-- -- This code written by Tim Sheard
-- This file should work with Omega version 1.1
-- released May 23, 2005
-- See http://www.cs.pdx.edu/~sheard/Omega/index.html
-- Existenial hiding and operators on anonymous sums
data Covert t = exists x . Hide (t x)
mapP :: (a -> b) -> (c -> d) -> (a+c) -> (b+d)
mapP f g (L x) = L(f x)
mapP f g (R x) = R(g x)
unP :: (a+a) -> a
unP (L x) = x
unP (R x) = x
map f [] = []
map f (x:xs) = f x : map f xs
-----------------------------------------
-- singleton Nats and Less-than-equal (LE)
{- Predefined by the compiler
kind Nat = Z | S Nat
data Nat' x
= Z where x=Z
| exist m . S (Nat' m) where x=S m
-}
data LE a b
= LeBase where a=b
| ex c . LeStep (LE a c) where b = S c
g :: LE x y -> LE (S x) (S y)
g LeBase = LeBase
g (LeStep x) = LeStep(g x)
trans :: LE a b -> LE b c -> LE a c
trans LeBase LeBase = LeBase
trans (x@(LeStep z)) LeBase = x
trans LeBase (y@(LeStep z)) = y
trans (a@(LeStep x)) (LeStep y) = LeStep(trans a y)
magnitude :: Nat' a -> LE Z a
magnitude Z = LeBase
magnitude (S x) = LeStep(magnitude x)
-------------------------------------------------
-- Sorted Sequence data
data SSeq n
= Snil where n = Z
| ex m . Scons (Nat' n) (LE m n) (SSeq m)
--------------------------------------------------
-- insertion sort
compare :: Nat' a -> Nat' b -> ((LE a b)+(LE b a))
compare Z Z = L LeBase
compare Z (S x) =
case compare Z x of L w -> L(LeStep w)
compare (S x) Z =
case compare Z x of L w -> R(LeStep w)
compare (S x) (S y) = (mapP g g (compare x y))
where g :: LE x y -> LE (S x) (S y)
g LeBase = LeBase
g (LeStep x) = LeStep(g x)
insert :: Nat' a -> SSeq b -> ((SSeq a)+(SSeq b))
insert z Snil = L(Scons z (magnitude z) Snil)
insert x (xs@(Scons y p zs)) =
case compare x y of
R q -> L(Scons x q xs)
L q -> case insert x zs of
L (mm) -> R(Scons y q mm)
R (mm) -> R(Scons y p mm)
sort :: [Covert Nat'] -> Covert SSeq
sort [] = Hide Snil
sort ((Hide x):xs) =
case insert x ys of {L w -> Hide w; R w -> Hide w}
where (Hide ys) = sort xs
toNat :: Int -> Covert Nat'
toNat 0 = Hide Z
toNat n = case toNat (n-1) of Hide b -> Hide(S b)
test :: Nat' x -> Nat' y -> Maybe (Equal x y)
test Z Z = Just Eq
test (S x) (S y) = case (test x y) of { Just Eq -> Just Eq; Nothing -> Nothing}
test _ _ = Nothing
test2 :: [Int] -> Covert SSeq
test2 xs = sort(map toNat xs)
x23 = test2 [0,3,1]
----------------------------------------------------
-- merge sort
merge :: SSeq n -> SSeq m -> (SSeq n + SSeq m)
merge Snil ys = R ys
merge xs Snil = L xs
merge (a@(Scons x px xs)) (b@(Scons y py ys)) =
case compare x y of
L p -> case merge a ys of
L ws -> R(Scons y p ws)
R ws -> R(Scons y py ws)
R p -> case merge b xs of
L ws -> L(Scons x p ws)
R ws -> L(Scons x px ws)
merge2 :: SSeq u -> SSeq v -> Covert SSeq
merge2 x y = unP (mapP Hide Hide (merge x y))
split [] pair = pair
split [x] (xs,ys) = (x:xs,ys)
split (x:y:zs) (xs,ys) = split zs (x:xs,y:ys)
msort :: [Covert Nat'] -> Covert SSeq
msort [] = Hide Snil
msort [Hide x] = Hide(Scons x (magnitude x) Snil)
msort xs = merge2 ys zs
where (y,z) = split xs ([],[])
(Hide ys) = msort y
(Hide zs) = msort z
--