labelEq :: forall (a:Tag) (b:Tag).Label a -> Label b -> Maybe (Equal a b)

prompt> labelEq ‘w ‘w

(Just Eq) : Maybe (Equal ‘w ‘w)

prompt> labelEq ‘w ‘s

Nothing : Maybe (Equal ‘w ‘s)

Fresh labels can be generated by the function freshLabel. Since the
Tag index for such a label is unknown, the generator must return a struc-
ture where the Tag indexing the label is existentially quantified. Since
every call to freshLabel generates a different label, the freshLabel op-
eration must be an action in the IO monad. The function newLabel co-
erces a string into a label. It too, must existentially hide the Tag indexing
the returned label. But, because it always returns the same label when
given the same input it can be a pure function.

freshLabel :: IO HiddenLabel

newLabel:: String -> HiddenLabel

data HiddenLabel :: *0 where

Hidden:: Label t -> HiddenLabel

We illustrate this at the top-level loop. The Ωmega top-level loop
executes IO actions, and evaluates and prints out the value of expressions
with other types.

prompt> freshLabel

Executing IO action -- An IO action

(Hidden ‘#cbp) : IO HiddenLabel

prompt> temp <- freshLabel -- An IO action

Executing IO action

(Hidden ‘#sbq) : HiddenLabel

prompt> temp

(Hidden ‘#sbq) : HiddenLabel

prompt> newLabel "a" -- A pure value

(Hidden ‘a) : HiddenLabel



Exercise 21. A common use of labels is to name variables in a data struc-
ture used to represent some object language as data. Consider the GADT
and an evaluation function over that object type.

data Expr:: *0 where

VarExpr :: Label t -> Expr

PlusExpr:: Expr -> Expr -> Expr

valueOf:: Expr -> [exists t .(Label t,Int)] -> Int

valueOf (VarExpr v) env = lookup v env

valueOf (PlusExpr x y) env = valueOf x env + valueOf y env

Write the function: lookup:: Label v -> [exists t .(Label t,Int)] -> Int.

4 Maintaining Structural Invariants of Data

Both Seq and Tree use kinds as indexes (Nat for Seq, and Shape for
Tree) to maintain an invariant about the shape of the data. This is quite
common. In this section we illustrate this in more detail by examining
the world of balanced trees.

4.1 AVL Trees

Binary search trees are a classic data structure for implementing finite
maps or sets in a purely functional way. To guarantee efficient operations,
we want our trees to be somewhat balanced. There are several ways to
define what it means for a tree to be balanced, each leading to different
data structures such as Red-Black trees, AVL trees, B-trees, etc. In this
section we implement AVL trees in such a way that Ωmega’s type system
guarantees compliance with the balancing invariant.

Types Expressing Invariants. The balancing invariant for AVL trees
is simple: any internal node in the tree has children whose heights differ
by no more than one. In this section, we define types that express this
invariant. Here is our core data structure for AVL trees (indexed by tree
height).

data Avl :: Nat ~> *0 where

Leaf :: Avl Z

Node :: Balance hL hR hMax -> Avl hL -> Int -> Avl hR -> Avl (S hMax)

A binary tree has two constructors – one for (empty) leaves and one for
internal nodes carrying data. An auxiliary type captures the balancing
constraints.



data Balance:: Nat ~> Nat ~> Nat ~> *0 where

Less :: Balance h (S h) (S h)

Same :: Balance h h h

More :: Balance (S h) h (S h)

Think of the type Balance hL hR hMax as a predicate stating (1) that
hL and hR differ by at most one, and (2) that hMax is the maximum of hL
and hR. For any given internal node, there are only three possibilities for
the relative heights of its subtrees:

1 + hL = hR or hL = hR or hL = hR+ 1

These three possibilities correspond to the three constructors of the
datatype Balance. Under this interpretation of Balance, we see that the
h in (Avl h) really does capture the height of the tree (leaves have height
zero and the height of an internal node is the successor of the maximum
of the heights of its children).

Finally, we would like to protect users of our library from having
to deal with height indices in their own code. To this end, we define a
wrapper type that hides away the height index.

data AVL:: *0 where

AVL:: (Avl h) -> AVL

In this type the h is existentially quantified. This is the type that users
will see.

The data declarations are all the code we ever need write to guar-
antee that every AVL tree in our library is well-balanced. Because these
type declarations express the balancing invariants, the problem of decid-
ing whether our implementation respects those invariants reduces to the
problem of deciding type-correctness, which the Ωmega type-checker does
for us automatically.

Basic operations. The two most basic operations are constructing an
empty tree and testing an element for membership in the tree.

empty :: AVL

empty = AVL Leaf

element :: Int -> AVL -> Bool

element x (AVL t) = elem x t

elem :: Int -> Avl h -> Bool

elem x Leaf = False

elem x (Node _ l y r)



| x == y = True

| x < y = elem x l

| x > y = elem x r

The remaining operations of insertion and deletion are much more inter-
esting.

Balancing Constructors. The algorithms for insertion and deletion
each follow the same basic pattern: First do the insertion (or deletion) as
you would for any other binary search tree. Then re-balance any subtree
that became unbalanced in the process. The tool used for re-balancing is
tree rotation, which is best described visually.

A B
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x
y

=⇒
⇐=

A
B C

x
y

The transformation of the tree on the left to the tree on the right is
right rotation and the opposite transformation is called left rotation. This
operation preserves the BST invariant. However, they do not preserve the
balancing invariant, which is precisely why they are useful for rebalancing.

It turns out that we can package up all necessary rotations into a
couple of smart constructors, rotr and rotl. Think of rotr lc x rc as
a smart version of Node ? lc x rc where

1. We don’t have to say (or know) how the resulting tree is balanced,
and

2. The subtrees, lc and rc, don’t quite balance out because height(lc)
= height(rc) + 2 and therefore we must do some rightward rebal-
ancing rotation(s).

The only wrinkle in the “smart constructor” story is that the height
of the resulting tree depends on what rotations were performed. However,
the result height ranges over merely two values, so we just return a value
of a sum type3. Here is the code:

rotr :: Avl (2+n)t -> Int -> Avl n -> ( Avl(2+n)t + Avl (3+n)t )

rotr Leaf x a = unreachable

rotr (Node Less a x Leaf) y b = unreachable

3 In Ωmega the value constructors L :: a -> (a+b) and R :: b -> (a+b) are used
to construct sums.



rotr (Node Same a x b) y c = R(Node Less a x (Node More b y c))
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rotr (Node More a x b) y c = L(Node Same a x (Node Same b y c))

A B
C

x
y

A
B C

x
y

rotr (Node Less a x

(Node Same b y c)) z d
=

L(Node Same (Node Same a x b) y

(Node Same c z d) )

A
B C

D

x
y

z

A B C D

x
y

z

rotr (Node Less a x

(Node Less b y c)) z d
=

L(Node Same (Node More a x b) y

(Node Same c z d) )
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Fig. 2. Each substantive case in the definition of rotr.



-- single rotations

rotr (Node Same a x b) y c = R(Node Less a x (Node More b y c))

rotr (Node More a x b) y c = L(Node Same a x (Node Same b y c))

-- double rotations

rotr (Node Less a x (Node Same b y c)) z d =

L(Node Same (Node Same a x b) y (Node Same c z d))

rotr (Node Less a x (Node Less b y c)) z d =

L(Node Same (Node More a x b) y (Node Same c z d))

rotr (Node Less a x (Node More b y c)) z d =

L(Node Same (Node Same a x b) y (Node Less c z d))

Figure 2 depicts the rotation for each substantive case in the definition
of rotr. The algorithm for rotl is perfectly symmetric to that for rotr.

rotl :: Avl n -> Int -> Avl (2+n)t -> ( Avl (2+n)t + Avl (3+n)t )

rotl a x Leaf = unreachable

rotl a x (Node More Leaf y b) = unreachable

-- single rotations

rotl a u (Node Same b v c) = R(Node More (Node Less a u b) v c)

rotl a u (Node Less b v c) = L(Node Same (Node Same a u b) v c)

-- double rotations

rotl a u (Node More (Node Same x m y) v c) =

L(Node Same (Node Same a u x) m (Node Same y v c))

rotl a u (Node More (Node Less x m y) v c) =

L(Node Same (Node More a u x) m (Node Same y v c))

rotl a u (Node More (Node More x m y) v c) =

L(Node Same (Node Same a u x) m (Node Less y v c))

As these functions are both self-contained and non-recursive, we see that
they operate in constant time.

Insertion. When we insert an element into an AVL tree, the height of
the tree either remains the same or increases by at most one. We therefore
arrive at the following type for insertion:

ins :: Int -> Avl n -> (Avl n + Avl (S n))

The code for ins is an elaborate case analysis. The first decision to
make is whether we’re at the right spot for insertion. If so, then do the
insertion (or not, depending on whether the value already exists in the
tree), and then return. If not, make the appropriate recursive call and
then rebalance. Most of the work goes into determining how to rebuild
a balanced tree by choosing the correct Balance value or rebalancing
constructor.

ins :: Int -> Avl n -> (Avl n + Avl (S n))



ins x Leaf = R(Node Same Leaf x Leaf)

ins x (Node bal a y b)

| x == y = L(Node bal a y b)

| x < y = case ins x a of

L a -> L(Node bal a y b)

R a ->

case bal of

Less -> L(Node Same a y b)

Same -> R(Node More a y b)

More -> rotr a y b -- rebalance!

| x > y = case ins x b of

L b -> L(Node bal a y b)

R b ->

case bal of

Less -> rotl a y b -- rebalance!

Same -> R(Node Less a y b)

More -> L(Node Same a y b)

Figure 3 depicts each case in the x < y branch. Now we wrap this function
up to work on user-level AVL trees.

insert :: Int -> AVL -> AVL

insert x (AVL t) = case ins x t of L t -> AVL t; R t -> AVL t

Deletion. Whereas insertion always places an element in the fringe of a
tree, deletion may find the targeted element somewhere in the interior.
For this reason, deletion is a more complex operation. The strategy for
deleting the value x at an interior node is to first replace its value with
that of the minimum value z of its right child (or the maximum value of
its left child, depending on the policy). Then delete z (which is always at
a leaf) from the right child.

We will calculate the minimum value in a tree and delete it in a single
pass. The operation only works on trees of height ≥ 1 (which are therefore
non-empty). The returned tree might have decreased in size by one.

delMin :: Avl (S n) -> (Int, (Avl n + Avl (S n)))

delMin Leaf = unreachable

delMin (Node Less Leaf x r) = (x,L r)

delMin (Node Same Leaf x r) = (x,L r)

delMin (Node More Leaf x r) = unreachable

delMin (Node bal (l@(Node _ _ _ _)) x r) =

case delMin l of

(y,R l) -> (y,R(Node bal l x r))

(y,L l) ->

case bal of
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Fig. 3. Rebalancing after insertion into the left child.



Same -> (y,R(Node Less l x r))

More -> (y,L(Node Same l x r))

Less -> (y,rotl l x r) -- rebalance!

Deletion of the minimum element requires rebalancing operations on the
way up, just as in insertion.

When we delete an element from an AVL tree, the height of the tree
either remains the same or decreases by at most one. We therefore arrive
at the following type for deletion:

del :: Int -> Avl (S n) -> (Avl n + Avl (S n))

The code for del is an elaborate case analysis. The first decision to
make is whether we’re at the right spot for deletion. If so, then do the
deletion (or not, depending on whether the value exists in the tree) and
return. If not, make the appropriate recursive call and then rebalance.
Most of the work goes into determining how to rebuild a balanced tree
by choosing the correct Balance value or rebalancing constructor.

del :: Int -> Avl n -> (Avl n + exists m .(Equal (S m) n,Avl m))

del y Leaf = L Leaf

del y (Node bal l x r)

| y == x = case r of

Leaf ->

case bal of

Same -> R(Ex(Eq,l))

More -> R(Ex(Eq,l))

Less -> unreachable

Node _ _ _ _ ->

case (bal,delMin r) of

(_,z,R r) -> L(Node bal l z r)

(Same,z,L r) -> L(Node More l z r)

(Less,z,L r) -> R(Ex(Eq,Node Same l z r))

(More,z,L r) ->

case rotr l z r of -- rebalance!

L t -> R(Ex(Eq,t))

R t -> L t

| y < x = case del y l of

L l -> L(Node bal l x r)

R(Ex(Eq,l)) ->

case bal of

Same -> L(Node Less l x r)

More -> R(Ex(Eq,Node Same l x r))

Less ->

case rotl l x r of -- rebalance!

L t -> R(Ex(Eq,t))

R t -> L t



| y > x = case del y r of

L r -> L(Node bal l x r)

R(Ex(Eq,r)) ->

case bal of

Same -> L(Node More l x r)

Less -> R(Ex(Eq,Node Same l x r))

More ->

case rotr l x r of -- rebalance!

L t -> R(Ex(Eq,t))

R t -> L t

Now we wrap this function up to work on user-level AVL trees.

delete :: Int -> AVL -> AVL

delete x (AVL t) = case del x t of L t -> AVL t; R t -> AVL t

Exercise 22. Red Black Trees. A red-black tree is a binary search tree
with the following additional invariants:

1. Each node is colored either red or black
2. The root is black
3. The leaves are black
4. Each Red node has Black children
5. For all internal nodes, each path from that node to a descendant leaf

contains the same number of black nodes.

We can encode these invariants by thinking of each internal node as
having two attributes: a color and a black-height. We will use a GADT, we
call SubTree, with two indexes, one of them a Nat (for the black-height)
and the other a Color.

data Color:: *1 where

Red:: Color

Black:: Color

data SubTree:: Color ~> Nat ~> *0 where

Leaf:: SubTree Black Z

RNode:: SubTree Black n -> Int -> SubTree Black n -> SubTree Red n

BNode:: SubTree cL m -> Int -> SubTree cR m -> SubTree Black (S m)

data RBTree:: *0 where

Root:: SubTree Black n -> RBTree

Note how the black height increases only on black nodes. The type RBTree
encodes a “full” Red-Black tree, forcing the root to be black, but placing
no restriction on the black-height. Write an insertion function for Red-
Black trees. A solution to this exercise is found in Appendix A.



5 Ωmega as a Meta Language

It has become common practice when designing a new language to study
the relationship between a static semantics (a type system) and a dy-
namic semantics (a meaning function). This process is often exploratory.
The designer has an idea, the approach is analyzed, and hopefully the
consequences of the approach are quickly discovered. Automated aid in
this process would be a great boon.

The ultimate goal of this exploratory process is a type system, a se-
mantics, and a proof. The proof witnesses the fact that well-typed pro-
grams do not go wrong[16] for the language under consideration. The most
common way to perform such a proof is by a subject reduction proof in
the style of Wright and Felleisen[39] on a small step semantics, though
there other approaches as well[16, 10]. Such proofs require an amazing
amount of detail and are most often carried out by hand, and are thus
subject to all the foils of human endeavors.

Ωmega is our attempt at developing a generic meta-language that
could be used for exploring the static and dynamic semantics for new
object-languages[19, 26] that could aid in the generation of such proofs.
This section describes how Ωmega can be used as a meta-language. We
show that:

– Much of the work of exploring the nuances of a type system for a
new language can be assisted by using mechanized tools – a generic
meta-language.

– Such tools need not be much more complicated than your favorite
functional language (Haskell), and are thus within the reach of most
language researchers.

– The automation helps language designers visualize the consequences
of their design choices quickly, and thus helps speed the design process.

– The artifacts created by this exploration are machine checked proofs,
and are hence less subject to error than proofs constructed by the
more traditional approach.

5.1 Object Languages

In meta-programming systems meta-programs manipulate object-programs.
Meta-programs may construct object-programs, combine object-program
fragments into larger object-programs, observe the structure and other
properties of object-programs, and execute object-programs to obtain
their values.



There are several important kinds of meta-programming scenarios:
program generators, and program analyses. Each of these scenarios has a
number of distinguishing characteristics.

A program generator (a meta-program) solves a particular problem
by constructing another program (an object-program) that solves the
problem at hand. Usually the generated (object) program is “specialized”
for the particular problem and uses less resources than a general purpose,
non-generator solution.

A program analysis (a meta-program) observes the structure and en-
vironment of an object-program and computes some value as a result. Re-
sults can be data- or control-flow graphs, or even another object-program
with properties based on the properties of the source object-program.
Examples of these kinds of meta-systems are: program transformers, op-
timizers, and partial evaluation systems.

A language model (a meta-program) gives meaning to, and points out
properties of an object-language. Examples of these include type systems,
type judgments, denotational and operational semantics, and small-step
semantics.

5.2 Representing Object Programs

Meta-programs must represent object-programs as data. Object program
representations usually fall into one of three categories. (1) Strings, (2)
Algebraic datatypes, or (3) Quasi-quote systems. Other representations
(as graphs for example) are possible, but not widespread.

With the string encoding, we represent the code fragment f(x,y)
simply as "f(x,y)". While constructing and combining fragments rep-
resented by strings can be done concisely, deconstructing them is quite
verbose, and in essence degenerates into a parsing problem. More seri-
ously, there is no automatically verifiable guarantee that programs thusly
constructed are syntactically correct. For example, "f(,y)" can have the
static type string, but this clearly does not imply that this string rep-
resents a syntactically correct program.

5.3 Object-programs as Algebraic Datatypes

With the Algebraic datatype encoding, we can address the syntactic cor-
rectness problem. A datatype encoding is essentially the same as what
is called abstract syntax or parse trees. The encoding of the fragment
plus(x,y) in an Ωmega datatype might be:



Apply Plus (Tuple [Variable "x" ,Variable "y"])

using a datatype declared as follows:

data Exp:: *0 where

Variable:: String -> Exp -- x

Constant:: Int -> Exp -- 5

Plus:: Exp -- plus

Less:: Exp -- less

Apply:: Exp -> Exp -> Exp -- Apply Plus (x,y)

Tuple:: [Exp] -> Exp -- (x,y)

Using a datatype encoding has an immediate benefit: correct typing
for the meta-program ensures correct syntax for all object-programs. Be-
cause Ωmega (like most functional languages) supports pattern matching
over datatypes, deconstructing programs becomes easier than with the
string representation. However, constructing programs is now more ver-
bose because we must use the cumbersome constructors like Variable,
Apply, and Tuple.

5.4 Representing Programs using Quasi-quotes

Quasi-quotation is an attempt to represent object-programs without cum-
bersome constructor functions. Here the actual representation of object-
code is hidden from the user by the means of a quotation mechanism.
Object code is constructed by placing “quotation” annotations around
normal code fragments. The quasi-quotation approach is the approach
used in MetaML, Template Haskell, and the staged fragment of Ωmega.

In the staged fragment of Ωmega (Section 3.11), quasi-quotations are
called staging annotations, and include Brackets [| |] and Escape $.
An expression [| e |] is a quotation, and it builds the code represen-
tation of e (a data structure); $(e) is an anti-quotation, and splices the
code obtained by evaluating e into the body of a surrounding bracketed
expression (embedding one data structure into another). The quotation
and anti-quotation mechanism abstracts the actual data-type represent-
ing code.

In a quasi-quoted system, the meta-language may now enforce the
type-correctness of the object language as well as the meta-language, and
avoid the problems associated with a constructor based approach. The
major disadvantages of quasi-quoted systems are

– There is usually only a single object-language, and it must be built
into the meta-language.



– The quasi-quote mechanism is great for constructing code, but less
useful for taking code apart, especially code with binding constructs.

– The type system of the meta-language must be aware of the type
system of the object language. Usually this is accomplished by mak-
ing the meta-language and the object-language the same language.
Heterogeneous quasi-quote systems are rare because of this.

In the remainder of this section, we eschew the quasi-quote mechanism
in favor of using GADTs in an effort to address these disadvantages.

5.5 Interpreters in a Typed Meta-language

Often one would like to build an interpreter or evaluation function for
an object-language. In a typed meta-language, it is necessary to define
a Value domain, that is a labeled sum of all the possible result types of
evaluating an expression. In the Exp type above this would include both
integers and booleans (as these are the types of the ranges of the functions
Plus and Less), as well as functions and tuples.

data Value :: *0 where

IntV:: Int -> Value

BoolV:: Bool -> Value

FunV:: (Value -> Value) -> Value

TupleV :: [Value] -> Value

The evaluation function is then a case analysis over the structure of
terms, recursively evaluating sub-terms into values, and then combining
the sub-values into answer values.

eval:: (String -> Value) -> Exp -> Value

eval env (Variable s) = env s

eval env (Constant n) = IntV n

eval env Plus = FunV plus

where plus (TupleV[IntV n ,IntV m]) = IntV(n+m)

eval env Less = FunV plus

where plus (TupleV[IntV n ,IntV m]) = BoolV(n < m)

eval env (Apply f x) =

case eval env f of

FunV g -> g (eval env x)

eval env (Tuple xs) = TupleV(map (eval env) xs)

The key observation is – there is considerable overhead in such a func-
tion. It must first interpret the structure of the expressions, and it must
perform quite a bit of tagging and un-tagging by applying the Value
constructors (IntV, BoolV, FunV, and TupleV), and deconstructing them
when appropriate.



5.6 Staging an Interpreter

We may remove the interpretive overhead by using staging. Like the eval-
uation function, the staged evaluation function is a case analysis over the
structure of terms, recursively evaluating sub-terms into code values, and
then splicing the smaller code values into larger code values.

stagedEval:: (String -> Code Value) -> Exp -> Code Value

stagedEval env (Variable s) = env s

stagedEval env (Constant n) = lift(IntV n)

stagedEval env Plus = [| FunV plus |]

where plus (TupleV[IntV n ,IntV m]) = IntV(n+m)

stagedEval env Less = [| FunV less |]

where less (TupleV[IntV n ,IntV m]) = BoolV(n < m)

stagedEval env (Apply f x) =

[| apply $(stagedEval env f) $(stagedEval env x) |]

where apply (FunV g) x = g x

stagedEval env (Tuple xs) = [| TupleV $(mapLift (stagedEval env) xs) |]

where mapLift f [] = lift []

mapLift f (x:xs) = [| $(f x) : $(mapLift f xs) |]

We may observe the result of staging by applying stagedEval to an
actual Exp.

exp1 = Apply Plus (Tuple [Variable "x" ,Variable "y"]) -- (+)(x,y)

ans = stagedEval f exp1

where f "x" = lift(IntV 3)

f "y" = lift(IntV 4)

ans = [| %apply (%FunV %plus) (%TupleV [IntV 3,IntV 4]) |] : Code Value

We have removed the interpretive overhead, but the tagging and un-
tagging overhead remains. This overhead is caused by using a disjoint
sum as the range of the evaluator, which is necessary in a typed meta-
language. This not the only problem when using algebraic datatypes to
encode object-languages in a strongly typed meta-language like Haskell.
The algebraic datatype approach to encoding object-languages does not
track the type correctness of the object-program. We will fix both these
problems by representing object-programs using GADTs rather than Al-
gebraic datatypes.

5.7 Typed Object-languages using GADTs

GADTs allow us to build datatypes indexed by another type. We can
use the GADT to represent object programs (just as we use algebraic



datatype to represent object programs), but we may also use the type
index to represent the type of the object-language program being repre-
sented. A simple typed object-language example is:

data Term:: *0 ~> *0 where

Const :: Int -> Term Int -- 5

Add:: Term ((Int,Int) -> Int) -- (+)

LT:: Term ((Int,Int) -> Bool) -- (<)

Ap:: Term(a -> b) -> Term a -> Term b -- (+) (x,y)

Pair:: Term a -> Term b -> Term(a,b) -- (x,y)

Above we introduced the new type constructor Term, which is a rep-
resentation of a simple object-language of constants, pairs, and numeric
operators. Terms are a typed object-language representation, i.e. a data
structure that represents terms in some object-language. The meta-level
type of the representation, i.e. the a in (Term a), indicates the type of the
object-level term. This is made possible by the flexibility of the GADT
mechanism. Using typed object-level terms, it is impossible to construct
ill-typed term representations, because the meta-language type system
enforces this constraint.

ex1 :: Term Int

ex1 = Ap Add (Pair (Const 3) (Const 5))

ex2 :: Term (Int,Int)

ex2 = Pair ex1 (Const 1)

Attempting to construct an ill-typed object term, like (Ap (Const 3)
(Const 5)), causes a meta-level (Ωmega) type error. Another advantage
of using GADTs rather than ADTs is that it is now possible to construct
a tagless[19, 35, 34] interpreter directly:

evalTerm :: Term a -> a

evalTerm (Const x) = x

evalTerm Add = \ (x,y) -> x+y

evalTerm LT = \ (x,y) -> x<y

evalTerm (Ap f x) = evalTerm f (evalTerm x)

evalTerm (Pair x y) = (evalTerm x,evalTerm y)

In a language without GADTs, as we illustrated in Section 5.7, we
would need to employ universal value domain like Value. See [18] for a
detailed discussion of this phenomena. Such a tagless interpreter has the
structure of a large step (or operational) semantics. If the eval function
is total and well-typed at the meta-level, it implies that the object-level
semantics (defined by eval) is also well-typed. Every well-typed object
level term evaluates to a well-formed value.



Exercise 23. In the object-languages we have seen so far, there are no
variables. One way to add variables to a typed object language is to
add a variable constructor tagged by a name and a type. A singleton
type representing all the possible types of a program term is necessary.
For example we may add a Var constructor as follows (where the Rep is
similar to the Rep type from Exercise 9).
data Term:: *0 ~> *0 where

Var:: String -> Rep t -> Term t -- x

Const :: Int -> Term Int -- 5

. . .

Write a GADT for Rep. Now the evaluation function for Term needs
an environment that can store many different types. One possibility is use
existentially quantified types in the environment as we did in Exercise 21.
Something like:
type Env = [exists t . (String,Rep t,t)]

eval:: Term t -> Env -> t

Write the evaluation function for the Term type extended with vari-
ables. You will need a function akin to sameNat from Exercise 16, except
it will have prototype: sameRep:: Rep a -> Rep b -> Maybe(Equal a
b)

Exercise 24. Another way to add variables to a typed object language is
to reflect the name and type of variables in the meta-level types of the
terms in which they occur. Consider the GADTs:
data VNum:: Tag ~> *0 ~> Row Tag *0 ~> *0 where

Zv:: VNum l t (RCons l t row)

Sv:: VNum l t (RCons a b row) -> VNum l t (RCons x y (RCons a b row))

deriving Nat(u)

data Exp2:: Row Tag *0 ~> *0 ~> *0 where

Var:: Label v -> VNum v t e -> Exp2 e t

Less:: Exp2 e Int -> Exp2 e Int -> Exp2 e Bool

Add:: Exp2 e Int -> Exp2 e Int -> Exp2 e Int

If:: Exp2 e Bool -> Exp2 e t -> Exp2 e t -> Exp2 e t

What are the types of the terms (Var ‘x 0u), (Var ‘x 1u), and
(Var ‘x 2u). Now the evaluation function for Exp2 needs an environment
that stores both integers and booleans. Write a datatype declaration for
the environment, and then write the evaluation function. One way to
approach this is to use existentially quantified types in the environment
as we did in Exercises 21 and 23. Better mechanisms exist. Can you think
of one?



5.8 Tagless Staged Interpreters

By staging an object-level type indexed GADT we can remove both the
interpretive and tagging overhead.

stagedEvalTerm :: Term a -> Code a

stagedEvalTerm (Const x) = lift x

stagedEvalTerm Add = [| add |]

where add (x,y) = x+y

stagedEvalTerm LT = [| less |]

where less (x,y) = x < y

stagedEvalTerm (Ap f x) = [| $(stagedEvalTerm f) $(stagedEvalTerm x) |]

stagedEvalTerm (Pair x y) = [|($(stagedEvalTerm x),$(stagedEvalTerm y))|]

ex2 = (Pair (Ap Add (Pair (Const 3) (Const 5))) (Const 1))

We can stage a program like ex2 by applying stagedEvalTerm to
produce some code. For ex2 we get: [| (add (3, 5), 1) |]. Note that
both the interpretive overhead, and the tagging overhead, have been com-
pletely removed.

Exercise 25. A staged evaluator is a simple compiler. Many compilers
have an optimization phase. Consider the term language with variables
from Exercise 23.

data Term:: *0 ~> *0 where

Var:: String -> Rep t -> Term t

Const :: Int -> Term Int -- 5

Add:: Term ((Int,Int) -> Int) -- (+)

LT:: Term ((Int,Int) -> Bool) -- (<)

Ap:: Term(a -> b) -> Term a -> Term b -- (+) (x,y)

Pair:: Term a -> Term b -> Term(a,b) -- (x,y)

Can you write a well-typed staged evaluator the performs optimiza-
tions like constant folding, and applies laws like (x + 0) = x before gen-
erating code?

5.9 A Typed-Object Language with Binding

Object languages with variables and binding structures are harder to
represent in a way that reflects the type of the object-language term in
the type of its meta-language representation.

This is because if we change the type of the object-level variables,
the type of the whole object-level term may also change. The key to this
dilemma is to represent the type of the free variables in a term, as well
as the type of the term, in the type of its meta-level representation. We



do this by indexing terms by two indexes: first, the terms object-level
type, and second, a type level structure encoding the environment (i.e. a
mapping from variables to their types) in which the term has that type.

If we represent variables by labels (see Section 3.14), we can represent
the environment by a row. A Row is nothing more than a list-like structure
(storing pairs of elements at each “cons” node) at the type level (see
Exercise 19).

data Row :: a ~> b ~> *1 where

RNil :: Row x y

RCons :: x ~> y ~> Row x y ~> Row x y

deriving Record(r)

For example the type: (RCons 3t Int RNil) is classified by (Row
Nat *0). Note that we have defined a syntactic extension for rows tagged
by r. Thus (RCons 3t Int RNil) will display as {3t=Int}r. An envi-
ronment is just a type classified by (Row Tag *0). We define a new value
level type, Lam, indexed by environments (represented by (Row Tag *0))
and types (represented by *0).

data Lam:: Row Tag *0 ~> *0 ~> *0 where

Var :: Label s -> Lam (RCons s t env) t

Shift :: Lam env t -> Lam (RCons s q env) t

Abs :: Label a -> Lam (RCons a s env) t -> Lam env (s -> t)

App :: Lam env (s -> t) -> Lam env s -> Lam env t

The first index to Lam, is a Row tracking its variables, and the second
index, tracks the object-level type of the term. For example a term with
variables x and y might have type Lam {‘x:Int, ‘y:Bool; u}r Int.

The key to this approach is the typing of the constructor functions
for variables (Var) and lambda expressions (Abs). Consider the Var con-
structor function. To construct a variable we simply apply Var to a label,
and its type reflects this. For example here is the output from a short
interactive session with the Ωmega interpreter.

prompt> Var ‘name

(Var ‘name) : forall a (b:Row Tag *0).Lam {‘name=a; b}r a

prompt> Var ‘age

(Var ‘age) : forall a (b:Row Tag *0).Lam {‘age=a; b}r a

Variables are really De Bruijn-like in their behavior. Variables created
with Var all have index level 0. The two examples have different names
in the same index position, and they would clash if they were both used



in the same lambda term. To shift the position of variable to a different
index, we use the constructor Shift:: Lam a b -> Lam {c=d; a}r b
(see Exercise 23 for an alternative mechanism to distinguish variables).
To define two variables x and y for use in the same environment we shift
one of them into a different index. We type a few examples at the Ωmega
top-level loop to illustrate the this.

prompt> Var ‘x

(Var ‘x) : Lam {‘x=a; b}r a

prompt> Shift(Var ‘y)

(Shift (Var ‘y)) : Lam {a=b,‘y=c; d}r c

prompt> Shift (Shift (Var ‘z))

(Shift (Shift (Var ‘z))) : Lam {a=b,c=d,‘z=e; f}r e

A Lam term represented by (Var ‘x) has the tag ‘x appearing as the first
element in the environment row. By applying Shift once, the tag ‘x is
pushed into the second element of the row, a second Shift pushes it into
the third element, etc.

The Abs constructor binds the first tag in the first element of the
row, removing the tag and its associated type from the environment, and
shifting the others towards the front of the environment.

prompt> App (Var ‘a) (Shift (Var ‘b))

(App (Var ‘a) (Shift (Var ‘b))) : Lam {‘a=a -> b,‘b=a; c}r b

prompt> Abs ‘f (Abs ‘x (App (Shift (Var ‘f)) (Var ‘x)))

(Abs ‘f (Abs ‘x (App (Shift (Var ‘f)) (Var ‘x))))

: Lam a ((b -> c) -> b -> c)

Note how terms with free variables have non-trivial environment in-
dexes which mention their free variables. For example the first term’s type
is indexed by the Row: {‘a=a -> b,‘b=a; c}r indicating that both ‘a and
‘b are free variables in the term. To build an evaluator for an object-level
typed term (Section 5.10), we will need a data structure, pairing variables
with their values, for each free variable in the term. We can package up
a set of these values using a record.

A Record structure is a labeled tuple. We use the labels to name the
variables. A Record is a level 0 value. Its type is indexed by the level 1
type Row. We can define this data structures as follows.

data Record :: Row Tag *0 ~> *0 where

RecNil :: Record RNil

RecCons :: Label a -> b -> Record r -> Record (RCons a b r)

deriving Record()



Note that we have defined a syntactic extension for records tagged by
the empty tag. Thus we may use the record syntax (with no tag) to build
records.

prompt> {‘a=34,‘b="abc"}

{‘a=34,‘b="abc"} : Record {‘a=Int,‘b=[Char]}r

5.10 A Tagless Interpreter for a Language with Variables

The typed-object language Lam can be supplied with a typed evaluation
function. The key is to supply a record that supplies exactly the values
necessary for the free variables in the term being evaluated. The type
system ensures that the record and the free variables coincide.

evalLam:: Record r -> Lam r t -> t

evalLam (RecCons _ v r) (Var _) = v

evalLam RecNil (Var _) = unreachable

evalLam (RecCons _ _ r) (Shift e) = evalLam r e

evalLam RecNil (Shift _) = unreachable

evalLam env (Abs lab body) = \ x -> evalLam (RecCons lab x env) body

evalLam env (App f x) = (evalLam env f) (evalLam env x)

Exercise 26. Instead of using Var and Shift, fold the ideas from Exercise
24 into the Lam datatype, and then write the evaluation function for this
GADT.

5.11 A Staged Interpreter for a Language with Variables

It is even possible to stage such an interpreter. One complication is that
the record encoding the environment will not pair variables with values,
but instead it will pair variables with code. To enable this we define the
staged record.

data StaticRecord:: Row Tag *0 ~> *0 where

StNil :: StaticRecord RNil

StCons:: Label t -> Code x -> StaticRecord r -> StaticRecord (RCons t x r)

stageLam:: StaticRecord r -> Lam r t -> Code t

stageLam (StCons _ code r) (Var _) = code

stageLam StNil (Var _) = unreachable

stageLam (StCons _ _ r) (Shift e) = stageLam r e

stageLam StNil (Shift _) = unreachable

stageLam env (App f x) =

[| $(stageLam env f) $(stageLam env x) |]

stageLam env (Abs lab body) =

[| \ x -> $(stageLam (StCons lab [|x|] env) body) |]



5.12 Small step semantics

The datatype declarations for representing well-typed terms in the previ-
ous sections bear a striking similarity to the typing judgments for those
languages. For example consider:

Γ, x: τ � x : τ
Var

Γ � e : τ

Γ, x:σ � e : τ
Shift

Γ, x: τ � e : σ

Γ � λx.e : τ → σ
Abs

Γ � e1 : τ → σ Γ � e2 : τ

Γ � e1 e2 : σ
Abs

The similarity justifies a slight change in perspective. We have been think-
ing of Lam as representing a piece of abstract syntax, but we may also
think of it as representing a typing derivation.

The latter perspective supports an interesting approach to studying
the meta-theory of object languages. A typing derivation is a proof that
a given term has a given type in a given context. So total functions
that transform proofs into other proofs can be considered as construc-
tive proofs of results in the meta-theory of our object language. This is
the approach taken in Twelf, where the meta-language is a Prolog-style
logic language. In Ωmega, we can write our meta-programs in a functional
programming style.

In the remainder of this section, we build, in several steps, a proof of
type soundness for our little language. Our proof has the following basic
structure (due to Wright and Felleisen)[39].

1. All terms are categorized syntactically as either values or non-values.
2. A reduction relation e → e′ comprising a small-step operational se-

mantics is given.
3. Any non-value term that cannot be reduced any further is considered

to exhibit a run-time error.
4. Progress. Any well-typed term e is either a value or can step to

another well-typed term e′ (that is, e → e′).
5. Preservation. The reduction relation preserves types: If e has type

τ and e → e′, then e′ has type τ .
6. Therefore if a term is well-typed, and we reduce it until no more

reduction steps are possible, then the resulting term must be a value
(rather than a term exhibiting a run-time error).

To begin, we slightly modify our Lam datatype from Section 5.9. We
call the datatype E (for Expression), and change the constructor names,



to avoid confusion between the two. The substantive changes include the
addition of a new type index (Mode explained in greater detail below),
and a shift from usings types of kind *0, as indexes indicating the type of
a term, to types of kind ObjType (also explained in greater detail below).
To highlight these changes, we have included the classification of the old
type Lam for comparison.

We emphasize, as explained earlier, that the datatype E can be thought
of as both abstract syntax or a typing derivation.

-- Lam:: Row Tag *0 ~> *0 ~> *0

data E :: Mode ~> Row Tag ObjType ~> ObjType ~> *0 where

Const:: Rel a b -> b -> E Val env a

Var :: Label s -> E Val (RCons s t env) t

Shift:: E m env t -> E m (RCons s q env) t

Lam :: Label a -> E m (RCons a s env) t -> E Val env (ArrT s t)

App :: E m1 env (ArrT s t) -> E m2 env s -> E Exp env t

Values versus computations. The first step to proving type-soundness
in Ωmega by this method is to distinguish between values and non-values.
We accomplish this by the introduction of the new index Mode.

data Mode:: *1 where

Exp:: Mode

Val:: Mode

Go back and study how the Mode index is used in the types of the con-
structor functions of E. Note how terms in normal form have types where
Val is the first index, and ones with redexes have types where Exp is the
first index. Consider the short Ωmega session:

prompt> Const IntR 3

(Const IntR 3) : E Val a IntT

prompt> Lam ‘x (Var ‘x)

(Lam ‘x (Var ‘x)) : E Val a (ArrT b b)

prompt> App (Lam ‘x (Var ‘x)) (Const IntR 3)

(App (Lam ‘x (Var ‘x)) (Const IntR 3)) : E Exp a IntT

Object-types versus meta-types. In E, we no longer use types of
kind *0 as object-level types. We do this because we wish to lift some,
but not all, meta-level values into constants in the object-language. In
this example we wish to lift integer constants, and n-ary functions over



integers (the so-called δ-reductions). To accomplish this we define a new
kind to represent object-level types.

data ObjType:: *1 where

ArrT:: ObjType ~> ObjType ~> ObjType

IntT:: ObjType

This new kind appears as the third index of E, and also as an index
to the Row comprising the environment. The constructor Const lifts only
those values classified by types that are related to some ObjType by the
witness relation Rel.

data Rel:: ObjType ~> *0 ~> *0 where

IntR:: Rel IntT Int

IntTo:: Rel b s -> Rel (ArrT IntT b) (Int -> s)

-- First order functions only as constants

The structure of Rel relates only integers and first-order, n-ary func-
tions over integers to the type ObjType. Consider the short Ωmega session:

prompt> IntR

IntR : Rel IntT Int

prompt> IntTo IntR

(IntTo IntR) : Rel (ArrT IntT IntT) (Int -> Int)

prompt> IntTo (IntTo IntR)

(IntTo (IntTo IntR)) : Rel (ArrT IntT (ArrT IntT IntT)) (Int -> Int -> Int)

Static versus Dynamic test for Mode. Finally, on occasion we will
need to observe the structure of an object-level term, and compute whether
it is a value in normal form, or a term with a redex. We do this by defin-
ing a singleton type reflecting the kind Mode into the value world, and by
writing a total function that computes a safe approximation of the mode
of any expression. By safe, we mean that no term is ever indexed by Exp
if it is a value, though some terms might be indexed by Exp even though
they do not contain a redex. Such terms generally have the form (App
(Var ‘x) ), i.e. an application with a variable in the function part).

data Mode’:: Mode ~> *0 where

Exp’:: Mode’ Exp

Val’:: Mode’ Val

mode :: E m e t -> Mode’ m

mode (Lam v body) = Val’

mode (Var v) = Val’



mode (Const r v) = Val’

mode (Shift e) = mode e

mode (App _ _) = Exp’

Summary of changes. Thus a well-typed term of type (E m env t)
is (1) a data structure representing an object-level term, (2) a derivation
that the term is well typed with type t in environment env, and (3) a
derivation that the term has mode m. Lets review the roles of the 3 kinds
of indexes to E.

– Mode. The mode of the term. Either a Val, a term in normal form, or
an Exp, a term with redex.

– Row Tag ObjType. The environment which indicates the position and
type of the free variables in the term.

– ObjType. The object-level type of the term. Because of the relation
Rel, we know only first order functions can be lifted from the meta-
language to the object language.

There are two kinds of redexes in a term. β-redexes (explicit λ - ex-
pressions in the function position of an application) and δ-redexes (higher-
order constants in the function position of an application). We give mean-
ing to β-redexes by the use of substitution. Thus we need a well-typed
version of substitution over object-level terms represented by E.

Substitution lemma The key lemma behind the preservation part of
the type-soundness proof is called the substitution lemma. The lemma
says that if a term e has type σ under the assumption that some variable
x has type τ , then substituting any term e′ of type τ for x in e yields
e[e′/x] of type σ. In our version of the preservation proof, the lemma
exhibits itself as a total well-typed function that performs substitution.

We choose to represent substitutions as data structures. This provides
another example of object language syntax because our syntax is similar
to explicit substitutions [5]. In this approach a substitution of type (Sub
e1 e2) is a mapping from one environment (of kind e1) to another (of
kind e2).

data Sub:: Row Tag ObjType ~> Row Tag ObjType ~> *0 where

Id:: Sub r r

Bind:: Label t -> E m r2 x -> Sub r r2 -> Sub (RCons t x r) r2

Push:: Sub r1 r2 -> Sub (RCons a b r1) (RCons a b r2)

subst:: E m1 r t -> Sub r s -> exists m2 . E m2 s t



subst t Id = Ex t

subst (Const r c) sub = Ex (Const r c)

subst (Var v) (Bind u e r) = Ex e

subst (Var v) (Push sub) = Ex (Var v)

subst (Shift e) (Bind _ _ r) = subst e r

subst (Shift e) (Push sub) = case subst e sub of {Ex a -> Ex(Shift a)}

subst (App f x) sub = case (subst f sub,subst x sub) of

(Ex g,Ex y) -> Ex(App g y)

subst (Lam v x) sub = case subst x (Push sub) of

(Ex body) -> Ex(Lam v body)

Preservation. In our proof, we perform steps 2 (define the one-step eval-
uation relation), 4 (prove progress), and 5 (prove type preservation) at
once by defining a total single-step operation that operates on well-typed
non-value closed terms. Its type is given by
onestep :: E m Closed t -> (E Exp Closed t + E Val Closed t).
Read logically this type says that every closed term (regardless of whether
it is a value or an expression with a redex) can be transformed into an-
other closed term with the same type, or is already a value.

type Closed = RNil

onestep :: E m Closed t -> (E Exp Closed t + E Val Closed t)

onestep (Var v) = unreachable

onestep (Shift e) = unreachable

onestep (Lam v body) = R (Lam v body)

onestep (Const r v) = R(Const r v)

onestep (App e1 e2) =

case (mode e1,mode e2) of

(Exp’,_) ->

case onestep e1 of

L e -> L(App e e2)

R v -> L(App v e2)

(Val’,Exp’) ->

case onestep e2 of

L e -> L(App e1 e)

R v -> L(App e1 v)

(Val’,Val’) -> rule e1 e2

This function is a non-recursive case analysis. The Var and Shift cases
are unreachable (they cannot be closed terms). The Lam and Const cases
are already values. Observing the mode of the two parts of an application
we have three choices. If the function is an expression with a possible
redex, we take one step in the function part, and then rebuild the term.
If the function part is a value, we must apply one of the β- or δ-rules.



Note that the function part is always a closed term with an (ArrT )
object-level type.

rule:: E Val Closed (ArrT a b) ->

E Val Closed a ->

(E Exp Closed b + E Val Closed b)

rule (Var _) _ = unreachable

rule (Shift _) _ = unreachable

rule (App _ _) _ = unreachable

-- The beta-rule

rule (Lam x body) v =

let (Ex term) = subst body (Bind x v Id)

in case mode term of

Exp’ -> L term

Val’ -> R term

rule (Const IntR _) _ = unreachable

rule (Const (IntTo b) _) (Var _) = unreachable

rule (Const (IntTo b) _) (Shift _) = unreachable

rule (Const (IntTo b) _) (App _ _) = unreachable

rule (Const (IntTo b) f) (Lam x body) = unreachable

rule (Const (IntTo b) f) (Const (IntTo _) x) = unreachable

-- The delta-rule

rule (Const (IntTo b) f) (Const IntR x) = R(Const b (f x))

There are eleven cases. Nine of which are unreachable from type con-
siderations (i.e. the inputs are not values, are not closed, or the first
argument does not have an arrow type). We have structured our function
body to make it explicit that we have covered every case. This allows us
to prove (by a meta-level argument) that rule is total. In other systems
(i.e. Twelf, Coq, etc.) this argument can be enforced by the type-system
of the meta-language. In these systems all functions are total (or they
are not accepted). In Ωmega, we aspire to this level of automated assis-
tance, but as we think of Ωmega as a programming language (not a proof
system) we must support both total and partial functions. We hope to
separate total and partial functions by using the type system sometime
in the near future.

The function onestep makes progress. By inspecting the code we see
all values are immediately returned, and all non-values actually take one
step forward.

5.13 Example: Constructing Typing Derivations at Runtime

At first glance, using GADTs to represent object-languages solves many
problems. But, further introspection reveals a subtle problem. We can



build typed object-level terms by typing constructed terms into our pro-
gram using the constructors of the GADT, but how do we build such terms
algorithmically? I.e. how do we write a parser, for example, that builds
a well-typed object-level term? What would the type of the parser be?
The type (parse:: String -> E m e t) is clearly not sufficient. Not
every string can be parsed. But the type (parse:: String -> Maybe(E
m e t)) is also not sufficient. What mode, environment, and object level
type should constrain the meta-level type variables m, e, and t? The
type (parse:: String -> exists m e t . Maybe(E m e t)) is closer
to the mark, but this is also too unconstrained. We expect some proper-
ties to be true of these type variables. One solution is to build runtime
representations that represent the constraints we envision, and runtime
tests for these constraints, that we can execute at runtime.

We do this by building a singleton type to reflect the object-level types
as meta-level runtime values (Section 3.6 and Exercise 9), and a runtime
test for equality of these object-level type indexes (Exercises 16 and 23).

data Rep:: ObjType ~> *0 where

I:: Rep IntT

Ar:: Rep a -> Rep b -> Rep (ArrT a b)

In the function compare, because we want our runtime tests to re-
port interesting error messages, the comparison returns a sum type, were
the left injection (a failure) is an error message, and the right injection
(a success) is an equality proof. Because the partial application of the
type constuctor (+) to String is monadic 4, we use the do notation to
specify what happens on success. On failure (of either (comapre x s) or
(compare y t)) the error message in the left injection will be propogated.

compare:: Rep a -> Rep b -> (String + Equal a b)

compare I I = R Eq

compare (Ar x y) (Ar s t) =

do { Eq <- compare x s

; Eq <- compare y t

; R Eq}

compare I (Ar x y) = L "I /= (Ar _ _)"

compare (Ar x y) I = L "(Ar _ _) /= I"

4 return:: a -> (String + a)

return x = R x

bind:: (String + a) -> (a -> (String + b)) -> (String + b)

bind (L message) f = Left message

bind (R x) f = f x



We will break our parsing problem into two parts. First, parsing a
string into an untyped object-language representation (not shown in this
paper, as this is the ordinary parsing problem). Second, transforming
this untyped representation into a well-typed GADT representing a typed
object-language term (or typing derivation, depending upon your perspec-
tive). In this report, we assume that the untyped representation suggests
a type for every variable, and that our algorithm checks that this sug-
gestion is correct. The inference problem is much harder, and not shown
here. Our untyped representation follows:

data Term:: *0 where

C:: Int -> Term

Ab:: String -> Rep a -> Term -> Term

Ap:: Term -> Term -> Term

V:: String -> Term

We will check each term with respect to a given environment which
maps every variable to an object-level type. It will also store the string
used to name the variable in the untyped representation, and the label
used to represent the variable in the typed-representation. Such an envi-
ronment is indexed by (Row Tag ObjType) in the same manner as terms
E and substitutions Sub.

data Env:: Row Tag ObjType ~> *0 where

Enil:: Env RNil

Econs:: Label t -> (String,Rep x) -> Env e -> Env (RCons t x e)

deriving Record(e)

A key component of our algorithm, to produce a well-typed repre-
sentation from an untyped representation, is to look up the type of a
variable.

fail:: String -> (String + a)

fail s = L s

lookup:: String -> Env e -> (String + exists t m .(E m e t,Rep t))

lookup name Enil = fail ("Name not found: "++name)

lookup name {l=(s,t);rs}e | eqStr name s = R(Ex(Var l,t))

lookup name {l=(s,t);rs}e =

do { Ex(v,t) <- lookup name rs

; R(Ex(Shift v,t)) }

If successful, both a representation of a type, and a term with that
type are returned. Now we need put all this machinery together. The type
checker is a program with the following prototype:



tc:: Term -> Env e -> (String + exists t m . (E m e t,Rep t))
Read logically, for every untyped term, and every environment with types
for variables reflected in the row e, we can either report a type-checking
error, or return a representation of a typed term. In this representation
(consisting of a pair of a term and a singleton), its actual type and its
mode are existentially quantified, but the actual object-level type is re-
flected in the “shape” of the runtime singleton object.

tc:: Term -> Env e -> (String + exists t m . (E m e t,Rep t))

tc (V s) env = lookup s env

tc (Ap f x) env =

do { Ex(f’,ft) <- tc f env

; Ex(x’,xt) <- tc x env

; case ft of

(Ar a b) ->

do { Eq <- compare a xt

; R(Ex(App f’ x’,b)) }

_ -> fail "Non fun in Ap" }

tc (Ab s t body) env =

do { let (Hidden l) = newLabel s

; Ex(body’,et) <- tc body {l=(s,t); env}e

; R(Ex(Lam l body’,Ar t et)) }

tc (C n) env = R(Ex(Const IntR n,I))

The application case is the most interesting. First, recursively type-
check the function and argument, returning typed terms f’ and x’, and
reflected types ft and xt. If either of these fails, the monad syntax causes
the whole function to fail. Test that the function argument is really a
function, and then compare the domain with the type of the argument.
Only if this succeeds, and we have a proof that the two types are equal,
can the whole case succeed.

5.14 The bottom line

The ability to define type-indexed GADTs, and the ability to define new
kinds, creates a rich playground for those wishing to explore the design
of new languages. These features, along with the use of rank-N polymor-
phism (which is beyond the scope of this paper) make Ωmega a better
meta-language than Haskell. In order to explore the design of a new lan-
guage one can proceed as follows:

– First, represent the object-language as a type-indexed GADT. The
indexes correspond to static properties of the program.



– The indexes can have arbitrary structure, because they are introduced
as the type constructors of new kinds.

– The typed constructor functions of the object-language GADT define
a static semantics for the object language.

– Meta-programs written in Ωmegamanipulate object-language repre-
sented as data, and check and maintain the properties captured in
the type indexes by using the meta-language type system. This lets
us build and test type systems interactively.

– A dynamic semantics for the language can be defined by (1) writing
either a large step semantics in the form of an interpreter or evaluation
function, or by (2) writing a small step semantics in terms of substi-
tution over the term language. In either case, the type system of the
meta-language guarantees that these meta-level programs maintain
object level type-safety.

– Normal operations such as pretty-printing and parsing functions can
also be constructed, albeit with a little more cleverness than is ordi-
narily required.

6 Using Terms as Theorems

We can use a value of type (Nat’ n) as a proof that n is a natural number.
In Ωmega, ordinary datatypes can be used as constraints over types. A
constraint can be discharged by exhibiting a non-divergent term with that
type. The classic datatype used in this fashion is the equality type from
Section 3.8. Recall:

data Equal :: a ~> a ~> *0 where
Eq:: Equal x x

The Equal constraint can be applied to all types of the same kind be-
cause it is level polymorphic (see section 3.12). Thus (Equal 2t 3t) and
(Equal Int Bool) are both well formed, but neither is inhabited (i.e.
there are no non-divergent values with these types since (Int �= Bool)
and ((S(S Z)) �= (S(S(S Z))))). The normal mode of use is to construct
terms with types like (Equal x y) where x and y are type level function
applications. For example consider the type of the function plusZ below.
Its type: (Nat’ n -> Equal plus n Z n) when read logically means for
all natural numbers n, n+0 = n. One way to prove this is with a proof by
induction over n. The following recursive definition of plusZ is a term wit-
nessing this property. The theorem clause, inside the defintion of plusZ
is a mechanism that helps organize this proof, and is explained in detail
in the sequel.



plusZ :: Nat’ n -> Equal {plus n Z} n

plusZ Z = Eq

plusZ (S m) = Eq

where theorem indHyp = plusZ m

This function is a proof by induction that for all natural numbers n :
{plus n 0t}= n. The definition exhibits a well-typed, total function with
this type. The declaration, where theorem indHyp = plusZ m, instructs
the type checker to use the type of the term (plusZ m) as a reasoning rule.
Thus we may assume its type: (Equal {plus b 0t} b) while discharging
(Equal (S{plus b Z}) (S b)).

To see that plusZ is well typed, the type checker does the follow-
ing. The expected type is the type given in the function prototype. We
compute the type of both the left- and right-hand-side of the equation
defining a clause. We compare the expected type with the computed type
for both the left- and right-hand-sides. This comparison generates some
necessary equalities (for each side) to make the expected and computed
types equal. We assume the left-hand-side equalities to prove the right-
hand-side equalities. To see this in action, consider the two clauses of the
definition of plusZ.

1.

expected type Nat’ n → Equal {plus n Z} n

equation plusZ Z = Eq

computed type Nat’ Z → Equal a a

equalities n = Z ⇒ (a = n, a= {plus n Z})

In the first case, the left-hand-side equalities let us assume n = Z. The
right-hand-side equalities require us to establish that a = {plus n Z}
and a = n. This can be established iff n = {plus n Z}. Using the
assumption that n = Z, we are left with the requirement that Z =
{plus Z Z}, which is easy to prove using the definition of plus.

2.

expected type Nat’ n → Equal {plus n Z} n

equation plusZ (S m) = Eq

computed type Nat’ (S b) → Equal a a

equalities n = (S b) ⇒ (a = n, a= {plus n Z})

In the second case, the left-hand-side assumptions are n = (S b)
(where the pattern introduced variable m has type (Nat’ b)). The
right-hand-side equalities require us to establish that a = {plus n Z}
and a = n. Again, this can only be established if n = {plus n Z}.
Using the assumption that n = (S b), we are left with the require-
ment that (S b) = {plus (S b) Z}. Using the definition of plus,



this reduces to (S b) = (S{plus b Z}). To establish this fact, we
use the inductive hypothesis. Since the argument (S m) is finitely
constructed, and the function plusZ is total, the term, (plusZ m)
exhibits a proof that (Equal {plus b Z} b).

Other interesting facts, that are established in the same way, but
omitted for brevity, include:

plusS :: Nat’ n -> Equal {plus n (S m)} (S{plus n m})

plusCommutes :: Nat’ n -> Nat’ m -> Equal {plus n m} {plus m n}

plusAssoc :: Nat’ n -> Equal {plus {plus n b} c} {plus n {plus b c}}

plusNorm :: Nat’ x -> Equal {plus x {plus y z}} {plus y {plus x z}}

Exercise 27. Write an Ωmega function body for each of the prototypes
above. The function bodies for plusS and plusAssoc are very similar
to plusZ. The other two require appealing to theorems in addition to
an induction hypotheses. In fact, plusCommutes requires both plusZ and
plusS in addition to an induction hypothesis. We leave it to you to figure
out what theorem is required for plusNorm.

6.1 Self Describing Combinatorial Circuits

Our next example is the description of combinatorial circuits. We will use
types to ensure that our descriptions describe what they implement. We
first describe the Bit type.

data Bit:: Nat ~> *0 where

One :: Bit (S Z)

Zero :: Bit Z

Like Nat’, Bit is a singleton type (see Section 3.6), there is only one
value for each type. Note how the type of a bit carries the value of the
bit as a natural number as its type index. I.e. (One :: Bit 1t) and
(Zero :: Bit 0t). We exploit this to define a data structure represent-
ing a base-2 number as a sequence of bits. The idea is for a value of type
(Binary Bit w v) to represent a binary number built from a sequence
of Bits, with width w and value v.

data Binary:: (Nat ~> *0) ~> Nat ~> Nat ~> *0 where

Nil :: Binary bit Z Z

Cons:: bit i -> Binary bit w n -> Binary bit (S w) {plus {plus n n} i}

Note that the type of the elements in the sequence has been abstracted
to be any type constructor classified by the kind (Nat ~> *0). In our first



few examples, we will construct lists of (Bit i), so we will have values
with type (Binary Bit len value) as a result. Later in the text, we will
build binary numbers from other representations of bits.

A value with type (Binary Bit 2t 3t) is a sequence of (Bit j) val-
ues. The individual j’s are combined to represent a binary number with
value 3t. Binary numbers are stored least significant bit first. Prefixing
a new bit shifts the previous bits into the next significant position, so
the value of the new number is the value of the new bit plus twice the
value of the old bits. Thus the type expression {plus {plus n n} i} in
the type of Cons which prefixes a new bit. For example consider the term:
(Cons Zero (Cons One (Cons Zero (Cons Zero Nil)))) that has type
(Binary Bit 4t 2t). I.e. “0100” (where the least significant bit is left-
most) has value 2 and width 4.

If we add three one-bit numbers, we always get a two bit result. We
can write this function as follows.

add3Bits:: (Bit i) -> (Bit j) -> (Bit k) ->

Binary Bit 2t {plus {plus j k} i}

add3Bits Zero Zero Zero = Cons Zero (Cons Zero Nil)

add3Bits Zero Zero One = Cons One (Cons Zero Nil)

add3Bits Zero One Zero = Cons One (Cons Zero Nil)

add3Bits Zero One One = Cons Zero (Cons One Nil)

add3Bits One Zero Zero = Cons One (Cons Zero Nil)

add3Bits One Zero One = Cons Zero (Cons One Nil)

add3Bits One One Zero = Cons Zero (Cons One Nil)

add3Bits One One One = Cons One (Cons One Nil)

This function is an exhaustive case analysis of all 8 possible com-
bination of bits. It is exhaustive and total. Consider type checking one
case.

expected
type

Bit i -> Bit j -> Bit k → Binary Bit 2t {plus {plus j k} i}
equation add3Bits Zero One One = Cons Zero (Cons One Nil)
computed
type

Bit 0t -> Bit 1t -> Bit 1t → Binary Bit 2t

{plus {plus{plus {plus 0t 0t} 1t}
{plus {plus 0t 0t} 1t} }

0t }
equalities (i = 0t,j = 1t,k = 1t) ⇒ {plus {plus j k} i} =

{plus {plus{plus {plus 0t 0t} 1t}
{plus {plus 0t 0t} 1t} }

0t }

Under the assumptions, both parts of the equality in the requirements
for the right-hand-side reduce to (Binary Bit t2 2t), so the clause is



well typed. Iterating add3Bits, we can construct a ripple carry adder,
whose type states that it is really an addition function!

add :: Bit c ->

Binary Bit n i ->

Binary Bit n j -> Binary Bit (S n) {plus {plus i j} c}

add c Nil Nil = Cons c Nil

add c (Cons x xs) (Cons y ys) =

case add3Bits c x y of

(Cons bit (Cons c2 Nil)) -> Cons bit (add c2 xs ys)

where theorem plusCommutes, plusAssoc, plusNorm

The function add is type checked in the same manner as we illus-
trated with plusZ and add3Bits. In add, the type checker relies on the
three theorems plusCommutes, plusAssoc, plusNorm that are the focus
of Exercise 27 from the end of Section 6. We repeat their types here for
convenience.

plusCommutes :: Equal {plus n m} {plus m n}

plusAssoc :: Equal {plus {plus n b} c} {plus n {plus b c}}

plusNorm :: Equal {plus x {plus y z}} {plus y {plus x z}}

When used in conjunction, these theorems act as a set of left-to-right
rewriting rules, and have a very strong normalizing effect. This effect oc-
curs because the theorems plusCommutes and plusNorm are only applied
if the rewritten term is lexigraphically smaller than the original term. For
example, while type checking add the type checker uses them to repeat-
edly rewrite the term:
{plus {plus {plus {plus x3 x3} x2} {plus {plus x5 x5} x4}} x1}

to the term:
{plus x1 {plus x2 {plus x3 {plus x3 {plus x4 {plus x5 x5}}}}}}

Exercise 28. Repeat the progression of defining the GADT Binary through
defining the function add, but this time make Binary store most-significant
bits on the left.

6.2 Symbolically Combining Bits

While we have shown how to use types to describe properties of programs,
our adder is not a very effective hardware description. We need a data
structure that can represent not only the constant bits, One and Zero,
but also operations on bits. This motivates BitX (for eXtended bit).



data BitX:: Nat ~> *0 where

OneX :: BitX (S Z)

ZeroX :: BitX Z

And:: BitX i -> BitX j -> BitX {and i j}

Or:: BitX i -> BitX j -> BitX {or i j}

Xor:: BitX i -> BitX j -> BitX {xor i j}

In order to track the result of anding (oring, xoring) two bits, we need
the and (or, xor) functions at the type level. These functions take any
two natural numbers as input, but always return 0t or 1t as a result.

and :: Nat ~> Nat ~> Nat

{and Z Z} = Z

{and Z (S n)} = Z

{and (S n) Z} = Z

{and (S n) (S n)} = S Z

or :: Nat ~> Nat ~> Nat

{or Z Z} = Z

{or Z (S n)} = S Z

{or (S n) Z} = S Z

{or (S n) (S n)} = S Z

Exercise 29. Write the Ωmega type-level function:
xor :: Nat ~> Nat ~> Nat
that implements the exclusive-or function.

We can prove a number of interesting theorems about these functions
by exhibiting terms with logical types. As we did with add3Bits, these
functions are basically an exhaustive analysis of the cases. Here we prove
that and is associative.

andAs :: Bit a -> Bit b -> Bit c ->

Equal {and {and a b} c} {and a {and b c}}

andAs Zero Zero Zero = Eq

andAs Zero Zero One = Eq

andAs Zero One Zero = Eq

andAs Zero One One = Eq

andAs One Zero Zero = Eq

andAs One Zero One = Eq

andAs One One Zero = Eq

andAs One One One = Eq

Note, that this is a theorem about Bit a, Bit b, and Bit c, not
about natural numbers a, b, and c. I.e.
(Bit a -> Bit b -> Bit c -> Equal {and {and a b} c} {and a {and b c}})

is a theorem but
(Nat’ a -> Nat’ b -> Nat’ c -> Equal {and {and a b} c} {and a {and b c}}}

is not. A number of other useful theorems are proved in a similar manner.

andZ1:: Bit a -> Equal {and a Z} Z

andZ2:: Bit a -> Equal {and Z a} Z

andOne2:: Bit a -> Equal {and a (S Z)} a

andOne1:: Bit a -> Equal {and (S Z) a} a



Exercise 30. Following the pattern of AndAs, write function definitions
for the above prototypes.

Every (BitX i) can be evaluated into a (Bit i) by applying the
definitions of the operations and, or and xor. This is the purpose of the
function fromX. Since the operations are functions at the type level, and
we need operations on bits (which live at the value level) we define the
functions and’, or’ and xor’.

fromX :: BitX n -> Bit n

fromX OneX = One

fromX ZeroX = Zero

fromX (Or x y) = or’ (fromX x) (fromX y)

fromX (And x y) = and’ (fromX x) (fromX y)

fromX (Xor x y) = xor’ (fromX x) (fromX y)

fromX (And3 x y z) =

and’ (fromX x) (and’ (fromX y) (fromX z))

and’ :: Bit i -> Bit j -> Bit {and i j}

and’ Zero Zero = Zero

and’ Zero One = Zero

and’ One Zero = Zero

and’ One One = One

or’ :: Bit i -> Bit j -> Bit {or i j}

xor’ :: Bit i -> Bit j -> Bit {xor i j}

Exercise 31. Write Ωmega function bodies for the omitted functions or’
and xor’.

Because every (BitX i) can be evaluated into a (Bit i), we can lift
theorems about Bit to theorems about BitX. For example, consider the
theorem:

andAs:: Bit a -> Bit b -> Bit c -> Equal {and {and a b} c} {and a {and b c}}

If a, b and c are Bits, then a, b and c associate under and. This is not
the case for arbitrary a, b and c. Recall that the natural number indexes
to Bit can only be 0 or 1. A similar theorem holds if a, b and c are BitX,
and this theorem can be computed from the theorem involving Bit.

andAssoc:: BitX a -> BitX b -> BitX c ->

Equal {and {and a b} c} {and a {and b c}}

andAssoc a b c = andAs (fromX a) (fromX b) (fromX c)



So unlike andAs, where we could not lift a theorem about Bit to a
theorem about Nat, every theorem about Nat can be lifted to a theorem
about Bit. With these tools, we can build a ripple carry adder that per-
forms addition by applying the bit operations. For example, to add three
one-bit numbers to obtain a two-bit result, we need to construct a logical
formula that captures the following table.

inputs sum

i j k high bit low bit

------

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1 low bit = (Xor i (Xor j k))

0 1 1 1 0 high bit = (Or (And i j)

1 0 0 0 1 (Or (And i k)

1 0 1 1 0 (And j k)))

1 1 0 1 0

1 1 1 1 1

To implement this is Ωmega, we introduce a 2-bit number Pair (more
significant bit on the left), and the function addthree.

data Pair:: Nat ~> *0 where

Pair:: BitX hi -> BitX lo -> Pair {plus {plus hi hi} lo}

addthree :: BitX i -> BitX j -> BitX k -> Pair {plus j {plus k i}}

addthree i j k = Pair (Or (And i j) (Or (And i k) (And j k)))

(Xor i (Xor j k))

where theorem lemma = logic3 (fromX i) (fromX j) (fromX k)

Unlike the function add3Bits, we cannot type check addthree by
exhaustively enumerating all possible inputs because there are an infinite
number of possible terms of type (BitX i) for each natural number i.
But we can prove a lemma about Bit (which we can prove by exhaustive
analysis) and then lift it to a theorem about BitX. This is the role of the
term (logic3 (fromX i) (fromX j) (fromX k)) in the theorem clause
in addthree.

logic3 :: Bit i -> Bit j -> Bit k ->

(Equal {plus {plus {or {and i j}

{or {and i k} {and j k}}}

{or {and i j}

{or {and i k} {and j k}}}}

{xor i {xor j k}}}

{plus j {plus k i}})

logic3 Zero Zero Zero = Eq



logic3 Zero Zero One = Eq

logic3 Zero One Zero = Eq

logic3 Zero One One = Eq

logic3 One Zero Zero = Eq

logic3 One Zero One = Eq

logic3 One One Zero = Eq

logic3 One One One = Eq

We can now re-implement our ripple carry adder, but this time by
symbolically combining the input bits, to compute the output bits as a
logical function of the inputs. This function has a similar type, the same
structure, and uses the same theorems as the function add.

addBits :: BitX c -> Binary BitX n i -> Binary BitX n j ->

Binary BitX (S n) {plus {plus i j} c}

addBits c Nil Nil = Cons c Nil

addBits c (Cons x xs) (Cons y ys) =

case addthree c x y of

(Pair c2 bit) -> Cons bit (addBits c2 xs ys)

where theorem plusCommutes, plusAssoc, plusNorm

To actually compute a circuit we need to have some symbolic inputs.
We do this by extending the type BitX with a constructor to represent
variables. We can then construct some inputs, and compute the descrip-
tion of an adder. Our function works on inputs of any size.

data BitX:: Nat ~> *0 where

. . .

X:: Int -> BitX a

xs :: Binary BitX 2t {plus {plus a a} b}

xs = Cons (X 1) (Cons (X 2) Nil)

ys :: Binary BitX 2t {plus {plus a a} b}

ys = Cons (X 3) (Cons (X 4) Nil)

carry = (X 5)

ans = addBits carry xs ys

Here xs and ys are two-bit symbolic inputs, and carry is a sym-
bolic input carry. Calling addBits we construct an output which is a
(Binary Bit) list with three elements, each of which is a combinatorial
function of the input bits, whose value is guaranteed by the types to be
the sum of the inputs! Below, we display the output with a pretty printer
that displays (X n) as “xn”, and indents the display to emphasize its
structure.



(Cons (Xor x5

(Xor x1 x3))

(Cons (Xor (Or (And x5 x1)

(Or (And x5 x3)

(And x1 x3)))

(Xor x2 x4))

(Cons (Or (And (Or (And x5 x1)

(Or (And x5 x3)

(And x1 x3)))

x2)

(Or (And (Or (And x5 x1)

(Or (And x5 x3)

(And x1 x3)))

x4)

(And x2 x4)))

Nil)))

The key property here is that the type of this structure guarantees
that it implements an addition function.

Exercise 32. There are many equivalencies between boolean expressions.
Any function with the type: (BitX n -> Maybe (BitX n)) can be thought
of as a meaning preserving transformation. Given a value typed v:: BitX
n, a meaning preserving transformation returns (Just u) or Nothing. If
it returns (Just u) then u is semantically equivalent to v. If it returns
Nothing we interpret this to mean the transformation did not apply to v.
Choose a few boolean laws and implement them as meaning preserving
transformations as discussed above.

Exercise 33. Transformations can be combined by placing them in a list,
and applying them using transformation combinators. Consider functions
with the types below:

first:: [BitX n -> Maybe(BitX n)] -> BitX n -> Maybe(BitX n)

all:: [BitX n -> Maybe(BitX n)] -> BitX n -> [BitX n]

The combinator first lifts a list of transformations to a single trans-
formation, applying the first applicable transformation in the list. The
combinator all finds all applicable transformations and returns a list of
all possible results, including the untransformed term as well. Define these
two functions in Ωmega.

The combinator retry continually re-applies a meaning preserving
transformation until the term reaches a fixed-point. What is the type of
retry? Write an Ωmega function body for retry. What other combina-
tors can you think of?



6.3 A Caveat

The addition of the variable BitX constructor X was necessary if we want
to use our functions to build hardware descriptions. Without it, we can
only build constant combinatorial circuits! Unfortunately, it breaks the
soundness of our descriptions. The lack of soundness flows from the fact
that our function fromX is no longer total. How do we turn a variable
into a Bit? Thus, we can no longer lift facts about the functions and, or,
and xor and the type Bit to facts about the type BitX. To overcome this
limitation we would need to track the variables in the type of BitX objects.
For example we may write (BitX Bit env width value) as the type of
a binary number whose free variables are described by env. Now, we
must recast our theorems in terms of (BitX Bit env width value) and
well formed environments env. This is sufficient, because a well formed
environment means every variable will eventually be replaced by a bit,
and in this new formulation the lifting of theorems hold.

Exercise 34. Using the patterns discussed in Section 5.9 for languages
with binding structures, re-do the progression from the GADT BitX to the
function addBits, but this time track the variables in the types of BitX.
Recast the theorems about BitX so that they hold for all environments.

7 Conclusion

We hope that the programs and exercises described in this paper give
you, the reader, an appreciation for the power of types in describing the
properties of programs. Additional resources and papers can be found on
the authors web page http://cs.pdx.edu/~sheard where you can also
obtain the Ωmega system for download.

7.1 Relation to other systems

In order to make Ωmega accessible to as broad an audience as possible,
it is built around a framework which appears to the user to be a pure but
strict version of Haskell. Ωmega was designed, first and foremost, to be
a programming language. Our goal was to design a language where pro-
gram specifications, program properties, program analyses, proofs about
programs, and programs themselves, are all represented using a single
unifying notion of term. Thus programmers communicate many different
things using the same language.

Our second goal was to make Ωmega a logic, in which our reasoning
would be sound. This is the basis of our decision to make Ωmega strict.



We made this design decision because the use of GADTs as proof objects
requires that bottom not be an inhabitant of certain types. Strictness is
part of our eventual strategy to accomplish that goal. This goal is not yet
achieved.

There are many systems where soundness was the principal goal, and
has been achieved. All of the examples, except for the staged examples,
could be done in these languages as well. Such systems were principally
designed to be logical frameworks or theorem provers. These include In-
ductive Families [9, 12], theorem provers (Coq [37], Isabelle [20]), logi-
cal frameworks (Twelf [22], LEGO [14]), and proof assistants (ALF [17],
Agda [8]). Recently, there has been much interest in systems that use
dependent types to build “practical” systems that are part language,
part reasoning system. These systems include Augustsson’s Cayenne lan-
guage [3, 2], McBride’s Epigram [15], Stump’s Rogue-Sigma-Pi [33, 38],
Xi and Pfenning’s Dependent ML [42, 11], and Xi’s Applied Type Sys-
tems [41, 7]. In fact, we owe a large debt to all these systems for inspira-
tion.

We realize that just a little loss in soundness makes all our reasoning
claims vacuous, but we are working to fill these gaps. Our goal is to do
this in a different manner than the systems listed above, which require all
functions to be total in order to ensure soundness. We wish to use types
to separate terminating functions from non-terminating functions, and
make logical claims only about the terminating fragment of the language.
This seems almost a necessary condition for a system that claims to be a
programming language. In any case, these issues have little effect on our
use of Ωmega to program generic programs, since logical soundness is not
an issue in this domain.
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A Red-Black Tree Insertion

-------------------------------------------------------------------------

-- Introduce a new kind to represent colors

kind Color = Red | Black

-------------------------------------------------------------------------

-- Top-level type that hides both



-- color of the node and tree height

data RBTree:: *0 where

Root:: SubTree Black n -> RBTree

-------------------------------------------------------------------------

-- GADT that captures invariants

data SubTree:: Color ~> Nat ~> *0 where

Leaf:: SubTree Black Z

RNode:: SubTree Black n ->

Int ->

SubTree Black n ->

SubTree Red n

BNode:: SubTree cL m ->

Int ->

SubTree cR m ->

SubTree Black (S m)

-------------------------------------------------------------------------

-- A Ctxt records where we’ve been as we descend

-- down into a tree as we search for a value

data Dir = LeftD | RightD

data Ctxt:: Color ~> Nat ~> *0 where

Nil:: Ctxt Black n

RCons:: Int -> Dir ->

SubTree Black n ->

Ctxt Red n ->

Ctxt Black n

BCons:: Int -> Dir ->

SubTree c1 n ->

Ctxt Black (S n) ->

Ctxt c n

-------------------------------------------------------------------------

-- Turn a Red tree into a black tree. Always

-- possible, since Black nodes do not restrict

-- the color of their sub-trees.

blacken :: SubTree Red n -> SubTree Black (S n)

blacken (RNode l e r) = (BNode l e r)

-------------------------------------------------------------------------

-- A singleton type representing Color at

-- the value level.



data CRep :: Color ~> *0 where

Red :: CRep Red

Black :: CRep Black

color :: SubTree c n -> CRep c

color Leaf = Black

color (RNode _ _ _) = Red

color (BNode _ _ _) = Black

-------------------------------------------------------------------------

-- fill a context with a subtree to regain the original

-- RBTree, works if the colors and black depth match up

fill :: Ctxt c n -> SubTree c n -> RBTree

fill Nil t = Root t

fill (RCons e LeftD uncle c) tree = fill c (RNode uncle e tree)

fill (RCons e RightD uncle c) tree = fill c (RNode tree e uncle)

fill (BCons e LeftD uncle c) tree = fill c (BNode uncle e tree)

fill (BCons e RightD uncle c) tree = fill c (BNode tree e uncle)

insert :: Int -> RBTree -> RBTree

insert e (Root t) = insert_ e t Nil

-------------------------------------------------------------------------

-- as we walk down the tree, keep track of everywhere

-- we’ve been in the Ctxt input.

insert_ :: Int -> SubTree c n -> Ctxt c n -> RBTree

insert_ e (RNode l e’ r) ctxt

| e < e’ = insert_ e l (RCons e’ RightD r ctxt)

| True = insert_ e r (RCons e’ LeftD l ctxt)

insert_ e (BNode l e’ r) ctxt

| e < e’ = insert_ e l (BCons e’ RightD r ctxt)

| True = insert_ e r (BCons e’ LeftD l ctxt)

-- once we get to the bottom we "insert" the node as a Red node.

-- since this may break invariant, we may need do some patch work

insert_ e Leaf ctxt = repair (RNode Leaf e Leaf) ctxt

-------------------------------------------------------------------------

-- Repair a tree if its out of balance. The Ctxt holds

-- crucial information about colors of parent and

-- grand-parent nodes.

repair :: SubTree Red n -> Ctxt c n -> RBTree

repair t (Nil) = Root (blacken t)

repair t (BCons e LeftD sib c) = fill c (BNode sib e t)

repair t (BCons e RightD sib c) = fill c (BNode t e sib)

-- these are the tricky cases

repair t (RCons e dir sib (BCons e’ dir’ uncle ctxt)) =



case color uncle of

Red -> repair (recolor dir e sib dir’ e’ (blacken uncle) t) ctxt

Black -> fill ctxt (rotate dir e sib dir’ e’ uncle t)

repair t (RCons e dir sib (RCons e’ dir’ uncle ctxt)) = unreachable

recolor :: Dir -> Int -> SubTree Black n ->

Dir -> Int -> SubTree Black (S n) ->

SubTree Red n -> SubTree Red (S n)

recolor LeftD pE sib RightD gE uncle t = RNode (BNode sib pE t) gE uncle

recolor RightD pE sib RightD gE uncle t = RNode (BNode t pE sib) gE uncle

recolor LeftD pE sib LeftD gE uncle t = RNode uncle gE (BNode sib pE t)

recolor RightD pE sib LeftD gE uncle t = RNode uncle gE (BNode t pE sib)

rotate :: Dir -> Int -> SubTree Black n ->

Dir -> Int -> SubTree Black n ->

SubTree Red n -> SubTree Black (S n)

rotate RightD pE sib RightD gE uncle (RNode x e y) =

BNode (RNode x e y) pE (RNode sib gE uncle)

rotate LeftD pE sib RightD gE uncle (RNode x e y) =

BNode (RNode sib pE x) e (RNode y gE uncle)

rotate LeftD pE sib LeftD gE uncle (RNode x e y) =

BNode (RNode uncle gE sib) pE (RNode x e y)

rotate RightD pE sib LeftD gE uncle (RNode x e y) =

BNode (RNode uncle gE x) e (RNode y pE sib)

B Inductively Sequential Functions

We restrict the form of function definitions at the type level and higher
to be inductively sequential [1]. If a type function is not inductively se-
quential then the type checker rejects that type function.

Inductively sequential type functions ensures a sound and complete
narrowing strategy for answering type-checking time questions. The class
of inductively sequential functions is a large one, in fact every Haskell
function has an inductively sequential definition. The inductively sequen-
tial restriction affects the form of the equations, and not the functions
that can be expressed. Informally, a function definition is inductively se-
quential if all its clauses are non-overlapping. For example the definition
of zip1 is not inductively sequential, but the equivalent program zip2 is.

zip1 (x:xs) (y:ys) = (x,y): (zip1 xs ys)

zip1 xs ys = []

zip2 (x:xs) (y:ys) = (x,y): (zip2 xs ys)

zip2 (x:xs) [] = []

zip2 [] ys = []



The definition for zip1 is not inductively sequential, since its two
clauses overlap. In general any non-inductively sequential definition can
be turned into an inductively sequential definition by duplicating some
of its clauses, instantiating variable patterns with constructor based pat-
terns. This will make the new clauses non-overlapping. We do not think
this burden is too much of a burden to pay, since it is applied only to
functions at the type level, and it supports sound and complete narrowing
strategies. In addition to the inductively sequential form required for type
functions, Ωmega assumes that each type function is a total terminating
function. This assumption is not currently enforced, and it is up to the
programmer to ensure that this is the case.

C Answers to Selected Exercises

--------------

-- Exercise 1

--------------

data Seq :: *0 ~> Nat ~> *0 where

Snil :: Seq a Z

Scons :: a -> Seq a n -> Seq a (S n)

length :: Seq a n -> Int

length Snil = 0

length (Scons _ xs) = 1 + length xs

-- we can can also use (Nat’ n) (see 3.7)

-- to ensure that the size of the result is n

length’ :: Seq a n -> Nat’ n

legnth’ Snil = Z

length’ (Scons _ xs) = S (length’ xs)

--------------

-- Exercise 3

--------------

data Color :: *1 where

Red :: Color

Black :: Color

data RBT :: Color ~> *0 where

LeafB :: RBT Black

NodeR :: RBT Black -> RBT Black -> RBT Red

NodeB :: RBT cL -> RBT cR -> RBT Black

--------------



-- Exercise 4

--------------

plus :: Nat ~> Nat ~> Nat

{plus Z m} = m

{plus (S n) m} = S {plus n m}

mult :: Nat ~> Nat ~> Nat

{mult Z m} = Z

{mult (S n) m} = {plus {mult n m} m}

--------------

-- Exercise 5

--------------

data Boolean :: *1 where

T :: Boolean

F :: Boolean

odd :: Nat ~> Boolean

{odd Z} = F

{odd (S Z)} = T

{odd (S (S n))} = {odd n}

--------------

-- Exercise 6

--------------

or :: Boolean ~> Boolean ~> Boolean

{or T b} = T

{or F b} = b

-- The function (not :: Bool -> Bool) is predefined

-- so we use different name

not’ :: Boolean ~> Boolean

{not’ T} = F

{not’ F} = T

--------------

-- Exercise 7

--------------

data Shape :: *1 where

Tp :: Shape

Nd :: Shape

Fk :: Shape ~> Shape ~> Shape

data Path :: Shape ~> *0 ~> *0 where

None :: Path Tp a

Here :: b -> Path Nd b



Left :: Path x a -> Path (Fk x y) a

Right :: Path y a -> Path (Fk x y) a

data Tree :: Shape ~> *0 ~> *0 where

Tip :: Tree Tp a

Node :: a -> Tree Nd a

Fork :: Tree x a -> Tree y a -> Tree (Fk x y) a

extract :: Path sh a -> Tree sh a -> a

extract None Tip = error "(extract None Tip) has nothing"

extract (Here _) (Node v) = v

extract (Left p) (Fork lt rt) = extract p lt

extract (Right p) (Fork lt rt) = extract p rt

--------------

-- Exercise 8

--------------

data ListShape :: *1 where

LSnil :: ListShape

LScons :: ListShape ~> ListShape

data List :: ListShape ~> *0 ~> *0 where

Lnil :: List LSnil a

Lcons :: a -> List sh a -> List (LScons sh) a

data ListPath :: ListShape ~> *0 ~> *0 where

ListNone :: ListPath LSnil a

ListHere :: b -> ListPath (LScons sh) b

ListNext :: ListPath sh a -> ListPath (LScons sh) a

find :: (a -> a -> Bool) -> a -> List sh a -> Maybe(ListPath sh a)

find eq n Lnil

= Nothing

find eq n (Lcons x xs)

= if eq n x

then Just (ListHere n)

else case find eq n xs of

Nothing -> Nothing

Just p -> Just (ListNext p)

--------------

-- Exercise 9

--------------

data Rep :: *0 ~> *0 where

Int :: Rep Int

Bool :: Rep Bool

Prod :: Rep a -> Rep b -> Rep (a,b)



List :: Rep a -> Rep [a]

showR :: Rep a -> a -> String

showR Int n = show n

showR Bool True = "True"

showR Bool False = "False"

showR (Prod x y) (a,b) = "("++showR x a++","++showR y b++")"

showR (List t) xs = "["++ help xs ++ "]"

where help [x] = showR t x

help [] = ""

help (x:xs) = showR t x++","++help xs

--------------

-- Exercise 10

--------------

data Plus :: Nat ~> Nat ~> Nat ~> *0 where

PlusZ :: Plus Z m m

PlusS :: Plus n m z -> Plus (S n) m (S z)

plus2v3v5v :: Plus 2t 3t 5t

plus2v3v5v = PlusS (PlusS PlusZ)

plus2v1v3v :: Plus 2t 1t 3t

plus2v1v3v = PlusS (PlusS PlusZ)

plus2v6v8v :: Plus 2t 6t 8t

plus2v6v8v = PlusS (PlusS PlusZ)

--------------

-- Exercise 11

--------------

data LE :: Nat ~> Nat ~> *0 where

LeZ :: LE Z n

LeS :: LE n m -> LE (S n) (S m)

sumandLessThanOrEqualToSum :: Plus a b c -> LE a c

sumandLessThanOrEqualToSum PlusZ = LeZ

sumandLessThanOrEqualToSum (PlusS p) = LeS (sumandLessThanOrEqualToSum p)

-- Can we define a function with type (Plus a b c -> LE b c)?

-- not exactly, but we can write one with a similar type.

sumandLTorEQ2sum’ :: Nat’ c -> Plus a b c -> LE b c

sumandLTorEQ2sum’ n PlusZ = same n

sumandLTorEQ2sum’ Z (PlusS _) = unreachable

sumandLTorEQ2sum’ (S n) (PlusS p) = predLE (sumandLTorEQ2sum’ n p)

-- see Exercise 13 for the definitions of same and predLE.



--------------

-- Exercise 12

--------------

even :: Nat ~> Boolean

{even Z} = T

{even (S Z)} = F

{even (S (S n))} = {even n}

data EvenRel :: Nat ~> Boolean ~> *0 where

Er0 :: EvenRel 0t T

Er1 :: EvenRel 1t F

ErSS :: EvenRel n b -> EvenRel (S (S n)) b

--------------

-- Exercise 13

--------------

same :: Nat’ n -> LE n n

same Z = LeZ

same (S n) = LeS (same n)

predLE :: LE m n -> LE m (S n)

predLE LeZ = LeZ

predLE (LeS p) = LeS (predLE p)

--------------

-- Exercise 14

--------------

trans :: LE a b -> LE b c -> LE a c

trans LeZ _ = LeZ

trans (LeS _) LeZ = unreachable

trans (LeS p1) (LeS p2) = LeS (trans p1 p2)

--------------

-- Exercise 15

--------------

f15 :: Nat’ b -> Plus a b c -> LE b c

f15 n PlusZ = same n

f15 Z (PlusS _) = LeZ

f15 (S n) (PlusS p) = predLE (f15 (S n) p)

--------------

-- Exercise 16

--------------

sameNat’ :: Nat’ a -> Nat’ b -> Maybe (Equal a b)

sameNat’ Z Z = Just Eq



sameNat’ Z (S _) = Nothing

sameNat’ (S _) Z = Nothing

sameNat’ (S n) (S m) = case sameNat’ n m of

Nothing -> Nothing

Just Eq -> Just Eq

--------------

-- Exercise 17

--------------

filter :: (a->Bool) -> Seq a n -> exists m . (Nat’ m, Seq a m)

filter p Snil = Ex (Z, Snil)

filter p (Scons x xs) =

case filter p xs of

Ex (n, xs’) -> if p x then Ex (S n, Scons x xs’)

else Ex (n, xs’)

filter’ :: (a->Bool) -> Seq a n -> exists m . (LE m n, Nat’ m, Seq a m)

filter’ p Snil = Ex (LeZ, Z, Snil)

filter’ p (Scons x xs) =

case filter’ p xs of

Ex (le, n, xs’) -> if p x then Ex (LeS le, S n, Scons x xs’)

else Ex (predLE le, n, xs’)

--------------

-- Exercise 18

--------------

pow :: Int -> Code Int -> Code Int

pow 0 _ = [| 1 |]

pow n x = [| $(x) * $(pow (n - 1) x) |]

--------------

-- Exercise 19

--------------

-- Row is already defined so we use MyRow

data MyRow :: a ~> c ~> *1 where

Rnil :: MyRow e f

Rcons :: e ~> f ~> MyRow e f ~> MyRow e f

deriving Record(mr)

-- We derive syntax ’mr’ because the

-- predefined Row uses syntax ’r’ already.

--------------

-- Exercise 20

--------------

data Nsum :: *0 ~> *0 where

SumZ :: Nsum Int

SumS :: Nsum x -> Nsum (Int -> x)

deriving Nat(i)



-- 0i : Nsum Int

-- 1i : Nsum (Int -> Int)

-- 2i : Nsum (Int -> Int -> Int)

add :: Nsum i -> i

add = add’ 0

add’ :: Int -> Nsum i -> i

add’ x 0i = x

add’ x (1+n)i = \k -> add’ (x+k) n

--------------

-- Exercise 21

--------------

data Expr :: *0 where

VarExpr :: Label t -> Expr

PlusExpr :: Expr -> Expr -> Expr

valueOf :: Expr -> [exists t .(Label t,Int)] -> Int

valueOf (VarExpr v) env = lookup v env

valueOf (PlusExpr x y) env = valueOf x env + valueOf y env

lookup :: Label v -> [exists t .(Label t,Int)] -> Int

lookup v ((Ex(u,n)):xs) =

case labelEq v u of

Just Eq -> n

Nothing -> lookup v xs

pair1:: exists t .(Label t,Int)

pair1 = Ex(‘a,5)

pair2:: exists t .(Label t,Int)

pair2 = Ex(‘x,22)

pair3:: exists t .(Label t,Int)

pair3 = Ex(‘z,2)

table :: [exists t .(Label t,Int)]

table = [pair1,pair2,pair3]

xValue = valueOf (VarExpr ‘x) table

--------------

-- Exercise 22

--------------



-- see Appendix A

--------------

-- Exercise 23

--------------

{- already defined in Exercise 9

data Rep :: *0 ~> *0 where

Int :: Rep Int

Bool :: Rep Bool

Prod :: Rep a -> Rep b -> Rep (a,b)

List :: Rep a -> Rep [a]

-}

equalRep :: Rep a -> Rep b -> Maybe (Equal a b)

equalRep Int Int = Just Eq

equalRep Bool Bool = Just Eq

equalRep (Prod a b) (Prod c d) =

case equalRep a c of

Nothing -> Nothing

Just Eq -> case equalRep b d of

Nothing -> Nothing

Just Eq -> Just Eq

-- alternatively we could use Monad syntax

equalRep (Prod a b) (Prod c d) =

do { Eq <- equalRep a c

; Eq <- equalRep b d

; return Eq}

where monad maybeM

equalRep _ _ = Nothing

maybeM = Monad (Just) bind fail

where bind (Just x) f = f x

fail s = Nothing

data Term :: *0 ~> *0 where

Var :: String -> Rep t -> Term t -- x

Const :: Int -> Term Int -- 5

Add :: Term ((Int,Int) -> Int) -- (+)

LT :: Term ((Int,Int) -> Bool) -- (<)

Ap :: Term(a -> b) -> Term a -> Term b -- (+) (x,y)

Pair :: Term a -> Term b -> Term(a,b) -- (x,y)

type Env = [ exists t . (String, Rep t, t) ]

lookupWithRepr :: Env -> Rep t -> String -> t

lookupWithRepr [] r1 x1 = error "variable not found"

lookupWithRepr (Ex(x,r,v):ts) r1 x1

= if eqStr x x1



then case equalRep r r1 of

Just Eq -> v

Nothing -> lookupWithRepr ts r1 x1

else lookupWithRepr ts r1 x1

uncurry f (x,y) = f x y

eval :: Term t -> Env -> t

eval (Var x r) env = lookupWithRepr env r x

eval (Const i) _ = i

eval Add _ = uncurry (+)

eval LT _ = uncurry (<)

eval (Ap f p) env = (eval f env) (eval p env)

eval (Pair a b) env = (eval a env, eval b env)

--------------

-- Exercise 25

--------------

opt:: Term a -> Term a

opt (Ap Add (Pair (Const n) (Const m)))

-- constant folding

= Const(n+m)

opt (Ap Add (Pair (Const 0) x))

-- law: (0 + x)=x

= x

opt (Ap Add (Pair x (Const 0)))

-- law: (x + 0)=x

= x

opt (Ap x y) = Ap (opt x) (opt y)

opt (Pair x y) = Pair (opt x) (opt y)

opt x = x

-- can you make opt work for (x + (3 + -3)) or (1 + (2 + 4))

stagedEvalTerm :: Term a -> Code a

stagedEvalTerm (Const x) = lift x

stagedEvalTerm Add = [| add |]

where add (x,y) = x+y

stagedEvalTerm LT = [| less |]

where less (x,y) = x < y

stagedEvalTerm (Ap f x) = [| $(stagedEvalTerm f) $(stagedEvalTerm x) |]

stagedEvalTerm (Pair x y) = [|($(stagedEvalTerm x),$(stagedEvalTerm y))|]

optStagedEvalTerm x = stagedEvalTerm(opt x)


