
Submission deadline: Monday, 12 May 2014, anywhere on Earth

Functional Pearl: The Decorator Pattern in Haskell

Nathan Collins Tim Sheard
Portland State University

nathan.collins@gmail.com sheard@cs.pdx.edu

Abstract
The Python programming language makes it easy to implement
decorators: generic function transformations that extend existing
functions with orthogonal features, such as logging, memoization,
and synchronization. Decorators are modular and reusable: the user
does not have to look inside the definition of a function to decorate
it, and the same decorator can be applied to many functions. In
this paper we develop Python-style decorators in Haskell generally,
and give examples of logging and memoization which illustrate the
simplicity and power of our approach.

Standard decorator implementations in Python depend essen-
tially on Python’s built-in support for arity-generic programming
and imperative rebinding of top-level names. Such rebinding is not
possible in Haskell, and Haskell has no built-in support for arity-
generic programming. We emulate imperative rebinding using mu-
tual recursion, and open recursion plus fixed points, and reduce the
arity-generic programming to arity-generic currying and uncurry-
ing. In developing the examples we meet and solve interesting aux-
iliary problems, including arity-generic function composition and
first-class implication between Haskell constraints.

1. Decorators by Example in Python and Haskell
We begin by presenting Python and Haskell decorators by example,
while glossing over a lot of details which will be provided in later
sections. This section serves both to motivate the problem and give
the intuition for our solution. The code described in this paper,
and more elaborate examples not described here, are available on
GitHub [3].

Our example decorators are call-tracing and memoization, and
our example function to decorate is natural exponentiation bp. We
choose this example function because 1) it admits an obvious recur-
sive implementation which makes redundant recursive calls, and 2)
it’s not a unary function.1 The recursion makes call-tracing inter-
esting and the redundant recursion makes memoization applicable.
We care about higher arity because we want our decorators to be
arity generic.

1 For unary functions an obvious example is Fibonacci, which we consider
later in Section 2.1.

[Copyright notice will appear here once ’preprint’ option is removed.]

Suppose we implement exponentiation in Haskell, using divide-
and-conquer:

pow b p =
if p <= 1
then b * p
else pow b (p ‘div‘ 2) * pow b (p - (p ‘div‘ 2))

And equivalently, in Python:

def pow(b, p):
if p <= 1:

return b * p
else:

return pow(b, p//2) * pow(b, p - (p//2))

Now, suppose we want to observe our function in order to debug
it. One way to do this would be to print out call-trace information
as the function runs. This could be accomplished by interleaving
print statements with our code (using Debug.Trace in Haskell):
ugly, but it works.

In Python, we can instead do something modular and reusable:
we can write a generic call-tracing decorator:

LEVEL = 0
def trace(f):
def traced(*args):

global LEVEL
prefix = "| " * LEVEL
print prefix + ("%s%s" % (f.__name__ , args))
LEVEL += 1
r = f(*args)
LEVEL -= 1
print prefix + ("%s" % r)
return r

return traced

For those not familiar with Python, decorators in Python are
explained in more detail in Appendix A. Their utility depends
heavily on being arity-generic2 and being able to trap recursive calls
to the function being traced3. After adding the line

pow = trace(pow)

to the source program, we run pow(2, 6) and see

pow(2, 6)
| pow(2, 3)
| | pow(2, 1)

2 In Python, *args as a formal parameter, in def traced(*args), de-
clares a variadic function, like defun traced (&rest args) in LISP;
*args as an actual parameter, in f(*args), applies a function to a se-
quence of arguments, like (apply f args) in LISP; % as a binary operator
is format-string substitution.
3 In Python, function names are just lexically scoped mutable variables, so
trapping is simply a matter of redefinition.

short description of paper 1 2014/8/27

| | 2
| | pow(2, 2)
| | | pow(2, 1)
| | | 2
| | | pow(2, 1)
| | | 2
| | 4
| 8
| pow(2, 3)
| | pow(2, 1)
| | 2
| | pow(2, 2)
| | | pow(2, 1)
| | | 2
| | | pow(2, 1)
| | | 2
| | 4
| 8
64

Noting the repeated sub computations, we see that memoization
would be an improvement. So, we write a generic memoization
decorator:

def memoize(f):
cache = dict()
def memoized(*args):
if args not in cache:

cache[args] = f(*args)
return cache[args]

memoized.__name__ = f.__name__
return memoized

and replace the line

pow = trace(pow)

with

pow = trace(memoize(pow))

Running pow(2, 6), we see

pow(2, 6)
| pow(2, 3)
| | pow(2, 1)
| | 2
| | pow(2, 2)
| | | pow(2, 1)
| | | 2
| | | pow(2, 1)
| | | 2
| | 4
| 8
| pow(2, 3)
| 8
64

Arity-generic decorators are easy to write in Python, and are
reusable. In Haskell, things do not appear to be so simple. But,
it turns out that, in Haskell it’s also easy to write arity-generic
decorators! Indeed, that’s what this paper is about.

An arity-generic decorator needs to solve two problems: inter-
cept recursive calls and handle functions of any arity uniformly. In
Python, arity genericity is easy to implement via the built-in *args
feature, and a function name is simply a statically scoped mutable
variable, so a simple assignment can be used to intercept recursive
calls. In Haskell these problems need to be solved in another way.

Let’s start with arity-genericity. What Python’s *args feature
does is allow us to treat functions of any arity uniformly as unary

functions that instead take a single tuple as argument. In Haskell
then, a good analogy is arity-generic currying and uncurrying:4

curry f x1 ... xn = f (x1 , ... , xn)
uncurryM f (x1 , ... , xn) = f x1 ... xn

Here curry f in Haskell corresponds to def f(*args): ...
in Python, and uncurryM f args in Haskell corresponds to
f(*args) in Python. We’ll explain how to statically type and
implement these functions later, but for now we just need to un-
derstand them operationally at an intuitive level.

With curry and uncurryM in hand we can write a well-typed5

call-tracing decorator in Haskell quite similar to the Python deco-
rator we saw earlier:

trace levelRef name f = curry traced where
traced args = do

level <- readIORef levelRef
let prefix = concat . replicate level $ "| "
putStrLn $ prefix ++ name ++ show args
modifyIORef levelRef (+1)
r <- uncurryM f args
modifyIORef levelRef (subtract 1)
putStrLn $ prefix ++ show r
return r

Similary, we can write a well-typed memoization decorator:

memoize cacheRef f = curry memoized where
memoized args = do

cache <- readIORef cacheRef
case Map.lookup args cache of
Just r -> return r
Nothing -> do

r <- uncurryM f args
modifyIORef cacheRef (Map.insert args r)
return r

These decorators are both monadic; we discuss non-monadic dec-
orators in Section 3.

To apply these decorators to pow we make two changes: 1)
we rewrite pow as a monadic function, because the decorators are
monadic; 2) we rewrite pow as an open-recursive function, so that
we can trap recursive calls. In general, (1) is obviously unnecessary
if the function we want to decorate is already monadic, and for pure
functions we can actually use unsafePerformIO6 to avoid making
the function monadic, as we explain in Section 3.2. For (2), we can
alternatively use mutual recursion, as we discuss in Section 2.1.

Before decoration, a monadic version of pow using (unneces-
sary) open recursion is

openPowM pow b p = do
if p <= 1
then pure $ b * p
else (*) <$> pow b (p ‘div‘ 2) <*>

pow b (p - (p ‘div‘ 2))
powM = fix openPowM

We can now decorate powM with both memoization and tracing with
just a few lines:

powM :: Int -> Int -> IO Int

4 The “M” in “uncurryM” stands for “monadic”.
5 In fact, once curry and uncurryM are defined, GHC 7.6.3 can infer
the types of these decorators. In practice, the type annotations make good
documentation, but we aren’t ready to explain the types yet, so we postpone
them until Section 2.3.2.
6 Yes, unsafePerformIO is easily abused, but we think Debug.Trace is
good precedent here, at least in the call-tracing use case.

short description of paper 2 2014/8/27

powM b p = do
levelRef <- newIORef 0
cacheRef <- newIORef Map.empty
fix (trace levelRef "powM" . memoize cacheRef .

openPowM) b p

Running powM 2 6 we see7

powM(2,(6,()))
| powM(2,(3,()))
| | powM(2,(1,()))
| | 2
| | powM(2,(2,()))
| | | powM(2,(1,()))
| | | 2
| | | powM(2,(1,()))
| | | 2
| | 4
| 8
| powM(2,(3,()))
| 8
64

Of course, it may not yet be obvious how to implement curry
and uncurryM. So, it’s time to fill in the details.

2. Decorators in Haskell
To implement Python-style decorators in Haskell there are two
problems we must solve:

• How to intercept recursive calls, which was solved by impera-
tive rebinding of function names in Python.

• How to treat any number of arguments uniformly, which was
solved using *args in Python.

We address each of these in turn.

2.1 Intercepting Recursive Calls
We know two ways to intercept recursive calls in Haskell: mutual
recursion, and open recursion plus fixed points. Either approach
can be used, and which one you use is mostly a matter of style. The
mutual recursion scheme is often easier to explain to programmers
who are not familiar with fixpoints, but open recursion is ofter
easier to reuse. Both techniques work the same for monadic and
non-monadic functions.

We start with mutual recursion. One approach uses a where
clause to introduce mutually recursive functions, for example, fib
and fib’:

fib :: Int -> Int
fib = fib’ where

fib’ n =
if n <= 1
then n
else fib (n-1) + fib (n-2)

The where clause isn’t necessary, but it hides the inner function
fib’ from the rest of the program. Now, suppose we have a dec-
orator dec :: (Int -> Int) -> (Int -> Int). Then we can
decorate fib by simply inserting it between fib and fib’, effec-
tively intercepting all calls:

fib :: Int -> Int
fib = dec fib’ where

fib’ :: Int -> Int
fib’ n =

7 The careful reader may notice the tuples are actually nested . . .

if n <= 1
then n
else fib (n-1) + fib (n-2)

Writing recursive functions in this mutually recursive style may
seem pointless, but it makes them amenable to decoration at a
neglibile cost – less than one line. It is also very easy to re-factor
a function not written in this style using regexp-search and replace
in your editor. Once done, this split into two mutually recursive
functions does not need to be undone if one decides that decoration
is no longer necessary. For example, after using trace to debug
a function, we might want to disable tracing by removing the
decorator.

Alternatively, we can use open recursion and fixed points. Given
the open-recursive openFib defined by

openFib :: (Int -> Int) -> (Int -> Int)
openFib fib n =
if n <= 1
then n
else fib (n-1) + fib (n-2)

we can rewrite fib as a fixed point of openFib:

fib = fix openFib

Next, we can decorate as follows:

fib = fix (dec . openFib)

To see that this works, note that

fix openFib = openFib (fix openFib)

is the defining equation for fib defined via openFib, and that

fix (dec . openFib)
= (dec . openFib) (fix (dec . openFib))
= dec (openFib (fix (dec . openFib)))

I.e., fix (dec . openFib) is dec applied to a version of openFib
which calls fix (dec . openFib) on recursive calls, and so we
see that dec intercepts all recursive calls.

2.2 Writing Effectful Typed Decorators
The two decorators we discussed in the intro, memoize and trace,
both use effects. In Haskell this means using some kind of monad.
Here we use IO to illustrate the techniques, but they easily gener-
alize to other monads. Effectfull decorators sometimes take inputs
(other than the function being decorated) which are used to intitial-
ize these effects. We illustrate this first with a version of memoize
that works only on unary functions:

memoize :: Ord a =>
IORef (Map.Map a b) -> (a -> IO b) -> (a -> IO b)

memoize cacheRef f = memoized
memoized :: a -> IO b
memoized x = do

cache <- readIORef cacheRef
case Map.lookup x cache of

Just r -> return r
Nothing -> do
r <- f x
modifyIORef cacheRef (Map.insert x r)
return r

We generalize to n-ary functions in the next section.
We illustrate the use of this decorator, by reformulating fib

into its monadic counterpart fibM. We can define a (per top-level
call) memoized monadic Fibonacci function using either mutual
recursion:

short description of paper 3 2014/8/27

fibM :: Int -> IO Int
fibM n = do

cacheRef <- newIORef Map.empty
let fib = memoize cacheRef fib’
let fib’ n =

if n <= 1
then pure n
else (+) <$> fib (n-1) <*> fib (n-2)

return $ fib n

Or, by using open recursion plus fixed points:

openFibM :: (Int -> IO Int) -> (Int -> IO Int)
openFibM fib n = do

if n <= 1
then pure n
else (+) <$> fib (n-1) <*> fib (n-2)

fibM :: Int -> IO Int
fibM n = do

cacheRef <- newIORef Map.empty
fix (memoize cacheRef . openFibM) n

Note that each top-level call must allocate its own cache (an
example of effect initialization). One advantage of using open re-
cursion is that it allows us to abstract out the initial state allocation
into a monadic version of the decorator. For example:

memoizeM::((a -> IO b) -> (a -> IO b)) -> (a -> IO b)
memoizeM openF x = do

cacheRef <- newIORef Map.empty
fix (memoize cacheRef . openF) x

fibM :: Int -> IO Int
fibM = memoizeM openF

2.3 Arity-Generic Decorators via Currying and Uncurrying
In this section we generalize decorators for unary functions to
decorators for functions of any arity, by defining n-ary currying
and uncurrying at the value and type levels.

2.3.1 Motivation
We’d like to generalize unary memoize from the last section to an
n-ary version. We start with some hand waving:

memoize :: Ord (a1 , ... , an) =>
IORef (Map.Map (a1 , ... , an) b) ->
(a1 -> ... -> an -> IO b) ->
(a1 -> ... -> an -> IO b)

memoize cacheRef f = memoized
memoized :: a1 -> ... -> an -> IO b
memoized x1 ... xn = do
cache <- readIORef cacheRef
case Map.lookup (x1 , ... , xn) cache of

Just r -> return r
Nothing -> do
r <- f x1 ... xn
modifyIORef cacheRef

(Map.insert (x1 , ... , xn) r)
return r

The trouble is two-fold. How do we model the “...” at the term
and type levels? And how do we pass between x1 ... xn and
(x1, ..., xn) inside the body of the closure memoized?

Recalling the Python memoization example from Section 1, the
key idea there was to use Python’s primitive *args constructs to
perform automatic tupling and untupling of arguments, allowing
functions of all arities to be treated uniformly. The obvious (in
hindsight) analogy in Haskell is n-ary currying and uncurrying:

curry k x1 ... xn = k (x1 , ... , xn)
uncurryM f (x1 , ... , xn) = f x1 ... xn

where curry k corresponds to def k(*args) in Python and
uncurryM f args corresponds to f(*args) in Python.

To type curry and uncurryM, and code which uses them, we
introduce some type families. Since tracing and memoization8 are
side-effecting, we restrict our attention to monadic functions. For a
monadic function type

t = a1 -> ... -> an -> m b

we define the type family UncurriedM by

UncurriedM t = (a1 , ... , an) -> m b

We can now type curry and uncurryM:

curry :: UncurriedM t -> t
uncurryM :: t -> UncurriedM t

Next, we introduce type families for the parts of t:

ArgsM t = (a1 , ... , an)
RetM t = b
MonadM t = m

Finally, using curry and uncurryM, and our type families, we can
make our hand-wavy decorator look legit:

memoize :: forall t.
(Ord (ArgsM t) , MonadM t ~ IO) =>
IORef (Map.Map (ArgsM t) (RetM t)) ->
t -> t

memoize cacheRef f = curry memoized
memoized :: UncurriedM t
memoized args = do

cache <- readIORef cacheRef
case Map.lookup args cache of

Just r -> return r
Nothing -> do
r <- uncurryM f args
modifyIORef cacheRef (Map.insert args r)
return r

It remains to eliminate the “...”s, which are now hidden in the
definitions of curry, uncurryM, and the type families.

2.3.2 Implementing the “...”s
We now formalize the “...”s, producing code that actually type
checks in GHC 7.6.3.

Because we want to treat all arities uniformly, and there is no
relation in Haskell between the flat tuples of different arities, we
instead used nested tuples. For a function of two arguments the
previous definitions actually take the form:

curry k x1 x2 = k (x1 , (x2 , ()))
uncurryM f (x1 , (x2 , ())) = f x1 x2

We right-nest our tuples because arrow types are right associated.
For t = a1 -> a2 -> m b we actually have

UncurriedM t = (a1, (a2, ())) -> m b
ArgsM t = (a1, (a2, ()))
RetM t = b
MonadM t = m

The general versions are formalized in the class definitions below.

8 There are clever ways to implement memoization in a pure way, e.g. see
http://hackage.haskell.org/package/memoize-0.6, but the sim-
plest way is to mutate a cache.

short description of paper 4 2014/8/27

Our definition of currying (as a Haskell type class) is relatively
straightforward, except for a subtlety due to the potential mismatch
between iterative tupling at the term and type level: arrow types are
right associative, but iterated function application is left associative.
If we iterative tupled the arguments in curry f x1 x2 using an
accumulator, we’d get a left-nesting:

((() , x1) , x2) :: ((() , a1) , a2)

So, instead, we treat the argument f to curry f x1 x2 as a con-
tinuation, allowing us to right-nest the argument tuple. The Curry
type class formalizes this pattern for all n:

class Curry (as :: *) (b :: *) where
type as ->* b :: *
curry :: (as -> b) -> (as ->* b)

instance Curry as b => Curry (a , as) b where
type (a , as) ->* b = a -> (as ->* b)
curry f x = curry (\ xs -> f (x , xs))

instance Curry () b where
type () ->* b = b
curry f = f ()

Note that (->*) is an infix type constructor. Mnemonically,
“as ->* b” means “insert zero or more (*-many) arrows between
the types in the (right-nested) product as and range b”.

The implementation of uncurrying is simple in principle, but
complicated in practice in order to avoid overlapping instances: we
give one obvious recursive case followed by two carefully chosen
base cases:9

class Monad (MonadM t) => UncurryM (t :: *) where
type ArgsM t :: *
type RetM t :: *
type MonadM t :: * -> *
uncurryM :: t -> UncurriedM t

type UncurriedM t = ArgsM t -> MonadM t (RetM t)

instance UncurryM b => UncurryM (a -> b) where
type ArgsM (a -> b) = (a , ArgsM b)
type RetM (a -> b) = RetM b
type MonadM (a -> b) = MonadM b
uncurryM f (x , xs) = uncurryM (f x) xs

instance (Monad m , Monad (t m)) => UncurryM (t m r)
where
type ArgsM (t m r) = ()
type RetM (t m r) = r
type MonadM (t m r) = t m
uncurryM f () = f

instance UncurryM (IO r) where
type ArgsM (IO r) = ()
type RetM (IO r) = r
type MonadM (IO r) = IO
uncurryM f () = f

9 GHC 7.8 has closed ordered type families, which allow us to write the
type functions ArgsM, RetM, and MonadM in the naive way. However, with-
out “closed ordered type classes”, we still have trouble implementing the
term function uncurryM without overlap. We could define uncurryM in
terms of the uncurry (no “M”) we introduce later, using a type function
which computes the length of a nested tuple to instantiate the Proxy Nat
parameter of uncurry, but we don’t consider that approach here.

The potential overlap we avoid, and the way we avoid it, are
both subtle. Naively, we’d like to write a single base case:

instance Monad m => UncurryM (m b) where ...

and the same inductive case (as above) over types constructed with
arrow:

instance UncurryM b => UncurryM (a -> b) where ...

However, these two instance overlap, because (m b) and (a -> b)
unify, with substitution m = ((->) a).10 So, instead, we factor the
base case into IO and transformers. Since most non-IO monads in
the standard libraries are defined as transformers applied to Id,
this factoring covers most types in practice! The tricky part of the
factoring is

instance (Monad m , Monad (t m)) => UncurryM (t m r)

This forces t :: (* -> *) -> * -> *
and (->) :: * -> * -> * to have incompatible kinds and so
overlap is avoided.

Finally, we define a constraint class CurryUncurryM which is
shorthand for “currying after uncurrying makes sense”. In long-
hand: t supports uncurrying (UncurryM t), t supports uncurry-
ing after currying (Curry (ArgsM t) (MonadM t (RetM t))),
and uncurrying followed by currying is the identity on types
((ArgsM t ->* MonadM t (RetM t)) = t):

type CurryUncurryM (t :: *) =
(UncurryM t
, Curry (ArgsM t) (MonadM t (RetM t))
, (ArgsM t ->* MonadM t (RetM t)) ~ t)

Note that CurryUncurryM t holds for all concrete monadic types
t = a1 -> ... -> an -> m b whose monads are IO, or a
transformer. So, this constraint imposes no constraints on the user,
in practice. But, the constraint does help the Haskell type checker
infer types when a decorator is used.

We now have everything we need to implement an arity-generic
decorator with no hand-wavy “...”s:

memoize :: forall t.
(CurryUncurryM t
, Ord (ArgsM t)
, MonadM t ~ IO) =>
IORef (Map.Map (ArgsM t) (RetM t)) -> t -> t

memoize cacheRef f = curry memoized where
memoized :: UncurriedM t
memoized args = do

cache <- readIORef cacheRef
case Map.lookup args cache of

Just r -> return r
Nothing -> do
r <- uncurryM f args
modifyIORef cacheRef (Map.insert args r)
return r

Indeed, this type-checks in GHC, and in fact GHC can infer the
types. Similarly, the trace from the intro becomes:

trace :: forall t.
(CurryUncurryM t
, Show (ArgsM t)
, Show (RetM t)

10 The type ((->) a) :: * -> * has a standard monad instance, so the
Monad m precondition of the base case doesn’t disambiguate. But precon-
ditions aren’t used to disambiguate overlapping instances: the open-world
assumption means we have to assume an instance does exist if it’s kind
correct.

short description of paper 5 2014/8/27

, MonadM t ~ IO) =>
IORef Int -> String -> t -> t

trace levelRef name f = curry traced where
traced :: UncurriedM t
traced args = do
level <- readIORef levelRef
let prefix = concat . replicate level $ "| "
putStrLn $ prefix ++ name ++ show args
modifyIORef levelRef (+1)
r <- uncurryM f args
modifyIORef levelRef (subtract 1)
putStrLn $ prefix ++ show r
return r

Next we consider how to decorate pure functions.

3. Decorating Non-Monadic Functions
So far we’ve considered monadic decorators for monadic functions,
but we might also want non-monadic decorators for non-monadic
functions. Towards this end we describe a non-monadic analog
of uncurryM. Also in this section, we show how to apply side-
effecting decorators to pure functions using unsafePerformIO.11

3.1 Non-Monadic Decorators for Non-Monadic Functions
The Curry class has nothing to do with monads, so we just need a
non-monadic version of UncurryM, which we call Uncurry. There
is one issue though: in UncurryM we used the right-most monad to
identify the return type. For a curried pure function, however, the
return type is not actually well defined! Indeed, the type

a1 -> a2 -> b

could be intended as a higher-order function of one argument a1
that returns a function of one argument a2, or as a curried function
of two arguments a1 and a2.

So, we require the user to say how many arguments there are:

class Uncurry (n :: Nat) (t :: *) where
type Args n t :: *
type Ret n t :: *
uncurry :: Proxy n -> t -> Uncurried n t

type Uncurried n t = Args n t -> Ret n t

instance Uncurry n b => Uncurry (Succ n) (a -> b)
where
type Args (Succ n) (a -> b) = (a , Args n b)
type Ret (Succ n) (a -> b) = Ret n b
uncurry _ f (x , xs) =
uncurry (Proxy::Proxy n) (f x) xs

instance Uncurry Zero b where
type Args Zero b = ()
type Ret Zero b = b
uncurry _ f () = f

Because of issues12 with GHC.TypeLits.Nat, we roll our own
type-level [9] nats and use Template Haskell [8] to provide friendly
literals:

data Nat = Zero | Succ Nat

11 That Debug.Trace is in the GHC base libraries indicates that people
want to trace pure functions.
12 In short, GHC 7.6.3 doesn’t reason about injectivity of successor for
the GHC.TypeLits.Nat. There is a detailed discussion of the problem on
Stack Overflow [2].

nat :: Integer -> Q Type
nat 0 = [t| Zero |]
nat n = [t| Succ $(nat (n-1)) |]

proxyNat :: Integer -> Q Exp
proxyNat n = [| Proxy :: Proxy $(nat n) |]

The user can now write e.g. $(proxyNat 2) instead of

Proxy :: Proxy (Succ (Succ Zero))

Also, in analogy with CurryUncurryM, we define a constraint
synonym for well-behaved currying after uncurrying:

type CurryUncurry (n :: Nat) (t :: *) =
(Uncurry n t
, Curry (Args n t) (Ret n t)
, (Args n t ->* Ret n t) ~ t)

As with CurryUncurryM t, the CurryUncurry n t constraint is
always satisfied in practice, for sensible n.

That gives us enough to write pure decorators for pure func-
tions; the next section describes how to reuse monadic decorators
with pure functions.

3.2 Reusing Monadic Decorators with Non-Monadic
Functions

Finally, we show how to reuse monadic decorators with pure func-
tions, via unsafePerformIO. Practically speaking, this gives a
much better version of Debug.Trace, and finally approaches the
simplicity of the Python decorators for simple use cases.

Our approach is to 1) turn a pure function into a monadic func-
tion, by composing its result with return, 2) apply the monadic
decorator, and then 3) use unsafePerformIO to escape from IO.
So, for example, for a two-argument function like pow from the
intro:

pow , pow’ :: Int -> Int -> Int
pow = \b p -> unsafePerformIO $ memoize cacheRef
(\b p -> return $ pow’ b p) b p

pow’ b p =
if b <= 1
then b * p
else pow b (p ‘div‘ 2) * pow b (p - (p ‘div‘ 2))

Defining the n-ary composition by

compose :: (Uncurry n t , Curry (Args n t) a) =>
Proxy n -> (Ret n t -> a) -> t -> Args n t ->* a

compose p g f = curry (g . uncurry p f)

so that e.g.

compose $(proxyNat 2) return pow’ b p =
return $ pow’ b p

We can capture the whole pattern abstractly:

type InjectIO n t = Args n t ->* IO (Ret n t)

{-# NOINLINE unsafePurify #-}
unsafePurify :: forall n t.
UnsafePurifiable n t =>
Proxy n -> IO (InjectIO n t -> InjectIO n t) -> t -> t

unsafePurify p makeDecorator = unsafePerformIO $ do
decorate <- makeDecorator
return $

compose p unsafePerformIO’ .
decorate .
compose p return’

where

short description of paper 6 2014/8/27

return’ :: Ret n t -> IO (Ret n t)
unsafePerformIO’ :: IO (Ret n t) -> Ret n t
return’ !x = return x
unsafePerformIO’ = unsafePerformIO

where we’ve locally specialized the types of unsafePerformIO
and return to help GHC with inference, and made return strict13

to enforce correct sequencing of the unsafe IO.
The UnsafePurifiable is a constraint synonym capturing

when it makes sense to compose with return and then with
unsafePerformIO. Consistent with the theme, this is always satis-
fied in practice for concrete types t when n is sensible. The details:

type UnsafePurifiable n t =
(CurryUncurry n t
, UncurryCurry n (Args n t) (IO (Ret n t))
, UncurryMCurry (Args n t) IO (Ret n t))

type UncurryCurry (n :: Nat) (as :: *) (r :: *) =
(Curry as r
, Uncurry n (as ->* r)
, Args n (as ->* r) ~ as
, Ret n (as ->* r) ~ r)

type UncurryMCurry (as :: *) (m :: * -> *) (r :: *) =
(Curry as (m r)
, UncurryM (as ->* m r)
, ArgsM (as ->* m r) ~ as
, RetM (as ->* m r) ~ r
, MonadM (as ->* m r) ~ m)

Where in turn, UncurryCurry and UncurryCurryM capture what
it means for uncurrying after currying to make sense.

The unsafePurify takes a computation makeDecorator that
makes a decorator, and not a decorator directly, so that state can be
allocated. E.g., we can make a memoizer for pure functions, which
allocates its own cache, with

unsafeMemoize ::
(UnsafePurifiable n t
, Ord (Args n t))
=> Proxy n -> t -> t

unsafeMemoize p =
unsafePurify p (memoize <$> newIORef Map.empty)

For unsafeTrace, it’s actually more useful to allocate the state
outside, so that it can be shared between multiple traced functions.
So, we end up with a trivial makeDecorator:

{-# NOINLINE levelRef #-}
levelRef :: IORef Int
levelRef = unsafePerformIO $ newIORef 0
unsafeTrace ::

(UnsafePurifiable n t
, Show (Args n t)
, Show (Ret n t)) =>
Proxy n -> String -> t -> t

unsafeTrace n name =
unsafePurify n (return $ trace levelRef name)

Finally, we can write a decorated non-monadic pow function:

pow :: Int -> Int -> Int
pow = unsafeTrace n "pow" . unsafeMemoize n $ pow’

where
pow’ b p =
if p <= 1

13 This is really important!

then b * p
else pow b (p ‘div‘ 2) * pow b (p - (p ‘div‘ 2))

n = $(proxyNat 2)

Whew! Evaluating pow 2 6 we see

pow(2,(6,()))
| pow(2,(3,()))
| | pow(2,(1,()))
| | 2
| | pow(2,(2,()))
| | | pow(2,(1,()))
| | | 2
| | | pow(2,(1,()))
| | | 2
| | 4
| 8
| pow(2,(3,()))
| 8
64

Woo!

4. The Big Picture
In his paper we’ve limited ourselves to simple decorators. The
definitions of currying and uncurrying are relatively complicated,
but this is crucial to making our decorators widely applicable.
However, we don’t want to leave you with the impression that the
decorators themselves need be simple. A few thoughts on some of
the things we have already done, and things we’d like to do:

• Our original motivating example was a call-tracer that does not
print out the arguments and results, but rather, builds up all the
arguments, results, and recursive calls into a tree of heteroge-
neous (existentially quantified) data. This tree-of-data approach
allows for arbitrary post processing, including simple printf-
style tracing as we’ve shown here, but also more interesting
post-processing:

Debugging: walk the tree interactively and inspect the data
at each node.

Fancy formatting: produce a Graphviz graph of the call-
trace, or a LaTeX proof tree.

We implemented a LaTeX proof tree backend, and instantiated
it for a trivial type checker [1].

• An interesting problem which came up in implementing the
tree-of-data logger was how to reuse heterogeneous data at
multiple classes. If a data tree stores existentially quantified
data representing function arguments and return values, how
do we use the same tree to build several different traversals?
We solved this problem by implementing implication between
Haskell constraints, in a way that allows us to safely cast the
data tree to different types for each of the different traversals.
We summarize the main ideas in Appendix B.

• In this paper we’ve given a Haskell memoization decorator
which is very close to the Python version, but in Haskell a more
general decorator is probably preferable. We don’t really want
to restrict decorators to the IO monad. See Appendix C for a
fancier version where the monad is more abstract, and we use
a single cache of caches, so that we don’t have to create and
initialize a new cache for every function we decorate.

• A decorator we’d like to try, but have only sketched on paper
and not implemented yet, is a decorator for automatic hash con-
sing. The strategy we have in mind uses two-level types, the
algebraic data type analog of open-recursion, to get inside the

short description of paper 7 2014/8/27

recursive knot in the data. Two-level types have traditionally
been painful in Haskell, “infecting” your whole program. How-
ever, using pattern synonyms in GHC 7.8, we hope to be able
to implement a hash-consing decorator via two-level types in a
way that only appears to affect code locally.

• There are many variations on memoizing pure functions. Here
we gave an unsafePerformIO-based hack, but more princi-
pled side-effect based approaches include compiler support [6].
Alternatively, in Haskell as it exists today, one can use lazy eval-
uation and a possibly infinite data structure to implement a map
which spans the complete domain of the memoized function,
but only lazily computes the data structure as calls are made
[5]. Conol Elliot describes some examples of this on his blog
[4].

Finally, our combination of simple decorators and complicated
primitives in this paper brings to mind a comment in Cabal’s
Distribution.Simple module [7]:

This module isn’t called “Simple” because it’s simple. Far
from it. It’s called “Simple” because it does complicated
things to simple software.

Acknowledgments
This work was supported by NSF grant 0910500.

References
[1] N. Collins. Answer to: Latex natural deduc-

tion proofs using haskell, Dec. 2013. URL
http://stackoverflow.com/a/20829134/470844.

[2] N. Collins. Type-level nats with literals and
an injective successor?, Dec. 2013. URL
http://stackoverflow.com/q/20809998/470844.

[3] N. Collins. Repository for source code discussed in this paper, May
2014. URL https://github.com/ntc2/haskell-call-trace.

[4] C. Elliot. Memoizing polymorphic functions via unmemoization, Sept.
2010. URL http://conal.net/blog/tag/memoization.

[5] R. Hinze. Generalizing generalized tries. J. Funct. Program, 10(4):327–
351, 2000. URL http://journals.cambridge.org/action/displayAbstract?aid=59745.

[6] J. Hughes. Lazy memo-functions. In FPCA, pages 129–146, 1985.

[7] I. Jones. Simple.hs, Sept. 2003. URL
https://github.com/haskell/cabal/blob/master/Cabal/Distribution/Simple.hs.

[8] T. Sheard and S. Peyton Jones. Template metaprogramming for Haskell.
In M. M. T. Chakravarty, editor, ACM SIGPLAN Haskell Workshop 02,
pages 1–16. ACM Press, Oct. 2002.

[9] S. Weirich, B. A. Yorgey, J. Cretin, S. P. Jones, D. Vytiniotis, and J. P.
Magalhaes. Giving haskell a promotion. Jan. 28 2012.

A. Appendix: Decorators in Python
In this section we derive the Python memoization decorator memoize,
identifying the general concepts along the way. If you already un-
derstand the Python memoize, you can safely skip this section.

Recall the world’s most popular straw-man recursive function,
Fibonacci. In Python:

def fib(n):
if n <= 1:
return n

else:
return fib(n-1) + fib(n-2)

As everyone knows, this natural definition has exponential run
time. We can make the run time linear via dynamic programming

(with O(1) additional space) or memoization (with O(n) addi-
tional space). Here dynamic programming can beat memoization
in space overhead by depending on details of the definition of the
fib. Namely, the recursive calls in fib(n) are to fib(n-1) and
fib(n-2), and so dynamic programming can get by with two extra
variables storing those values. In code:

def dp_fib(n):
f0, f1 = 0, 1
for _ in range(n):

f0, f1 = f1, f1 + f0
return f0

On the other hand, memoization does not depend on the definition
of fib, and just naively caches all previously computed results. In
code:

memo_fib_cache = dict()
def memo_fib(n):
if n not in memo_fib_cache:

if n <= 1:
r = n

else:
r = memo_fib(n-1) + memo_fib(n-2)

memo_fib_cache[n] = r
return memo_fib_cache[n]

where dict() creates an empty dictionary / hash table.
The memoization transformation didn’t depend on the definition

of fib: for an arbitrary unary function f, the memoized version
would be

memo_f_cache = dict()
def memo_f(n):
if n not in memo_f_cache:

Compute original definition of ’f’
with recursive calls replaced by ’memo_f’
and store result in ’memo_f_cache’.

return memo_f_cache[n]

Now, there is one obvious problem with capturing this transforma-
tion formally in code: how to implement the replacement of recur-
sive calls? But, it turns out that there is a simple way to do this: a
Python function name is just a mutable variable, and so is evalu-
ated each time the function is called. So, for a recursive function f
and a transformation on functions t, we can write f = t(f): the
call-by-value argument f in t(f) evaluates to the current defini-
tion of f, and then f is made to refer to whatever t(f) returns. If
t(f) captures the original value of f in a closure, then it can call
the original f. However, recursive occurrences of f in the original
definition of f are evaluated on each call, and so resolve to t(f)!

So then, we can define a memoization decorator for unary func-
tions:

def memoize(f):
cache = dict()
def memoized(n):

if args not in cache:
cache[n] = f(n)

return cache[n]
return memoized

Now, if we add f = memoize(f), then the original function f is
captured in a closure memoized, along with a fresh cache. A call f
now resolves to memoized(n), and when n is not in the cache, the
captured original f is called to compute the requested result. If the
original f makes any recursive calls, they resolve memoized! The
point is that the treatment of function names as mutable variables
gives an easy way to get inside the recursive knot and intercept
recursive calls.

short description of paper 8 2014/8/27

The final step is to generalize the memoization decorator from
unary functions to functions of all arities, and give the memoized
function the same name as the original function:

def memoize(f):
cache = dict()
def memoized(*args):
if args not in cache:

cache[args] = f(*args)
return cache[args]

memoized.__name__ = f.__name__
return memoized

The *args syntax in a definition (formal parameter) means to col-
lect all the arguments into a tuple; this is sometimes called a “vari-
adic” function, and corresponds to the &rest args syntax in LISP.
The *args syntax in an expression (actual parameter) means to
apply a function to a tuple of arguments; this corresponds to the
apply function in LISP. These tupling and untupling transforma-
tions are analogous to currying and uncurrying, and motivate our
use of those primitives in our Haskell implementation (Section 2.3).

B. Appendix: Constraint Implication
The original motivation for this work was a generic logger, which
is too complicated to describe in this paper. However, in developing
the generic logger we came across and solved the problem Haskell-
constraint implication, and we expect our solution is generally
useful when programming with heterogeneous data in Haskell.
In this section we describe constraint implication and apply it to
casting a simple heterogeneous container type H, which we make
use of in several places in our implementation [3].

The heterogeneous wrapper type we use here is called H:

data H (c :: * -> Constraint) where
H :: c a => a -> H c

That is, an H c value is a wrapped value of existentially quantified
type which is known to satisfy the constraint c. To use an H c value,
we provide the higher-rank function unH:

unH :: (forall a. c a => a -> b) -> H c -> b
unH f (H x) = f x

Note that this is the obvious “eliminator” for H, if we pretend that
=> is a regular arrow.

In our actual use case, the generic logger, we have a recur-
sive tree of existentially quantified data, with a uniform constraint
over its contents. We have several type-classes which correspond to
post-processing the tree in different ways, and so we want to con-
strain a given tree at several classes. However, each class requires
itself to be the only constraint on the data tree, because of the recur-
sion, and so we need a way to cast a tree constrained by multiple
classes to trees constrained by each single class.

To capture multiple constraints as a single constraint, we define
conjunction of constraints (:&&:):

infixr :&&:
class (c1 t , c2 t) => (c1 :&&: c2) t
instance (c1 t , c2 t) => (c1 :&&: c2) t

Our goal is now to define a notion of constraint implication,
Implies, such that e.g. Implies (Show :&&: Eq) Eq is inhab-
ited, and for which we can write a function for casting trees by im-
plications. In this simplified presentation, the casting corresponds
to coerceH:

coerceH :: forall c1 c2. Implies c1 c2 -> H c1 -> H c2

Towards these ends, we reify class constraints:

data Reify c a where
Reify :: c a => Reify c a

We then define Implies by

type Implies c1 c2 = forall a. Reify c1 a -> Reify c2 a

Note that all concrete instances of Implies c1 c2 are simply

\case Reify -> Reify

Not bad!
For this definition of Implies, we can define coerceH by

coerceH :: forall c1 c2. Implies c1 c2 -> H c1 -> H c2
coerceH impl (H (x :: a)) =
case impl (Reify :: Reify c1 a) of

Reify -> H x

In the case of heterogeneous trees, called LogTree in our imple-
mentation, the definition of coerceLogTree is similar to coerceH
in principle, but also includes mapping itself over the recursive sub-
trees.

In the next section we consider a memoizer which makes use of
H, but not constraint implication.

C. Appendix: A More General Memoizer
In the intro we gave a memoization decorator specialized to IO,
which received an IORef to a cache as one of its arguments. In
practice, it’s more useful to support any monad which models
mutable state, e.g. MonadIO, ST, and State. In this section we
describe such a more general memoization decorator which can be
instantiated at any mutable-state monad, and which shares a single
cache across all memoized functions. In particular, this allows the
user to allocate a single cache once, which is useful when the
ambient monad is State.

The user supplies “lookup” and “insert” functions which ma-
nipulate a cache of caches: existentially quantified Typeable types
keyed by strings. The existential quantification is provided by
the type H, which we introduced above. The decorator allocates
a Data.Map.Map under a user-specified string – in practice the
module-qualified name of the memoized function, but any unique
string will do – via the user-specified insert function. Because the
Map must be Typeable, and is used to store cached results of the
memoized function keyed by argument tuples for the memoized
function, there are Typeable constraints on the domain and range
of the memoized function:

castMemoize :: forall t.
(CurryUncurryM t
, Ord (ArgsM t)
, Typeable (ArgsM t)
, Typeable (RetM t)
, Functor (MonadM t)) =>
(String -> MonadM t (Maybe (H Typeable))) ->
(String -> H Typeable -> MonadM t ()) ->
String ->
t -> t

castMemoize lookup insert tag f = curry memoized where
memoized :: UncurriedM t
memoized args = do

cache <- getCache
case Map.lookup args cache of

Just ret -> return ret
Nothing -> do
ret <- uncurryM f args
cache <- getCache
insert tag $ H (Map.insert args ret cache)
return ret

short description of paper 9 2014/8/27

getCache :: MonadM t (Map.Map (ArgsM t) (RetM t))
getCache =
maybe Map.empty (unH castCache) <$> lookup tag

castCache :: Typeable a => a -> Map.Map (ArgsM t) (RetM t)
castCache d = case cast d of
Just cache -> cache
Nothing -> error "castMemoize: Inconsistent cache!"

If we are in a MonadIO monad, then assuming

cacheRef :: IORef (Map.Map String (Maybe (H Typeable)))

we can instantiate castMemoize with

lookup args = do
cache <- liftIO $ readIORef cacheRef
return $ Map.lookup args cache

insert args r =
liftIO $ modifyIORef cacheRef (Map.insert args r)

and similar for if we are in ST.
If we are in a MonadState (Map.Map String (Maybe (H Typeable)))

monad, then we can instantiate castMemoize with

lookup args = do
cache <- get
return $ Map.lookup args cache

insert args r =
modify (Map.insert args r)

short description of paper 10 2014/8/27

