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Abstract. We enrich the static semantics of Haskell in order to give stronger
static guarantees about the input/output behavior of programs. Our ap-
proach has two parts: a contract system for Haskell, and a novel strategy
for statically checking that a term satisfies a contract.
The contract system includes refinement types, which refine Haskell types
by arbitrary Boolean-valued Haskell expressions, and a “crash free” pred-
icate, which is true of expressions that can’t cause a run-time exception in
any “safe” context. Our novel contract-checking strategy is to translate a
contract-annotated source program into a theorem in first-order logic, and
then invoke an automatic theorem prover to prove (or refute) the theorem.

1 Introduction

The goal of statically-checked Haskell contracts is to statically rule out crashes
[15, Section 2.5]. Statically checking a contract means proving that it accurately
describes program behavior. Crashes are uncaught exceptions, due to pattern
match failures and calls to error ; the Haskell type system does not rule out
crashes.

Earlier work on contracts focused on designing the contract language and its
semantics, and on proving that checking contracts in general could be reduced,
by a source-to-source translation, to checking crash-freeness [15] [14]. However,
that earlier work did not result in a practically effective way to check contract
satisfaction. Indeed, an earlier contract paper says [15, Section 5]:

But how can we prove that [a translated Haskell expression] is crash
free? There are many ways to do this, and doing so is not the focus of
this paper.

Their approach was to symbolically evaluate the translated expression, suc-
ceeding when no syntactic crashes remained.

The goal of our work is a practically-effective system for statically-checking
Haskell contracts. We take the existing contract language of Xu, Peyton-Jones,
and Claessen, and develop a new way of checking contracts, using a novel
translation to first-order logic (FOL) and automatic theorem proving. Unlike
the earlier work, we do not focus on proving soundness properties. Indeed, a

? This RPE paper reports joint work with Charles-Pierre Astolfi, Koen Claessen, Simon
Peyton-Jones, and Dimitrios Vytiniotis. My work was performed mostly while I was
an intern at Microsoft Research Cambridge in Fall 2011.



2

soundness theorem is not of much use if it proves soundness of an ineffective
technique. Instead, once effectiveness is established empirically, we will then
worry more about soundness.

The contract language includes a predicate CF, for “crash free”. This pred-
icate is obviously not computable. Moreover, it can’t be expressed in a type
system like Haskell’s, because checking it depends on a path-sensitive analysis,
whereas HM-style type inference is path-insensitive. Consider:

1 tail [] = error ”The sky is falling !”
2 tail ( :xs) = xs
3

4 contrivedTail [] = []
5 contrivedTail xs = tail xs

The contrivedTail function takes CF arguments to CF results, even though it calls
the unsafe tail function. We can express this with a contract annotation:

6 contrivedTail ::: CF→CF.

Establishing that contrivedTail satisfies this contract depends on a path-sensitive
analysis that checks that there is no valid execution path from a call to contrivedTail xs

to a (crashing) call to tail [] .
But the CF predicate is not enough, because some functions, such as the

function tail above, may only be safe on a subset of their arguments. So, the
contract language also includes refinements ({x|p}) by arbitrary Bool-valued
Haskell expressions (p). For example, the tail function returns a crash-free re-
sult when given a crash-free argument list from the subset of lists that are not
null:

7 tail ::: (CF&&{xs |not (null xs)}) → CF .

Contributions. Because this is an RPE paper, I list my individual contributions:

– rewrote the contract checker and added many features, including the first
implementation of a Min-translation, the change to a Haskell compatible
syntax, and additions to the syntax, such as nested case expressions;

– wrote many examples, including the first non-trivial use of lemmas;
– designed and implemented a new Min-translation, which is more intuitive

to me and Dimitrios, and identified points of freedom in the translation. My
translation turned out to be mostly equivalent to the original Min-translation,
up to bugs in the original;

– designed and implemented a type checker for contracts, by translating con-
tracts to Haskell expressions which are then type checked by GHC.

2 The Languages

We translate modules in a Haskell-like source language into formulas in a FOL
target language. The source language is an expressive subset of Haskell ex-
tended with contract annotations. The target language is a FOL with equality
whose term language is similar to the Haskell-like source expression language
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2.1 The Haskell-like Source Language

Our source language, presented in Figure 1, evolved as the smallest subset of
Haskell in which we did not find it too painful to program examples. A source
program is a module (M) consisting of data-type definitions (data), function
definitions ( f un), and contract annotations (ann). A data type is a parametrized
type name (T) and a list of term constructors (K) applied to argument types (τ).
A function definition consists of a function name ( f ), zero of more arguments
(x), and a body expression (b). Expressions (e) consist of variables (x), functions
( f ), term constructors (K), applications (e e), and crashes (BAD).

There are three closely-related grammars for expression-like things. We call
these grammars function bodies (b), expressions (e), and terms (t). Both b and t
are extensions of e. The differences are that b adds case expressions and t adds
the constant UNR.1 Note that b and e, but not t, occur in input programs.

The source language is not as syntactically rich as Haskell, but nearly as ex-
pressive. We support top level definitions, but the expression language does not
include let binding or λ-abstraction. The expression language includes nested
case expressions, but restricts patterns to be flat.2 We support plain, but not
generalized, algebraic data types. We don’t support type classes.

2.2 The Contract Language

The contract language is presented in Figure 1. It’s taken from the earlier work
of Xu, Peyton-Jones, and Claessen [15]. There are two base contracts, the crash-
free contract (CF) and the refinement contract ({x|p}), and three recursive con-
tracts, the dependent arrow contract (x:c→ c), conjunctions (c∧ c), and disjunc-
tions (c ∨ c). In a refinement contract {x|p}, the predicate p may be any Bool-
valued expression. Unlike the earlier work, we don’t support term-constructor
contracts.

2.3 The FOL Target Language

The target language (φ), presented in Figure 1, is an FOL with equality [13]. The
quantifiers and logical connectives are standard. The atomic formulas include
equality of terms, the crash-free predicate, and the Min predicate (Section 3.4).
The term language (t) for our FOL is the source expression language (e), ex-
tended with a constant symbol UNR.

The term language has constants f and K for each function f and constructor
K in the source program. Note that the Curried application form, t t, is a binary
function symbol denoted by white space. It dos not contain case expressions,

1 The mnemonic is “unreachable”, and UNR plays the role of infinite loops and ill-typed
(stuck) expressions.

2 The nesting is restricted however. Only plain expressions (e), not case expressions (b),
can be scrutinized (case e of . . . ) and applied (e e). Case expressions (b) can be nested
only in the targets of patterns (. . . K x → b).
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Module M, mod ::= decl
Declaration decl ::= f un | ann | data
Function Definition f un ::= f x = b
Data Type Definition data ::= data T α = K τ
Type τ ::= α | τ → τ | T τ
Contract Annotation ann ::= f ::: c

Contract c ::= CF | c ∧ c | c ∨ c | x:c→ c | {x|p}

Function Body b ::= e | case e of K x → b
Expression e, p ::= x | f | K | BAD | e e
Term t ::= x | f | K | BAD | t t

| UNR | f̂ (t, . . . , t) | K̂(t, . . . , t) | πK
i (t)

Formula φ ::= ∀x.φ | ∃x.φ
| ¬φ | φ ∨ φ | φ ∧ φ | φ→ φ
| t = t | CF(t) | Min(t)

Variables α ∈ Type variables
x ∈ Term variables
T ∈ Type constructors
K ∈ Term constructors
f ∈ Functions

Fig. 1. Syntax of the Haskell-like source language and FOL target language.

The highlighting in the function body (b) and term (t) grammars marks additions rela-
tive the expression grammar (e).

because we found it simpler to translate case expressions to formulas involving
more primitive expressions, than to implement capture-avoiding substitution
in the logic.

The πK
i are projections for the term constructor K:

πK
i (K x1 · · · xi · · · xn) = xi .

We use the projections to axiomatize the injectivity of term constructors, and to
avoid some quantified variables in the translation of case expressions (b).

3 The Translations

3.1 The Naive Translation Into FOL

We now describe a naive translation into FOL, presented in Figure 2 and Fig-
ure 3. The translation we actually use is more sophisticated (Section 3.4), but we
start by presenting a simpler versions that illustrates all the important points in



5

representing Haskell contracts in FOL. The real translation generates more re-
strictive formulas, in order to constrain the prover’s search space and allow for
finite counter models.

We use Oxford brackets (J·K) to denote translation, and we decorate the
brackets with a letter indicating the kind of translation, e.g. J·KT for data-type
translations. The function-definition translation J f x = bKf asserts that the func-
tion definition is true for all possible arguments, by universally quantifying the
arguments x.

The function-body translation J(e, b)Kb equates the function e with its body,
when the body b is not a case expression. The case where b is a case expression
(case e′ of · · ·) is more interesting, and considers the possible values of the scru-
tinee e′. If e′ is an application of an appropriate constructor (some Ki), then the
corresponding pattern-branch (bi) is followed. If e′ is an exception (BAD), then
the function crashes (returns BAD). Finally, if e′ is not an appropriate construc-
tor, or an exception, then the function loops by returning UNR.3 The translation
also asserts that these possibilities for the scrutinee are exhaustive.

The contract translation Je ::: cKc is straightforward in the recursive cases:
dependent arrow (x:c1 → c2), conjunction (c1 ∧ c2), and disjunction (c1 ∨ c2).
When c is CF, we simply apply the CF predicate to the expression. When c
is the refinement {x|p}, we state that p must evaluate to True or UNR (loop)
when e terminates. The semantics of Xu et al. [15] additionally requires e to be
crash-free, but we make our semantics more permissive in order to be able to
express their Any contract directly as {x|True}.

The data-type translation
q
data T α = K τ

y
T

is the most complex. We break
it into four parts, φLazy, φCF, φInjective, and φDisjoint, which describe the term-
constructors Ki:

φLazy: Constructors are lazy functions (don’t evaluate their arguments). You
can safely apply a constructor to a loop (UNR) or an exception (BAD).

φCF: Constructors are crash-free functions. A constructor application can cause
a crash if-and-only-if one of its arguments can.

φInjective: Constructors are injective functions. Constructors have projections
that extract the arguments.

φDisjoint: Constructors are disjoint functions. Applications of distinct construc-
tors are never equal.4

The module translation (JMKM) is the input to the theorem prover. It says
to assume a “prelude” of common-axioms (φPrelude) and the translations (φT )
of all data-types in the module (M) while checking that the mutually-recursive
functions (F ) satisfy their contracts. The prelude asserts that loops (UNR) are

3 Because the program is type checked, we know that e′ is never a constructor of the
wrong type in an actual program run. However, the logic is untyped, and must ac-
count for all possibilities.

4 Note that we don’t axiomatize disjointness of constructors in different types. This helps
keep the counter models small.
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J f x = bKf

J f x = bKf = ∀x. J( f x, b)Kb

J(e, b)Kb

q
(e, e′)

y
b

= (e = e′)q
(e, case e′ of (K1 x1

a1 → b1) · · · (Kn xn
an → bn))

y
b
=∧

1≤i≤n

(
e′ = ki →

r(
e, bi

[
πKi

j (e′)
/

xij
]

1≤j≤ai

)z
b

)
∧
(
e′ = BAD→ e = BAD

)
∧∨1≤i≤n (e′ = ki)

∨
(
e′ = BAD

)
∨∧1≤i≤n (e′ 6= ki)

∧
(
e′ 6= BAD

)
∧ (e = UNR)

where ki = Ki

(
πKi

1 (e′)
)
· · ·
(

πKi
ai (e

′)
)

Je ::: cKc

Je ::: CFKc = CF(e)
Je ::: {x|p}Kc = (e 6= UNR→ p[e/x] ∈ {True,UNR})
Je ::: x:c1 → c2Kc = ∀x. Jx ::: c1Kc → Je x ::: c2Kc
Je ::: c1||c2Kc = Je ::: c1Kc ∨ Je ::: c2Kc
Je ::: c1&&c2Kc = Je ::: c1Kc ∧ Je ::: c2Kc

q
data T α = K τ

y
T

Jdata T αm = K1 τ1
a1 · · ·Kn τn

an KT = φLazy ∧ φCF ∧ φInjective ∧ φDisjoint
where φLazy =

∧
1≤i≤n (∀xai . Ki x 6∈ {UNR,BAD})

φCF =
∧

1≤i≤n

JKi ::: CF→ · · · → CF︸ ︷︷ ︸
ai+1

Kc ∧
(
∀xai . CF(Ki x)→ ∧

1≤j≤ai
CF(xj)

)
φInjective =

∧
1≤i≤n

(
∀xai .

∧
1≤j≤ai

(
xj = πKi

j (Ki x)
))

φDisjoint =
∧

1≤i<j≤n

(
∀xai , yaj . Ki x 6= Kj y

)
t ∈ {. . .}

t ∈ {t1, . . . , tn} = (t = t1 ∨ · · · ∨ t = tn)

xn

xn = x1 · · · xn

Fig. 2. The naive translation of functions (J·Kf), contracts (J·Kc), and data types (J·KT).

In the function-body translation (J(e, b)Kb) the indentation is significant and indicates the
grouping of subformulas. We omit the length superscripts (n) on sequences (xn) when
irrelevant, and when specified earlier.
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JMKM

JMKM =
(

φPrelude ∧ φT
)
→
(∧
F∈S J(F ,M)KF

)
where S = The collection of strongly-connected components of

mutually-recursive functions inM. There is an edge
from f to g inM if f calls g.

φPrelude = CF(UNR) ∧ ¬CF(BAD)
T = The data types defined inM.
φT =

∧
data∈T JdataKT

J(F ,M)KF

J(F ,M)KF =
(

φG ∧ φCG ∧ φFrec
∧ φCFrec

)
→ φCF

where G = The functions defined inM but not in F .
CF = The contract annotations inM for functions in F .
CG = The contract annotations inM for functions in G.
φG =

∧
f un∈G J f unKf

φCG =
∧

ann∈CG JannKc
φFrec

=
∧
( f x = b)∈F

r
f x =

(
b[ f ′rec/ f ′]( f ′ = )∈F

)z
f

φCFrec =
∧
( f :::c)∈CF J frec ::: cKc

φCF =
∧

ann∈CF JannKc

Fig. 3. Naive translation of a module (M).

Note that when checking a strongly-connected component of functions F , we assume
(by φCFrec ) that the contracts CF hold for the anonymous recursive versions frec of the
functions f in F , and we redefine (by φFrec

) the f in F to call the anonymous functions
when recursing. This is analogous to how recursive functions are type-checked in
standard type systems, and corresponds to an ill-founded induction principle. Namely,
when checking a property of a recursive function, you may assume it holds on all
recursive calls.

crash free, but exceptions (BAD) are not. The data-type translations in φT intro-
duce additional crash-freeness axioms via φCF.

The SCC-translation (J(F ,M)KF) gives specific assumptions under which to
check that an SCC of mutually-recursive functions satisfy their contracts (φCF ).
The assumptions include:

φG : All other functions (G) are defined as expected.
φCG : All other functions satisfy their contracts.
φFrec

: The mutually-recursive functions (F ) are redefined so that recursive calls
are made by new functions ( frec). These new functions are opaque, and
have no associated definition translation.

φCFrec : The opaque functions satisfy the contracts of the non-opaque recursive
functions they replace calls to. This corresponds to induction.
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3.2 A Detailed Example

We now present the translation of a concrete example. Refer to Figures 2 and 3
for the abstract translation. Consider the tail and length functions:

8 data List a = Nil | Cons a ( List a)
9 data Nat = Zero | Succ Nat

10

11 length xs = case xs of
12 Nil → Zero
13 Cons x xs ’ → Succ (length xs ’)
14

15 tail xs = case xs of
16 Nil → BAD
17 Cons x xs ’ → xs ’ .

We give length a simple contract: length doesn’t crash when its argument is
crash-free:

18 length ::: CF→ CF .

The contract we give tail is more interesting: given a non-null crash-free argu-
ment xs, tail produces a crash-free result r, which has length one-less than the
argument:

19 tail ::: xs :(CF&&{xs | not ( null xs)})
20 → (CF&&{r | length xs == Succ (length r)}) .

Note that r corresponds to tail xs in the result contract.
Next, consider the translation of the List data type:

Jdata List a = Nil | Cons a (List a)KT
= Nil 6∈ {UNR,BAD}
∧ ∀x1x2. Cons x1 x2 6∈ {UNR,BAD}

}
φLazy

∧ JNil ::: CFKc ∧ (CF(Nil)→ >)
∧ JCons ::: CF→ CF→ CFKc ∧ (∀x1x2. CF(Cons x1 x2)→ CF(x1) ∧ CF(x2))

}
φCF

∧ >
∧ ∀x1x2. x1 = πCons

1 (Cons x1 x2) ∧ x2 = πCons
2 (Cons x1 x2)

}
φInjective

∧∀y1y2. Nil 6= Cons y1 y2 }φDisjoint

JNil ::: CFKc = CF(Nil)
JCons ::: CF→ CF→ CFKc = ∀x1. CF(x1)→ ∀x2. CF(x2)→ CF(Cons x1 x2) .

The trivial tautology > appears in places where the abstract translation would
produce empty formulas. The translation of the Nat data-type is similar and we
omit it. We have labeled the parts of the translation with the formula names
from Figure 2 which they correspond to.
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Next, consider the translation of the length function:

Jlength xs = b[lengthrec/length]Kf
= ∀xs. J(length xs, case xs of (Nil→ Zero) (Cons x xs’→ Succ (lengthrec xs’)))Kb
= ∀xs. (xs = Nil→ J(length xs,Zero)Kb)

∧
(
xs = Cons

(
πCons

1 (xs)
) (

πCons
2 (xs)

)
→

r(
length xs, (Succ (lengthrec xs’)) [π

Cons
1 (xs)/x][πCons

2 (xs)/xs’]
)z

b

)
∧ (xs = BAD→ length xs = BAD)

∧ (xs = Nil) ∨
(
xs = Cons

(
πCons

1 (xs)
) (

πCons
2 (xs)

))
∨ (xs = BAD)

∨ (xs 6= Nil) ∧
(
xs 6= Cons

(
πCons

1 (xs)
) (

πCons
2 (xs)

))
∧ (xs 6= BAD)

∧ (length xs = UNR)

J(length xs,Zero)Kb = (length xs = Zero)r(
length xs, (Succ (lengthrec xs’)) [πCons

1 (xs)/x][πCons
2 (xs)/xs’]

)z
b

=
(
length xs = Succ

(
lengthrec

(
πCons

2 (xs)
)))

.

The translation of tail is very similar and we omit it. We chose to show the
translation of length because it cases over a list, like tail, but, in addition, makes
a recursive call.

Finally, consider the translation of tail’s contract:

J tail ::: xs:(CF&&{xs | not (null xs)}) → (CF&&{r | length xs == Succ (length r)})Kc
= ∀xs. CF(xs)

∧
(
xs 6= UNR→ not (null xs) ∈ {True,UNR}

)
→ CF(tail xs)
∧
(
tail xs 6= UNR→ (length xs == Succ (length (tail xs))) ∈ {True,UNR}

)
.

We discuss the provability of this contract in the next section. Note that we
only showed a few of the translations that would actually be generated by the
module translation (J·KM) for this example; Figure 3 outlines the full formula we
generate.

3.3 Lemmas

Our system has no special support for stating, proving, or using lemmas, but all
this can be encoded. For example, it turns out that tail ’s contract in the previous
section is not provable from the module translation (J·KM) in Figure 3. Recall
tail ’s contract:
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21 tail ::: xs :(CF&&{xs | not ( null xs)})
22 → (CF&&{r | length xs == Succ (length r)}) ,

We need an induction on lists to prove the contract is satisfied, but the induction
hypothesis

J tailrec ::: xs:(CF&&{xs | not (null xs)}) → (CF&&{r | length xs == Succ (length r)})Kc
for tail is no help, because tail isn’t recursive. Our lemma encoding trick can
help us here.

Consider the following code, which gives a lemma-encoding example:

23 data Proof= QED
24

25 lem xs = case xs of
26 Nil → BAD
27 Cons xs ’ → case xs ’ of
28 Nil → QED
29 Cons → lem xs’
30

31 lem ::: xs :(CF&&{xs|not (null xs)}
32 → (CF&&{r|length xs == Succ (length ( tail xs))}) .

The lemma statement is the contract (Line 31) on the lemma function lem, where
we’ve replaced r with tail xs because r was tail xs in the contract for tail (Line 21).
Here r is the dummy Proof returned by the lemma. The function lem proves the
lemma by recursion/induction on xs. We introduce the Proof data type so that
lem will have something to return in the non-recursive case; almost any data
type would do.

How does lem’s implementation correspond to a proof? First, we check if the
argument list xs is null. If yes, then the argument contract CF&&{xs|not (null xs)}
is not satisfied and there is nothing to prove. The exception BAD is returned in
this case, but any expression would do. If xs is not null, then we consider its tail
xs’. If xs’ is null, then we are in the base case and computation shows that

( length (Cons Nil ) == Succ (length Nil)) = True .

If xs’ is not null, then we call lem xs’ to establish the inductive hypothesis

( length (Cons xs ’) == Succ (length xs ’)) ∈ {True,UNR} ,

from which the goal

length (Cons (Cons xs ’)) == Succ (length (Cons xs)) ∈ {True,UNR}

follows by computation. Actually, the inductive hypothesis tells us that lem di-
verges (returns UNR) or that the equality computation returns True or UNR, and
so the conclusion also includes the possibility of divergence. This makes sense,
because the length function will indeed diverge on infinite lists, but these diver-
gences have consequences which we return to shortly.

To use the lemma, we change the definition of tail so that it calls the lemma
function lem:
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33 withLemma p e= case p of QED→ e
34

35 tail xs = case xs of
36 Nil → BAD
37 Cons xs ’ → withLemma (lem xs) xs’ .

The way this works is rather subtle. When we call lem xs we know
xs ::: CF&&{xs|not (null xs)}, and we conclude that the lemma call lem xs diverges,
or that

length (Cons (Cons xs ’)) == Succ (length (Cons xs)) ∈ {True,UNR} .

If the lemma call diverges we have learned nothing, but then withLemma (lem xs) xs’

also diverges, since withLemma scrutinizes the lemma call, and so tail itself di-
verges and the proof succeeds. So, it is essential that withLemma be strict in the
proof argument; otherwise we’d get stuck when the proof diverged.5

The general idea is to write a lemma function ` whose recursion corresponds
to the induction needed to prove the lemma. The lemma is invoked in the proof
of a contract satisfaction f ::: c by adding an appropriate withLemma (` e1) e2
call in the definition of f .

There is a caveat, however. As we saw in the tail example, using lemmas
can change the run-time behavior of programs! Because withLemma p e scruti-
nizes the proof p before returning e, any crash or loop in p propagates to e. This
is not as bad as it might sound though. As we saw in the example, we run into
trouble when the lemma function encodes an inductive proof of a property that
diverges for infinite data (the equality function (==) diverges in the example).
The contract language does not allow us to distinguish between finite and infi-
nite data, and so it’s not surprising that we pay a price when giving contracts
that only make sense in the finite case.

3.4 The Min-Translation Into FOL

We now describe a less-naive translation (Figures 4 and 5). Our changes to the
naive translation are motivated by two objectives:

1. Restrict the search space of the prover (conservatively);
2. Allow finite models of the axioms.

The first objective is obvious: we want the theorem prover to succeed more of-
ten, and more quickly. The second objective comes into to play when the prover
is destined to fail, because the goal theorem (from the module translation in
Figure 3) is not provable, which can happen for two reasons:

I. some contract in the program is not satisfied, or

5 Incidentally, in the Min-translation of Section 3.4, we also need withLemma to scru-
tinize the lemma call so that we can conclude Min for the lemma call and unfold the
lemma function definition.
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II. all contracts in the program are satisfied, but our generated theory is not
strong enough to prove this, because it does not characterize our source
language well enough.

When the goal theorem is not provable, there will be a counter model for our
generated theory.6 By generating axioms which permit finite models, we can
hope to identify unprovable theorems by using a finite-model finder, and more-
over, the finite models found can provide insight into why the goal theorem is
not provable. In case (II) we can add more contracts, including lemmas (Sec-
tion 3.3), to improve the situation.

To achieve these objectives, we add a new predicate to our FOL, and in-
corporate it into our translations. The new predicate is Min, and intuitively
Min(e) corresponds to “e will be evaluated”; the mnemonic is “I’m interested”.7

Roughly speaking, we change the translations so that the formulas they gener-
ate only apply to expressions for which Min holds.

The Min predicate behaves as a sort of guard, e.g. preventing function-definition
formulas (J·Kf)) from being instantiated for calls that would not be evaluated.
Because evaluation begets evaluation, of subterms or other related terms:

Min(e1 e2)→ Min(e1) ,

Min(case e of K x → b)→ Min(e) ,
e ::: {x|p} ∧Min(e)→ Min(p[e/x]) ,

some formulas introduce new Min assumptions. Such formulas are always guarded
with a Min obligation.

In order to make the placement of Min’s work out, we distinguish between
assumptions and goals, and this is reflected by sign superscripts on the trans-
lation. We write J·K	· for translations used as assumptions (axioms) and J·K⊕·
for translations used as goals (proof obligations). The mnemonic is that as-
sumptions (	) imply goals (⊕), and that the left side of an arrow has negative
variance while the right side has positive variance. A simple induction on the
structure of contracts shows that, for all expressions e and contracts c, Je ::: cK	c
implies Je ::: cK⊕c .

Consider the contract-satisfaction translation in Figure 4. All cases but one,
the refinement case ({x|p}), are uniform in the sign s. However, the meaning
of a translation can be different for different signs, even when the resulting
formulas are identical.

For example, consider the translation of CF contracts: Min(e) → CF(e).
When this translation is used as an assumption (s = 	), the Min(e) is an obli-
gation which guards the conclusion of CF(e). When this translation is used as a

6 This is one direction of a fundamental theorem in first-order model theory: being
provable and being true in all models are equivalent for FOL.

7 This intuition is helpful in deciding where to place Mins when designing the transla-
tion, but keep in the mind the Min does not really “mean” anything, and whether it is
true or not of a particular expression depends on context.
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Je ::: cKs
c

Je ::: CFKs
c = Min(e)→CF(e)

Je ::: {x|p}K	c = Min(e)→ Min(p[e/x])∧ (e 6= UNR→ p[e/x] ∈ {True,UNR})
Je ::: {x|p}K⊕c = Min(e) ∧Min(p[e/x])→ (e 6= UNR→ p[e/x] ∈ {True,UNR})
Je ::: x:c1 → c2K

s
c = ∀x. Jx ::: c1K

s
c → Je x ::: c2K

s
c

Je ::: c1||c2K
s
c = Je ::: c1K

s
c ∨ Je ::: c2K

s
c

Je ::: c1&&c2K
s
c = Je ::: c1K

s
c ∧ Je ::: c2K

s
c

s

⊕ = 	
	 = ⊕

Fig. 4. Min-translation of contract satisfaction (J·Kc). The highlighting marks changes
versus the naive translation.

goal (s = ⊕), the Min(e) is an assumption to be used in proving CF(e). Similarly,
in the arrow translation (Je ::: x:c1 → c2K

s
c), the left and right sides of the arrow

are translated with opposite signs, so that the left side becomes an assumption
in a goal translation and a goal in an assumption translation. Flipping the sign
here is consistent with the usual treatment of variance of arrows.8

The most interesting case is the translation of refinement contracts ({x|p}):

Je ::: {x|p}K	c = Min(e)→ Min(p[e/x]) ∧ (e 6= UNR→ p[e/x] ∈ {True,UNR})
Je ::: {x|p}K⊕c = Min(e) ∧Min(p[e/x])→ (e 6= UNR→ p[e/x] ∈ {True,UNR}) .

The Min(e) can be interpreted as in the translation of CF contracts, as explained
in the previous paragraph. However, the Min(p[e/x]) must always be an as-
sumption, because it can’t be concluded from Min(e), and it’s needed to unfold
definitions (Figure 5), both when establishing goals and when using assump-
tions.

The contract-satisfaction translation is the only translation that can appear
in a goal (Figure 3) and so the other translations (Figure 5) only have	-versions.
In other words, we both prove and assume contract satisfaction, but we only as-
sume the definitions of data types and functions.

The remaining translations, of functions and data types, appear in Figure 5.
Generally, the Min’s are placed so that you can’t use the formulas unless you
have Min for their subject, but there are two Min placements that don’t follow
this pattern. First, note the introduction of Min(e′) in the translation of func-
tion bodies. The point is that evaluating a case-expression entails evaluating
the scrutinee e′. Second, note the Min(Ki x) in φInjective. Naively, you might ex-

8 E.g. arrow subtyping, and the consequence rule in Hoare logic.
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J f x = bK	f

J f x = bK	f = ∀x.Min( f x)→ J( f x, b)K	b

J(e, b)K	b

q
(e, e′)

y	
b

= (e = e′)q
(e, case e′ of (K1 x1

a1 → b1) · · · (Kn xn
an → bn))

y	
b
=

Min(e′)∧∧
1≤i≤n

(
e′ = ki →

r(
e, bi

[
πKi

j (e′)
/

xij
]

1≤j≤ai

)z	
b

)
∧
(
e′ = BAD→ e = BAD

)
∧∨1≤i≤n (e′ = ki)

∨
(
e′ = BAD

)
∨∧1≤i≤n (e′ 6= ki)

∧
(
e′ 6= BAD

)
∧ (e = UNR)

where ki = Ki

(
πKi

1 (e′)
)
· · ·
(

πKi
ai (e

′)
)

q
data T α = K τ

y	
T

Jdata T αm = K1 τ1
a1 · · ·Kn τn

an K	T = φLazy ∧ φCF ∧ φInjective ∧ φDisjoint
where φLazy =

∧
1≤i≤n

(
∀xai . Min(Ki x)→Ki x 6∈ {UNR,BAD}

)
φCF =

∧
1≤i≤n

JKi ::: CF→ · · · → CF︸ ︷︷ ︸
ai+1

K	c ∧
(
∀xai . Min(Ki x)→CF(Ki x)→ ∧

1≤j≤ai
CF(xj)

)
φInjective =

∧
1≤i≤n

(
∀xai .

∧
1≤j≤ai

(
Min(Ki x)→ xj = πKi

j (Ki x)
))

φDisjoint =
∧

1≤i<j≤n

(
∀xai , yaj .

(
Min(Ki x) ∨Min(Kj y)

)
→Ki x 6= Kj y

)

Fig. 5. The Min-translation of functions (J·K	f ) and data types (J·K	T ). The highlighting
marks changes versus the naive translation.
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pect Min(πKi
j (Ki x)), but that would not work. The problem is that it is Ki x, and

not π
Ki
j (Ki x), which occurs in input programs, and so we only expect to have

Min for the former.
The Min-translation of modules is as in the naive translation in Figure 3, ex-

cept for two changes. First, we must replace all naive translations with signed
translations. The contract-satisfaction translation in φCF becomes a⊕-translation,
and all other translations become 	-translations. Second, we extend φPrelude to
with an axiom related to Min and higher order functions:

∀e, x. Min(e x)→ Min(e) .

This helps when e is a function application and we want to unfold the corre-
sponding function definition.

4 Experimental Results

We implemented the FOL translation in a Haskell contract checker called hcc.
The source code for hcc, and our contract examples, are available on-line [2].
The results of experiments comparing the naive (no Min) and Min-translations
are reported in Figure 6.

The hcc tool is implemented in GHC Haskell, and can output the gener-
ated FOL theory in TPTP format, SMTLIB format, and Coq format. In practice
we targeted Koen Claessen’s Equinox theorem prover, which uses the TPTP
format. Our TPTP files are valid for any TPTP prover, but the Equinox prover
provides special support for our Min predicate.

In our experiments, reported in Figure 6, the Min-translation fared much
better than the naive translation with no Mins. The sub-second run-times are
not meant to be precise — each experiment was run only once and on a partially
loaded machine — but the overall trend is striking.

The example files are divided into two sets:

./yes contains tests for which all contracts are or could be satisfied in our Haskell-
like language;

./no contains tests for which some contract is not satisfied in our Haskell-like
language.

When all contracts are satisfied, the desired outcome is “Pass”, meaning the
prover proved the generated theorem. When some contract is not satisfied the
desired outcome is “Fail”, meaning the prover found a counter model. The “or
could be satisfied” corresponds to the case where the satisfaction of some con-
tract is underspecified. For example, the test ./yes/id-is-cf.hs asserts that
the identity function, id x = x, is crash free (id ::: CF). This is not provable with-
out an axiom like

∀e. (∀x.CF(x)→ CF(e x))→ CF(e) ,
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0 10 20 30 40 50 60 70 80 90 100

./yes/add-and-mult-nonZero.hs

./yes/add-is-cf.hs

./yes/add-is-cf-to-cf-to-cf.hs

./yes/add-mult-factorial.hs

./yes/add-symmetric.hs

./yes/bintree-eq-is-cf2.hs

./yes/bintree-height-is-cf-to-cf.hs

./yes/bintree-size-is-cf-to-cf.hs

./yes/crash-on-wrong-nat.hs

./yes/eqNat.hs

./yes/even-odd-mutual.hs

./yes/gt-inc.hs

./yes/id-is-cf.hs

./yes/id-universal-lemma-hack.hs

./yes/loop.hs

./yes/map.hs

./yes/mult-is-cf-to-cf-to-cf.hs

./yes/nm/Regress/Ant.hs

./yes/nm/riser.hs

./yes/predicate-on-constant-function.hs

./yes/recursion-using-both-arguments.hs

./yes/reverse-is-cf3.hs

./yes-u1/needs-unrolling.hs

./no/add-and-mult-nonZero.hs

./no/bad-is-cf.hs

./no/const-bad-is-cf-to-cf.hs

./no/crash-on-wrong-nat.hs

./no/mult-gt.hs

./no/mult-gt-unnested.hs

./no/mutual-recursion-bug.hs

1.3 (Pass)

0.1 (Fail)

0.2 (Pass)

11.2 (Fail)

43.7 (Pass)

0.2 (Pass)

3.1 (Pass)

0.9 (Pass)

0.6 (Pass)

3.1 (Pass)

0.7 (Pass)

0.1 (Fail)

0.1 (Pass)

0.6 (Pass)

0.5 (Pass)

51.5 (Pass)

11.0 (Pass)

0.5 (Pass)

0.2 (Pass)

0.3 (Pass)

2.0 (Pass)

2.4 (Fail)

0.0 (Fail)

0.1 (Fail)

0.9 (Fail)

18.6 (Fail)

11.1 (Fail)

0.1 (Fail)

1.0 (Pass)

0.4 (Pass)

8.8 (Pass)

1.0 (Pass)

12.0 (Pass)

0.1 (Fail)

0.1 (Pass)

14.4 (Pass)

27.5 (Pass)

1.6 (Pass)

1.7 (Pass)

2.7 (Pass)

0.0 (Fail)

0.1 (Fail)

Run Time in Seconds

Min Naive (no Min)

Fig. 6. Run time and outcome summary for naive and Min translations.

The test files are listed on the left side. The bars measure run time, and are labeled with
run time and outcome (“Pass” meaning “proof found” and “Fail” meaning “counter
model found”). Bars extending all the way to the right (100 seconds) correspond to time
out. All test files in ./no contain contracts that aren’t satisfied, and all files in ./yes

contain contracts that are satisfied or are not provable from the generated axioms.
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but we found such axioms to cause significant performance degradation, and
so we don’t include one.9 When some contract is underspecified, the desired
outcome is “Fail”.

Figure 6 shows that the Min-translation is effective on our example pro-
grams, but it doesn’t tell us anything about the development process of adding
and modifying contracts until the prover is finally able to verify the program.
In practice, we find it is difficult to identify the cause, when the prover fails
by timing out or by finding a counter model. The difficulty is that the system
provides little feedback. When the prover times out we get no feedback at all.
When a counter model is found, it must be the case that one of the contracts is
violated in the counter model, but it can be hard to identify the violation. When
the contracts are satisfied in Haskell, but our generated theory is not strong
enough to prove this, it is usually because we did not axiomatize an induction
needed to prove an unknown lemma. In the counter model, this will be mani-
fested by an infinite term (e.g. xs s.t. xs = Cons Zero xs) for which the unknown
lemma is violated. Our task then is to identify the violated unknown lemma
and add an appropriate contract. This can be very difficult, because the counter
model may be complex and violated lemma is unknown!

The counter models found by Equinox are always finite, but not usually
minimal. We had some luck using another tool, Paradox, which finds minimal
counter models. In some cases Paradox could find counter models with a do-
main of size three or four, which we could inspect manually. In fact, Paradox
was helpful in getting the ./yes/add-symmetric.hs example working, because
it allowed us to identify some missing CF annotations. But, these are the sim-
plest kind of contract, and it’s not clear how to use Paradox to identify more
complex missing contracts.

5 Related Work

In this paper we explored statically-checked higher-order contracts for a lazy
functional language. Contracts have a long and rich history in computer sci-
ence, with variations on all these parameters: static or dynamic contract check-
ing, only first or also higher order functions, lazy (call-by-name) or strict (call-
by-value) evaluation, and functional or other language paradigm. In this sec-
tion we briefly mention some of the important but not-closely-related work,
and then discuss the closely-related work in more detail.

Dynamically-checked first-order contracts appeared as early as the 1980s, in
the object-oriented language Eiffel [8]. Statically-checked first-order contracts
appeared in the Extended Static Checking system for the object-oriented lan-
guage Modula-3 [4]. Dynamically-checked higher-order contracts appeared in
the strict functional language Scheme [5]. Dynamically-checked [7] and statically-
chekced [14] higher-order contracts appeared in the lazy language Haskell. Our

9 And without an axiom like this, φCF is not adequate for term constructors with higher
order arguments.
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goal of ruling out run-time exceptions is an inherently static problem, because
the failure of a dynamic contract check results in a run-time exception.

Our present system, and all of systems above, are fully automatic in the
sense that the user tells the system what contracts to check but not how to check
them.10 A contrasting approach is interactive theorem proving, which combines
automation with manual proof specification. Generic interactive theorem prov-
ing systems, such as Isabelle [9], Coq [3], and Agda [10], support the verifica-
tion of arbitrary properties of programs. In such systems the object language
(for us Haskell) must be modeled [1], rather than reasoned about directly. Al-
ternatively, one can design a special logic specific to the object language, such
as P-logic, which is designed for Haskell and uses Haskell as its term language
[6]. Although our term language t is Haskell-like, FOL knows nothing about
Haskell, and so our approach is closer to the encoding approach than to P-logic.

Systems with dynamically-checked higher-order contracts must track blame,
because higher-order arguments and return values are checked when they are
used, not when they are produced. The Scheme work [5] developed blame for
Scheme contracts, and later work [12] developed blame more generally, relating
it to subtyping, and hybrid (static and dynamic) type checking.

William Sonnex et al. developed an automatic equational-theorem prover
for a strict variant of Haskell [11]. Because of the strictness, it’s really more like
an automatic prover for ML, but it’s very effective in practice, proving many
properties fully automatically using novel induction heuristics. In conversation
William said that he had abandoned attempts to incorporate laziness into this
system.

Our present work is an extension of earlier work by Dana Xu, Simon Peyton-
Jones, and Koen Claessen [15] [14]. That earlier work designed the contract sys-
tem for Haskell, and a technique for statically checked contracts by symbolic
evaluation. By a source-to-source translation, they reduced the general prob-
lem of contract checking to crash-freeness checking. Their frustration with the
ineffectiveness of the symbolic-evaluation approach led to our present effort.

In parallel with our present work, Xu developed a hybrid-checked higher-
order contract system for the strict functional language OCaml [16]. Of all the
work reported in this section, this most recent work of Xu is probably the closest
to our present work. The static-checking part of Xu’s system uses a combination
of symbolic evaluation and automatic theorem proving. The automatic theorem
proving part uses an SMT solver and translation to a polymorphic typed FOL.
This system is still based on reduction of general contract checking to crash-
freeness checking; the theorem prover is used to aid the symbolic simplification,
by proving that branches in case statements are unreachable. Unlike our present
work and Xu’s earlier work, Xu’s most recent system requires all refinement
predicates to be terminating, and diverging predicates are unsound. Towards
this end she employs an automatic termination checker.

10 Our lemma encoding trick could be considered a form of interactivity, but we still
consider our system to be fully automatic.
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6 Future Work

To improve the usability of hcc we need it to give more feedback when it fails.
There is some hope in the counter models, but we’re not yet sure how to uti-
lize them in a systematic way. In our examples, the majority of the contract
annotations we wrote were of the form CF → · · · → CF, and we believe these
simple contracts could be suggested automatically. Also, the structure of many
lemma functions is completely determined by their contract (our lemma exam-
ple in Section 3.3 is unusual in this respect), and so the lemma functions could
probably be generated automatically.

Another way to improve feedback is make the proof obligations small and
numerous. Xu’s recent system [16] can report each path to a syntactic crash
which the symbolic simplification phase was unable to eliminate. Following
Xu and making a separate proof obligation for each path through a function,
we could report back to the user a precise execution path for which we weren’t
able to verify a contract.

By adding polymorphic contracts, which quantify contract variables, we
could improve the expressivity of the contract system. The natural contract
for the identity function, id x = x, is id ::: ∀c.c → c. We don’t currently sup-
port quantification over contracts, and neither does the earlier Haskell contracts
work [16] [15] [14], but we believe we’ve got the details mostly worked out on
paper.

7 Conclusion

We set out to create an effective system for statically checking Haskell con-
tracts. Our approach was to translate to first-order logic, and then to invoke an
automatic theorem prover on the translation. We designed two translations: a
more naive translation, which performs poorly, and a more sophisticated trans-
lation, based on the naive translation, which performs much better. Our system
is moderately effective at checking contracts, but the feedback it provides on
failure leaves much to be desired.

Acknowledgments. Thanks to Max Orhai, Caylee Hogg, and Garrett Morris for
providing feedback on drafts of this paper. Special thanks to Tim Sheard for
providing feedback, support, and encouragement throughout the entire RPE
paper writing process.
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8 Appendix

8.1 The Full-Application Optimization

The careful reader may have noticed that we have not yet used the function
symbols f̂ and K̂ from the term grammar (t) in Figure 1. We use these to sim-
plify our formulas and hence improve the performance of the theorem prover.
Wherever a function f or constructor K appears fully applied, i.e., applied to
as many arguments as appear on the left side of its definition, we replace the
full application with a function call, to f̂ or K̂ respectively, and add an axiom
relating the two.

More precisely, for each function f defined by f xm = b and each term
constructor K defined by data T α = · · ·K xn · · · , we replace all occurrences of
f x1 · · · xm with f̂ (x1, . . . , xm) and all occurrences of K x1 · · · xn with K̂(x1, . . . , xn)
in the theory, and then add axioms

∀x1, . . . , xm.
(
Min( f x1 · · · xm) ∨Min( f̂ (x1, . . . , xm))

)
→ f x1 · · · xm = f̂ (x1, . . . , xm)

and

∀x1, . . . , xn.
(
Min(K x1 · · · xn) ∨Min(K̂(x1, . . . , xn))

)
→ K x1 · · · xn = K̂(x1, . . . , xn)

to the prelude (φPrelude).

8.2 Multiple Unrollings

Recall (Figure 3) that when attempting to prove contract satisfaction (Je ::: cKc)
in φCF , we replace all recursive calls to ( f ′ x = e) ∈ F with the opaque func-
tions f ′rec for which we assume the corresponding contracts are satisfied (φCFrec ).
This gives us proof by induction, but limits us to one unrolling of function def-
initions, which is sometimes problematic. For example, suppose we wanted to
prove that

length (Cons Zero Nil) = Succ Zero .

We would get as far as

length (Cons Zero Nil) = Succ (lengthrec Nil) ,

and then be stuck, because we have no evaluation rules for opaque function
lengthrec.

To workaround this problem, we allow the user to specify the number of
unrollings to support. For example, if the user asks for one level of unrolling,
then instead of redefining length to call the opaque lengthrec recursively, we de-
fine length to call a new function length1 recursively, and then define length1 the
same as length, except to call the opaque lengthrec recursively. Hence our earlier
example becomes

length (Cons Zero Nil) = Succ (length1 Nil) = Succ Zero ,
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and we succeed.
More precisely, suppose the user requests N unrollings. Recall that the in-

sertion of opaque functions f ′rec only applies to the checked functions in the
SCC F , and not to the remaining functions G. So, we replace φFrec

in Figure 3
with

φFrec
=

∧
( f x = b)∈F

N+1∧
i=0

r
fi x =

(
b[ f ′i+i/ f ′]( f ′ = )∈F

)z
f

,

where f ′0 := f , f ′N+1 := f ′rec, and { f ′i }N
i=1 are new symbols, for each ( f ′ = ) ∈ F .
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