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ABSTRACT
Current feature tracking frameworks in sensor networks ex-
ploit advantages of either mobility, where mobile sensors can
provide micro scale information of a small sensing area or
numerical models that can provide macro scale information
about the environment but not both. With the continual
development of underwater sensor networks, mobility be-
comes an important feature to integrate next generation
sensing systems. In addition, recent advances in environ-
mental modeling also allow us to better understand basic
behavior of the environment. In order to further improve
existing sensing systems, we need a new framework that can
take advantages of existing fixed sensor networks, mobile
sensors and numerical models. We develop CoTrack, a Col-
laborative Tracking framework, that allows mobile sensors
to cooperate with fixed sensors and numerical models to ac-
curately track dynamic features in an environment. The
key innovation in CoTrack is the incorporation of numeri-
cal models at different scales and sensor measurements to
guide mobile sensors for tracking. The framework includes
three components: a macro model for large-scale estima-
tion, a micro model for locale estimation of specific features
based on sensor measurements, and an adaptive sampling
scheme that guides mobile sensors to accurately track dy-
namic features. We apply our framework to track salinity
intrusion in the Columbia River estuary in Oregon, United
States. Our framework is fast and can reduce tracking error
by more than 50% compared to existing data assimilation
and state-of-the-art numerical models.

1. INTRODUCTION
In this work, we develop CoTrack, a Collaborative Track-

ing framework, for estimating and tracking dynamic features
in an underwater environment using fixed and mobile sen-
sors, and numerical models. The key innovation in CoTrack
is the incorporation of numerical models at different scales
and sensor measurements to guide mobile sensors for track-
ing. We apply our framework to track salinity intrusion in
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the Columbia River Estuary in Oregon. Our contributions
of this work are the following

• A framework for building macro models for specific fea-
tures. Unlike previous approaches, we address the case
where general models for environment are available.
From these models and empirical data, we develop spe-
cific models for interested features. Our model reduces
the estimation error by 27% and the framework for
building model can be adapted for other features.

• A framework for building micro models estimating dis-
tances to a feature from sensor measurements. The
model estimates the true feature location from mobile
sensor measurements. This model can reduce the esti-
mation error of the macro model by 37%.

• An adaptive sampling scheme to improve tracking per-
formance. The idea is to use macro models to guide a
mobile sensor where to take its first measurement and
use micro models to iteratively refine the location of
the feature. By combining these two models, we can
reduce the total error by more than 50% compared to
existing frameworks.

2. PROBLEM STATEMENT
Let G be a finite set of points in space modeling the envi-

ronment. For each ω ∈ G, let pω,i = (p1
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be a tuple of k physical parameters such as temperature, wa-
ter velocity, or salinity level associated with ω at time step
i. j is the parameter index.

Definition 1. A wedge of parameter pj at threshold u at
time i is a set Ω = {ω ∈ G|pj

ω,i = u}.

Let d be the distance from the intersect of the true wedge
and a transect to a landmark and d̂ be the estimation of d.
The subscript i in di, d̂i and other notations is to indicate
the parameter at the corresponding time step i. Let n be
the total number of time steps and M = {m1, m2, ..., mn}
is the set of known physical parameter of the environments
such as atmospheric pressure, wind velocity, and time of day
and sensor measurements. The tracking wedge problem can
be stated as

Problem 1. Given M , mind̂ RMSE =

√

∑

i=n
i=1

(di−d̂i)2

n

For example, we want to track salinity wedge at a certain
psu threshold along the transect shown in dashed line in
Figure 1.



Figure 1: Transect in the Columbia river estuary,
Oregon, U.S.. The model overlays on top of the
physical map of the river estuary. The dashed line
is the transect. The dots are existing fixed sensor
stations.

3. COTRACK FRAMEWORK OVERVIEW
Figure 2 present the overview of CoTrack, which includes

3 main components: Macro model estimates the wedge loca-

Figure 2: CoTrack Overview

tion at a large scale from existing information such as time,
environmental forcings, and fixed sensor measurements.

Micro model estimates the distance to the true wedge from
mobile locations where the measurements are taken. This
model estimates wedge location at a much smaller scale com-
pared to the macro model because it assumes that the mea-
surements are taken at locations estimated from the macro
model and hence are nearby the true wedge location.

Adaptive sampling scheme that incorporates macro and
micro models to guide mobile sensors. Mobile sensors first
go to the locations estimated by the macro model and take
measurements. The mobile sensors then use the micro model
to calculate the offset between their current locations and
the true wedge location. The process can be iterative until
the estimation is stable or the difference between the sensor
measurements and the expected threshold is negligible.

4. CASE STUDY
As a study case, we track salinity wedge at a certain psu

threshold along the transect shown in Figure 1.
Error reduction using CoTrack (Table 1). The salin-

ity threshold is 15 psu. CoTrack can reduce the RMSE from
550m to 200m or equivalently 63% and reduce the MAE
from 450m to 155m or equivalently 67% compared to the
state-of-the-art data assimilation. CoTrack processing time
is negligible. Error reduction versus number of itera-

Metric SELFE Data Assimilation CoTrack
surrogate model

RMSE (m) 6362 550 200
MAE (m) 4553 450 155
Processing Time (s) 0.02 25 0.2

Table 1: Tracking performance comparison.

tions. Figure 3 shows the estimation error versus the num-
ber of iterations in CoTrack adaptive sampling. Both RMSE
and MAE degrades quickly and become stable after about 6
iterations. This results suggest that only about 6 iterations
in adaptive sampling are able to give good estimation of the
salinity wedge.
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Figure 3: Error reduction versus number of itera-
tions.

5. CONCLUSION
We have described CoTrack, a collaborative tracking frame-

work that incorporates existing fixed sensor networks with
mobile sensors and numerical models to track dynamic fea-
tures in a large scale environment. The key idea is to use a
macro model to quickly locate feature’s vicinity and a mi-
cro model to iteratively refine the feature location. CoTrack
has three main components, a macro model that estimates
features’ locations at a large scale, a micro model that esti-
mates the offset between mobile sensors’ locations and the
features’ locations, and a adaptive sampling scheme that
use the two models to iteratively refines the estimation. We
apply CoTrack to track salinity intrusion in the Columbia
river estuary in Oregon. CoTrack is fast and can reduce the
error by more than 50% compared to the state-of-the-art
data assimilation framework. This improvement promises a
significant contribution in understanding and improving ex-
isiting physical models as well as the impacts of natural and
human activities in the river estuary ecosystem.
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