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This article investigates a wireless acoustic sensor network application—monitoring amphibian

populations in the monsoonal woodlands of northern Australia. Our goal is to use automatic recog-

nition of animal vocalizations to census the populations of native frogs and the invasive introduced

species, the cane toad. This is a challenging application because it requires high frequency acous-

tic sampling, complex signal processing, wide area sensing coverage and long-lived unattended

operation.

We set up two prototypes of wireless sensor networks that recognize vocalizations of up to ninth

frog species found in northern Australia. Our first prototype consists of only resource-rich Stargate

devices. Our second prototype is more complex and consists of a hybrid mixture of Stargates and

inexpensive, resource-poor Mica2 devices operating in concert. In the hybrid system, the Mica2s

are used to collect acoustic samples, and expand the sensor network coverage. The Stargates are

used for resource-intensive tasks such as fast Fourier transforms (FFTs) and machine learning.

The hybrid system incorporates four algorithms designed to account for the sampling, pro-

cessing, energy, and communication bottlenecks of the Mica2s (1) high frequency sampling, (2)

thresholding and noise reduction, to reduce data transmission by up to 90%, (3) sampling schedul-

ing, which exploits the sensor network redundancy to increase the effective sample processing rate,

and (4) harvesting-aware energy management, which exploits sensor energy harvesting capabilities

to extend the system lifetime.
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Our evaluation shows the performance of our systems over a range of scenarios, and demon-

strate that the feasibility and benefits of a hybrid systems approach justify the additional system

complexity.
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1. INTRODUCTION

This article explores the use of wireless sensor network technology for monitor-
ing amphibian populations in remote areas of Australia’s Northern Territory.

The cane toad (Bufo marinus), see Figure 1, was introduced to Australia in
the 1930s in the belief it would control pests in sugar cane crops [Lever 2001].
Since their introductions, they have progressively spread through northeastern
Australia. Their expanding distribution, density and ecological characteristics
have raised grave concerns regarding their impacts on Australia’s native fauna.
Figure 1 illustrates their 2003 distribution. Of particular concern is Kakadu
National Park, a vast World Heritage area, recently colonized by cane toads
[Dam et al. 2002].

In previous work, Taylor et al have developed a software to census frog popu-
lations by automated recognition of their vocalizations based on machine learn-
ing algorithms [Taylor et al. 1996]. They have deployed frog monitoring stations
in Kakadu National Park and the Roper valley of the Northern Territory. Each of
these monitoring stations contains a solar panel, a battery, power management
electronics, a microphone with preamp, a temperature sensor, a rain gauge,
and a Pleb. The Pleb is a single board computer built at UNSW based on a
200 MHz StrongArm processor. These monitoring stations have no communi-
cations capability. Condition monitoring and data collection are only possible
with expensive, typically annual, site visits.

Our goal is to deploy a large scale, inexpensive wireless sensor network that
can operate unattended and is capable of monitoring, tracking and measuring
the impacts of cane toads in the areas such as Kakadu National Park from
acoustic observations. It is challenging to implement such a real-world sensor
network application which incorporates in-network reasoning. Our work builds
on lessons in robust, adaptive system design from previous sensor deployments
for habitat monitoring [Mainwaring et al. 2002; Habitat monitoring on James
Reserve]1, which focused primarily on simple data(e.g., temperature and
humidity) collection tasks.

1Habitat Monitoring on Great Duck Island http://www.greatduckisland.net/index.php, Habitat

monitoring on James Reserve http://www.jamesreserve.edu/.
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Fig. 1. The cane toad and its 2003 Australian distribution.

The purpose of this article is to explicate those system contributions that
enable in-network reasoning:

(1) We describe a novel real-world sensing application (cane toad monitoring),
which consists of many resource-intensive tasks. Accordingly, we set up
the first prototype that has purely resource-rich sensors. One of the key
disadvantages of the first prototype is the high financial and deployment
cost of such a system. Therefore, we design a hybrid system, which consists
of both resource-rich and resource-impoverished sensors, where resource-
impoverished sensors extend sensing coverage and are used for simple tasks
such as collecting acoustic samples, and resource-rich sensors are used for
resource-intensive tasks such FFTs and greedy decision tree machine learn-
ing procedures.

(2) To enable the hybrid system, we design and incorporate four algorithms
to account for the sampling, processing, communication and energy bottle-
necks of resource-impoverished sensors: (1) high frequency sampling, (2)
thresholding and noise reduction, to reduce data transmission by up to 90%,
(3) sampling scheduling, which exploits the sensor network redundancy to
increase effective sample processing rate, and (4) harvesting aware energy
management, which dynamically computes (at the Stargate) a schedule for
activating harvesting-capable resource-impoverished sensors so as to max-
imize network coverage while extending system lifetime. For (5), finding
the optimal network schedule can be formulated as an Integer Linear Pro-
gramming (ILP) optimization problem (which is NP-complete), and so we
propose a Greedy Critical Point First (GCPF) heuristic algorithm to effi-
ciently compute the network schedule.

(3) Because the application has many resource-intensive tasks, the lifetime
of the system needs to be considered. We propose equipping the acoustic
sensor nodes with energy-harvesting capabilities, and address the problem
of on-line dynamic energy management in rechargeable sensor networks.
We design an on-site energy management algorithm that can maximize the
network coverage by activating sensors dynamically. We formulate the op-
timization problem as an integer linear programming (ILP) problem; prove
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the ILP problem is NP-complete; and propose a Greedy Critical Point First
(GCPF) heuristic algorithm to solve the ILP problem efficiently. We im-
plemented and evaluated the performance of our systems over a range of
scenarios, and demonstrated that the feasibility and benefits of a hybrid sys-
tem approach, which justifies the additional systems complexity. Further,
we showed that the GCPF algorithm can compute a near-optimal network
schedule very efficiently.

In the rest of the article, we discuss related work in sensor network deploy-
ments and acoustic sensing applications (Section 2); provide an overview of
our frog vocalization recognition algorithm (Section 3), which drives our sys-
tem requirements and design; describe the components, system architecture,
and design contributions of our two system prototypes (Section 4); describe the
problem of maximizing network coverage by activating sensors dynamically in
rechargeable sensor networks (Section 5); evaluate our system prototypes and
discuss the results in (Section 6). Section 7 concludes the article.

2. RELATED WORK

Sensor networks have triggered an exciting number of research activities in
the past few years. Numerous applications and data dissemination protocols
have been proposed for sensor networks. In this section, we cover relevant re-
search in sensor network deployments, acoustic sensor applications, and energy
management.

2.1 Sensor Network Applications and Tiered Sensor Network Architectures

Numerous sensor network applications have been proposed at the areas such
as habitat monitoring 2, health [Schwiebert et al. 2001], education [Srivastava
et al. 2001], structure health monitoring [Mechitov et al. 2004], predictive main-
tenance [Krishnamurthy et al. 2005], volcano monitoring [Werner-Allen et al.
2006], and precision agriculture[Estrin et al. 2001]. Significant sensor network
deployments include:

(1) Habitat Monitoring on Great Duck Island. In Spring 2002, researchers from
College of the Atlantic in Bar Harbor and the University of California at
Berkeley began to deploy a wireless sensor network to monitor microcli-
mates on Great Duck Island. More than 100 nodes have been deployed and
millions of readings have been transferred to a central database located
thousands of kilometers away from the island via wireless channels since
then.

(2) Scientists and engineers from UCLA and UCR have continuously operated
a 10-node, 100-microclimate sensor array at James Reserve over 12 months.
Significant climate data have been stored in a database and are available for
Web queries. Apart from simple attributes such as temperature, humidity,
barometric pressure, and mid-range infrared, they have also collected data

2Habitat Monitoring on Great Duck Island http://www.greatduckisland.net/index.php, Habitat

Monitoring in James Reserve http://www.jamesreserve.edu/.
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from soil and video sources. The researchers are extending the system to
have more than 100 nodes and thousands of sensors for larger and deeper
coverage.

(3) Industrial Sensornet Deployments [Krishnamurthy et al. 2005]. Recently,
two industrial sensornets have been deployed by the researchers and engi-
neers from Intel and Arched Rock in a semiconductor plant and the North
Sea oil field facility respectively. Sensornets collect equipment vibration
data for the purpose of preventative maintenance.

(4) Active Volcano Monitoring [Werner-Allen et al. 2006] In the Summer of
2005, researchers from the USA and Ecuador deployed a 16-node network,
equipped with seismic and acoustic sensors, on Volcan Reventador, an active
volcano in northern Ecuador. The sensornet was deployed over a three-
kilometer area. Sensor data were routed over a multi-hop network to a
long-distance base station, where the data were logged and analyzed. The
sensornet was deployed for a period of three weeks, and more than 200
events were detected within that period.

Current sensor network deployments are mostly homogeneous and only per-
form simple data collection. We are planning to deploy a sensor network that
can handle significantly more complicated tasks, which include much higher
sampling frequency, complex signal processing, and in-network vocalization
recognition based on machine learning techniques.

Along with us, others in the sensor network research community have re-
cently begun experimenting with tiered sensor network architectures, including
Tenet [Gnawali et al. 2006] and Wavenet [Girod et al. ] to tackle high sample
rate sensor network applications. These tiered sensor network prototypes are
intended to be general purposes, and do not focus on comparative studies for
specific application as we do in this article.

2.2 Acoustic Sensor Applications

Rama et al. provide a data fusion framework Chellappa et al. [2004] for vehicle
detection and tracking using acoustic and video sensors. To reduce the number
of transmissions, task decomposition and collaboration have been investigated
in Wang et al. [2003]. The authors try to filter data and transmissions by pre-
processing acoustic data at each sensing node. In contrast to previous acous-
tic sensing applications, our goal is to investigate which parts of application
can be offloaded to inexpensive but resource-impoverished Mica motes. Girod
[2005] designed and implemented the acoustic ENSBox, a multi-sensor system
in which each sensor hosts an array of four microphones, to support distributed
acoustic sensing applications. ENSBox hardware can be used to replace Star-
gates in either our pure or hybride systems. Therefore, the acoustic ENSBox
can be seen a complement of our work.

Taylor et al. implemented a frog vocalization recognition algorithm [Taylor
et al. 1996] on a stand-alone computing platform based on machine learning
techniques. [Shukla et al. 2004] shows how wireless sensor network technology
might be used for monitoring amphibian populations.

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 4, Publication date: February 2009.
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2.3 Energy Management

Energy-efficient operation is one of the primary objectives in sensor network
design. Energy management in battery-operated or finite energy sensor net-
works has been previously considered in various contexts, including network
topology management [Xu et al. 2001; Lee et al. 2004], Media Access Control
[Ye et al. 2002], routing [Singh et al. 1998] and data dissemination [Ammari
and Das 2006; Hou et al. 2004]. Previous work has also proposed methods to
model residual energy [Zhao et al. 2001] and predict future energy consumption
[Mini et al. 2002; Heinzelman et al. 2002; Bhardwaj and Chandrakasan 2002]
in finite energy sensor networks.

The development of harvesting-capable sensor nodes has been pioneered by
[Shenck and Paradiso 2001; Starner 1996; Kansal and Srivastava 2005; Jiang
et al. 2005]. In Raghunathan et al. [2005], the authors provide an excellent
overview of energy harvesting technologies and design challenges for sensor
networks. They also consider the problem of distributed routing in a recharge-
able sensor network by routing packets along nodes with greater available
energy supply.

However, application-aware energy management algorithms have been
largely unexplored. The network coverage problem for sensor networks with
energy provisioning capabilities has also been recently investigated in Kar et al.
[2005]. The authors assume that the discharge and recharge time of a sensor
have Markovian properties. In contrast, our proposed online energy manage-
ment algorithm does not make any assumptions about the distribution of bat-
tery discharge and recharge times, but does take into account the variabilities
in the supply of harvested energy.

2.4 Summary

Previous mechanisms for cane toad monitoring using stand-alone PLEB de-
vices have the disadvantages of insufficient coverage, slow feedback and high
cost. Our approach of using a hybrid wireless sensor network, described in next
few sections, is tailored to address the above constraints. Previous sensor net-
work deployments only perform data collection of simple environmental data
such as temperature, humidity, barometric pressure, and video. While these
deployments can provide unprecedented fine-grained environmental data to
users, many applications involving complicated processing tasks have not been
investigated. Previous work on energy management for sensor deployments
does not take into account network scheduling across resource-impoverished,
energy harvesting-capable sensors so as to maximize network coverage and
system lifetime, while taking into account the variabilities in supply of the
harvested energy.

3. A FROG VOCALIZATION RECOGNITION ALGORITHM

In this section, we provide an overview of the frog vocalization recognition al-
gorithm Taylor et al. [1996] which we use to motivate and build our prototypes.
Acoustic features in the time and frequency domains (see Figure 2) can be
used to distinguish the vocalizations of different amphibians. Possibly useful
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Fig. 2. The waveform graph of Cyclorana cryptotis.

Fig. 3. The spectrogram graph of Cyclorana cryptotis.

features include call rate, call duration, amplitude-time envelope, waveform pe-
riodicity, pulse-repetition rate, frequency modulation, frequency and spectral
patterns. Frog vocalizations are much simpler than human speech but they
must be recognized in very difficult conditions with multiple competing unco-
operative speakers that are distant from the microphone and with a variety
of noise sources such as wind, rain and insects present. The demands of this
difficult acoustic environment do not allow the recognition algorithm to seg-
ment or isolate individual vocalizations. The input signal is converted into a
spectrogram of time-frequency pixels (see Figure 3) by a fast Fourier transform
(FFT) algorithm.

The frog vocalization recognition algorithm examines each slice (about 1
millisecond each in length) of the spectrogram and tries to estimate the fre-
quency bins that have more energy than neighboring frequency bins (called
local peaks). The slices are passed to the next stage of three level classifications
if there are also local peaks in nearby time slices. Attributes extracted from
these local peaks’ occurrences along with attributes extracted from the signal
waveform are used to identify individual species of frogs.

Quinlan’s [1993] machine leaning system, C4.5, is used to build the classi-
fiers. Our system builds one classifier for each frog species vocalization and

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 4, Publication date: February 2009.
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Fig. 4. The flow chart of a hierarchical-decision frog species classification algorithm.

makes a decision about the existence of each frog independently, which is dif-
ferent to Taylor’s system that has one classifier for all frog species.

To increase the reliability of the system, a hierarchical decision mechanism
is used to identify the existence of each frog species (see Figure 4). There are
three levels of identifications in our system. For a specific species that has a
vocalization lasting for 300 milliseconds and wherein each vocalization consists
of a number of mini nodes that are 30 milliseconds long, our system will work
as follows. Level 0 will be 30 milliseconds long; the identification of one species
will be proceeded to the next level (level 1) which is 300 milliseconds in length

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 4, Publication date: February 2009.
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if the local peaks occurring within 30 milliseconds are more than a threshold.
Similarly, the identification process will be proceeded to level 2, which is 3
seconds long if the local peaks occurred within 300 milliseconds are more than
another threshold. If a number of level 2 vocalizations have been identified
within 3 seconds, the species is reliably identified.

4. CANE TOAD MONITORING USING SENSOR NETWORKS

In this section, we describe the framework of our cane toad monitoring system
and the two sensor network prototypes that we have designed for the cane toad
monitoring application.

4.1 Cane toad Monitoring Sensor System Requirements

The long term goals of our cane toad monitoring system are to pinpoint the
regions inhabited by cane toads, and to track their macro movement directions.
It is not necessary to have fine-grained localization and it is sufficient to have
the localization accuracy in the range of hundreds of meters.

We use the mechanism described in Section 4.3.2 to estimate and pinpoint
the locations of cane toads. The system should be deployed to those regions
that are about to be inhabited by the cane toads, namely, the boundary regions.
Therefore, we can estimate the macro movements of cane toads by comparing
the cane toad existence snapshots at different times. Note that our objective
is macro group movement tracking as opposed to individual centimeter scale
tracking, it is not necessary to have fine-grained time synchronization at each
node. We can instead synchronize selected subset (e.g., the Stargates in the
hybrid system described in Section 4.3.2).

A previous study [Taylor et al. 1996] has shown that it is sufficient for the
cane toad monitoring system to process 25% of the collected acoustic signal sam-
ples. Nevertheless, it is ideal to have all the collected acoustic signal samples
processed by the system.

4.2 Wireless Sensor Hardware

We use the following hardware platforms for our sensor network prototypes.

(1) Mica Mote Family. Mica2 (see Figure 5) is the third generation of Berkeley
mote manufactured commercially by Crossbow3. It has a 7.7 MHz Atmega
processor and 512 kilobytes of on-board flash memory. It can transmit at
a maximum data rate of about 19 kbps and is powered by two AA size
batteries. Its recent cousin, MicaZ, has a ZigBee compliant RF transceiver
and can support up to a 250 kbps transmission rate. We use the Mica2
sensors as our resource-poor sensors.

(2) X-Scale Single Board Computer. Stargate (see Figure 5), also manufactured
by Crossbow, is a high performance processing platform that offers much
more resources than Mica motes in terms of computation power, memory,
energy and transmission capabilities. A Stargate ha a 400 MHz Intel PXA

3CrossBow Technology, Inc. http://www.xbow.com
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Fig. 5. Mica2 and STARGATE.

255 processor and 96 megabytes of memory in total (64 megabytes SDRAM
and 32 megabytes flash memory). It can be powered by a Li-Ion battery and
can support Wi-Fi (11 Mbps when using IEEE 802.11b) transmissions. We
use Stargates as our resource-rich sensors.

Building a wireless sensor network for cane toad monitoring is challenging
because of the following requirements:

(1) High Frequency Sampling. To differentiate the calls of cane toads from
other eight native frog species, and other environmental noises such as the
sound of rain and/or crickets, the cane toad monitoring system must be able
to provide at least 10 kHz. Note that the 10 kHz sample rate is an empirical
result.

(2) Complex Signal Processing. In our system, a 256-point fast Fourier trans-
form (FFT) is used to produce a spectrogram in frequency domain from the
sampled inputs in time domain. The FFT algorithm needs to be processed
by a device that has significantly greater computation power and larger
memory spaces than Mica class of motes.

4.3 Cane Toad Monitoring Prototypes

4.3.1 Pure: Stargates only. Since our frog-detection system involves many
resource-intensive tasks, it is natural to use the resource-rich Stargates to build
such a system. A Stargate can achieve up to 44 kHz sampling rate, which is more
than enough for our system. However, it could only process about five percent
of the inputs sampled at 22 kHz in our initial implementation because of its
slow floating point calculation emulations. We addressed this problem by using
an integer-only fast Fourier transform (FFT) implementation. The system can
currently process all inputs at 22 kHz sampling rate, which is about four times
greater than that of the previous system used in Taylor et al. [1996]. Note that
the minimum required sampling frequency is still 10 kHz. The use of 22 kHz
sampling with Stargate is because it was available to us.

Figure 6 shows the architecture of the Stargate- only system. Stargate sam-
ples acoustic data using a desktop microphone via a Universal Serial Bus (USB)
port. The sound spectrogram is then generated to convert input signals in time
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Fig. 6. The architecture of the Stargate Only system.

domain to frequency domain. The sound attributes, including local peaks and
other necessary variables, are extracted from the spectrogram and used as the
inputs of machine learning classifiers, one for each frog species. To increase
correctness and reliabilities of the recognition, a hierarchical recognition struc-
ture is employed, termed as voting process in the figure. Note that the training
(classifier-building) process is done in a server machine at early stage. Then
the classifiers can be transferred and stored in Stargates.

Moreover, equipped with a wireless transmission channel, our Stargate de-
vices can also communicate and coordinate with each other to form an adhoc
network. This network can provide real time feedback to the user when con-
nected to the Internet. Furthermore, it can estimate the migrate directions of
the cane toad by analyzing the network-wide cane toad existence snapshots at
different times.

4.3.2 Hybrid: Stargates and Mica2s. The major problem of the pure system
introduced in Section 4.3.1 is the financial cost of the system. The cost of a

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 4, Publication date: February 2009.
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Stargate is quite high because of its powerful functionalities.4 Therefore, we
introduce a hybrid mixture of Stargates and Mica2 motes to make the system
more cost-effective. Mica2s can be scattered to collect acoustic samples because
of their low cost. However, it is very challenging (if not impossible) to implement
resource-intensive tasks such as FFT and machine learning procedures in a tiny
device that has a 7.7 MHz Central Processing Unit (CPU) and 4 kbyte Random-
Access Memory (RAM). Therefore, we use resource-rich Stargates instead. The
Mica2 does some preliminary processing to reduce the transmission sizes and
environmental noise before it transfers the samples to the Stargate. Then the
Stargate uses these inputs to determine the existence of frogs. It can either
save the results to its flash memory or transfer them to the user via the Ad-
hoc network that it forms with other Stargates. We expect to use the anycast
communication protocol developed by us [Hu et al. 2004] for the Micas.

Figure 7 shows the architecture of the hybrid system. In the hybrid system,
instead of sampling acoustic data using desktop microphones, we use MICA2s
to sample acoustic signals, and to compress the collected acoustic samples be-
fore sending them to the Stargate via radio channels. Upon receiving data from
the satellite motes, the Stargate decompresses received data before processing
them. To make the hybrid system effective, we further designed and imple-
mented the following algorithms.

In-Network Reasoning. A naive approach for the hybrid system design is to
transfer all acoustic samples to an off-line server and then perform all computa-
tion in the server. The major disadvantage of this approach is the requirement
of transferring a huge amount of data via long-range wireless radios. Since our
system operates at a high sampling rate, the number of acoustic samples is
large and therefore, the size of long-range wireless transmissions is also large.
For example, one sensor node generates 10,000 (Hz) × 1 (byte per sample) =
10 kbyte data when sampling at 10 kHz. Consequently, the financial cost of
wireless transmissions could be high, and the lifetime of the system will be
very limited because long-range wireless transmissions are costly in terms of
energy. Instead, we adopt application-specific in-network reasoning: the analy-
sis of sensor data inside the network (e.g., determining existence of cane toads);
and only the final results (present/absent) will be transferred.

High Frequency Sampling. The Mica can sample at up to 200 Hz normally.
With the HighFrequencySampling component [Kim et al. 2004], it can achieve
up to a 6.67 kHz sampling rate after turning off the wireless radio of Mica while
sampling. Because we need a sampling frequency of at least 10 kHz, we have
to further change the clock rate of the analog-digital converter (ADC) on the
sensor board so that it can provide such a sampling rate. We did not notice any
impacts to Micas by changing the clock rates.

4While higher-end motes such as Imote2 introduced recently have more capacities compared to

Mica level motes such as mica2, an Imote2 (U S$299) is about 2.5 times as expensive as a Mica2

(U S$115). Further, the microcontroller of Imote2 consumes almost about four times energy (31mA
at 13MHz) more than that of Mica2 (8mA), which requires larger solar panels and batteries for

Imote2s to support similar duty cycles as Mica mote. Consequently, the deployment cost of Imote2s

can be significantly higher than that of Mica motes.
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Fig. 7. The architecture of the Hybrid (Stargates and Mica2s) system.

Thresholding and Noise-Reduction. To reduce environmental noises and
transmission sizes, we designed and implemented a simple yet effective al-
gorithm as follows. It divides the whole period into a number of time slices
that are 1 millisecond in length. Therefore, there are 10 samples in each time
slice when sampling at 10 kHz. If the amplitude level of the whole period is
under a threshold (for example, from −20 to +20), we call it a silent/noise-only
period. For a silent/noise-only period, we use one special character that is one
byte in length for the whole period, which is originally 10 bytes in length. This
can reduce the sizes of transmissions by up to 90 percent (see Section 6 for the
details). When a Stargate receives the packet, it replaces the special character
with ten silent values to recover the original signal. The environmental noise is
also reduced (see Figure 8). Note that some characteristics of the original signal
may be lost after the conversion. However, the frequency signatures of the frogs’
calls will be preserved with a carefully chosen silent/noise-only threshold.

Cane-toad Localization. We use the location of the sensor device that detects
the existence of a frog species through vocalization as the location of the frog

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 4, Publication date: February 2009.
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Fig. 8. The waveform graphs of Cyclorana Cultripes without (top), and with (bottom), noise re-

duction. ( The samples are collected by Mica on the field)

species. The locations of sensors can be calculated by either Global Positioning
System (GPS) or other localization algorithms such as [Bulusu et al. 2000].
If a frog species is detected at more than one adjacent sensors, we calculate
the centroid of their region of overlap coverage as a frog species location. This
location information is more than adequate for tracking long-term migration
patterns and introducing isolating gene viruses.

Device Packaging. We plan to use packaging similar to the PLEB package
used in previous work [Taylor et al. 1996] for Stargates. We plan to use he-
liomote packaging [Lin et al. 2005] for micas. Both packages were tested to be
waterproof, and suitable for long term outdoor deployment.

Sampling Scheduling. The bottleneck of our hybrid system is the transmis-
sion link between Micas and a Stargate. With our thresholding algorithm, it
takes about 30 seconds to transfer a 15- second segment of acoustic samples,
which results in about 30 percent process rates. To increase the process rate,
we design and implement a scheduling algorithm that exploits the redundancy
of sensor networks as follows. Based on their locations, two Micas are grouped
together if they detect the same acoustic signal. Then, the Stargate controls
the sampling and transferring periods of the two Micas such that when one
Mica is transferring, the other is sampling. Thus, the processing rate can be
increased to about 50 percent, which is 60 percent more than that of a single
Mica. In the future, we envision a single Stargate device to be used with many
smaller motes. Our plan is to move from Mica2s to MicaZs/Telos, which have
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a significantly higher bandwidth capability (250 kbps as opposed to 20 kbps).
Moreover, we anticipate the monitoring system to be used most during the mid-
nights of the wet seasons. We further anticipate that most monitored areas will
be quiet. The system transfers another special character if the acoustic sam-
ples in the whole sampling period (15 seconds) are quiet. Therefore, the sizes
of data transmissions can be further reduced and one Stargate can work with
more motes.

Once sounds are detected, even with the MicaZs/Telos (whose effective band-
width is around 18.75 kbyte per second [Polastre et al. 2005]), we need to coor-
dinate transmissions to avoid collisions (each active source generates 10 k byte
data per second) using a sampling scheduling algorithm. In such a system, we
plan to maximize the effective sensing coverage and sampling rate by using a
network flow model to inform our sampling scheduling.

5. SOLAR-AWARE ENERGY MANAGEMENT

Because the hybrid system introduced in Section 4 consists of many energy
intensive tasks, such as high frequency sampling and high amount of wireless
data transmissions, the system lifetime is limited. A mica2 lasts for about four
days with 100% duty cycles in our experiments. Therefore, it is desirable to
extend the system lifetime. We propose equipping sensors with solar energy
harvesting capabilities, e.g., rechargeable sensor networks. Then, we will ad-
dress related problems of dynamically determining the optimal sensor schedule
to maximize network coverage (at the Stargate in the hybrid system) while ad-
dressing environmental unpredictability in energy harvesting.

5.1 Dynamic On-Line Energy Management

Because of the unpredictable weather conditions, it is possible that the sensor
network systems cannot harvest sufficient energy to support 100% duty cycles.
Furthermore, because of uncertain weather phenomena such as cloud height,
cloud path, cloud effective radius, and atmospheric state, there are significant
energy harvesting differences among sensors placed at different locations. For
example, the solar radiation in nearby locations can be significantly different
[Chrysoulakis et al. 2004]. It is therefore desirable to deploy sensors redun-
dantly even in rechargeable sensor networks and rotate functionality among
sensors so as to maintain sensing and networking fidelity while preserving the
system lifetime.

This motivates us to design an online scheduling algorithm to optimize net-
work performance, for example, network coverage fidelity, in a rechargeable
sensor network. The online scheduling algorithm is run in the Stargates to
calculate an approximation to the optimal duty cycle schedules for the mica2s
periodically, for example, each day.

Let us first introduce the necessary mathematical notations, all of which are
collectively listed in Table I.

To study the maximum network coverage with energy provisioning, we use
a discrete sensor coverage model as follows.
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Table I. Mathematical Notations

Symbol Definition
G A set of grids

p The number of grids

gi Grid i, i ∈ {1, 2, ... p}
S A set of sensors

n The number of sensors

sj Sensor j. j ∈ {1, 2, ... n}
T Monitoring time serial

m The number of time units

tk Time unit k. k ∈ {1, 2, ... m}

Fig. 9. The same star sensing area is approximated by two types of grids. The left figure provides

a significantly better approximation than the right figure.

Definition 5.1. The sensing coverage of a sensor j at an arbitrary point p
is:

S(p) j = λ

dist(p)l (1)

where dist(p) is the Euclidean distance between the sensor and point p, and
constants λ and l depend on both the sensor technology parameters, for exam-
ple, the signal gain of the acoustic sensor, as well as the environment in which
the sensor is located [Meguerdichian et al. 2001]. Once the sensor hardware
and the deployed environment are decided, λ and l can be calibrated at the
network deployment stage. Given the locations of a sensor and a grid (GPS or
other methods), we can use Equation (1) to calculate whether the grid is covered
by the sensor.

Therefore, we can approximate the coverage area by discretization: we ap-
proximate the coverage area by a number of grids. Figure 9 shows two grid
approximations of the same star coverage area. The figure also shows that the
left subfigure provides significantly better approximation than the right sub-
figure. In fact, when the number of grids approaches positive infinity, the grids
represent the real coverage area. In a practical deployment, the number of grids
depends on the application sensing accuracy requirements.

Using the discrete coverage model, we can formally define the problem of
Maximum Network Coverage with Energy Provisioning as follows.
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Fig. 10. An optimal sensor duty schedule produces four units network coverage, whereas a non-

optimal sensor duty schedule produces three units network coverage.

Definition 5.2. Given a set of grids G, a set of sensors S, and a set of time
steps T, for each sensor j , schedule its duty cycle (Qk

j , j ∈ S, k ∈ T) such that
the network coverage is maximized, where

Qk
j =

{
1 if sensor j is on-duty at time k
0 otherwise.

For example, let the coverage area consist of three grids G = {g1, g2, g3},
and let there be two sensors deployed in this area S = {s1, s2}. Assume s1 covers
grids {g1, g2}, denoted as s1 = {g1, g2} and s2 = {g2, g3}. Let us further assume
that the total number of required sensing time units is two, and that the energy
harvested of a sensor can support one sensing time unit. The optimal schedule
is {Q1

1 = 1, Q2
1 = 0, Q1

2 = 0, Q2
2 = 1}, which results in four units network

coverage (See Figure 10). This network coverage performance is 33% more than
the network coverage achieved by the non-optimal schedule shown in right side
of the same figure.

5.2 Integer Programming Formulation

We formulate the Maximum Network Coverage Problem with Energy Pro-
visioning problem as an 0–1 Integer Linear Programming (ILP) problem as
follows.

Definition 5.3. The network coverage can be calculated as the number of
grids covered by all the sensors (the union of the coverage of all sensors):

C(S) = C(s1) ∪ C(s2)... ∪ C(sn) (2)

We define a sensor-grid mapping function Gi
j as:

Pi
j =

{
1 if grid i is covered by sensor j
0 otherwise.

Given network topology, sensing area, and a specific sensing model as shown
in equation (1), Pi

j can be precomputed.
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The decision variables are Qk
j , as defined in Section 5.1. We further define a

constant M = n + 1, and a coverage indication variable Ck
i as:

Ck
i =

{
1 indicates grid i is covered at time tk
0 otherwise.

The objective of this optimization is to choose the schedule of each sensor as
to maximize the summation of network coverage over T . Hence, the problem
can be formulated as:

Maximize
p∑

i=1

m∑
k=1

Ck
i (3)

subject to:

m∑
k=1

Qk
j ≤ D j , ∀ j (4)

Ck
i ≤

n∑
j=1

Pi
j Qk

j , ∀i, k (5)

n∑
j=1

Pi
j Qk

j ≤ MCk
i , ∀i, k (6)

Qk
j ∈ {0, 1}, ∀ j , k (7)

Ck
i ∈ {0, 1}, ∀i, k. (8)

Equation (4) limits the summation of duty cycles of a sensor j to be less than
the operation cycle it can support (D j ). Equation (5) shows that a grid i is
not covered at time tk if all sensors that can cover grid i are turned off at tk .
Equation (6) forces grid i to be covered at time tk when at least one sensor
that can cover grid i is turned on at tk . Equations (7) and (8) define the ranges
of Qk

j and Ck
i . Note that Equation (6) is redundant because, to maximize the

objective function (3), the optimization model will always choose 1 rather than
0 whenever it is possible.

5.3 An Online Scheduling Algorithm

Because the optimization problem introduced in Section 5.1 is NP-complete (see
Appendix A), it is very inefficient to solve the problem and achieve an optimal
solution. Therefore, we develop a heuristic solution, called Greedy Critical Point
First (GCPF) (see Section 5.3.1), which can solve the optimization problem more
efficiently.

5.3.1 Greedy Critical Point First (GCPF) Algorithm. GCPF consists of two
phrases. At Phase 1 (see Algorithm 1), all the sensors that can support requested
operation time units m, will be turned on. All the grids that are covered by at
least one of these sensors are removed from set G (line 11); and all these sensors
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are removed from set S (line 14). Essentially, Phase 1 of GCPF aims to reduce
the size of the optimization problem by reducing the sizes of set G and set S.

Algorithm 1 Phase 1 of GCPF algorithm

1: procedure Phase 1(S, G, P, C) � S is a set of sensors, G is a set of grids, P is a
mapping between sensors and grids, C is network coverage result

2: for each j ∈ S do
3: if Sj → duty cycle ≥ m then � Sensor j can operate at 100% duty cycles
4: for each i ∈ G do � Remove the grids that sensor j covered from set G
5: if Pi

j = 1 then
6: for each k ∈ T do
7: if Ck

i = 0 then � The grid hasn’t been covered at time tk
8: Ck

i ← 1;
9: end if

10: end for
11: remove i from G;
12: end if
13: end for
14: remove j from S;
15: end if
16: end for
17: end procedure

At Phase 2, GCPF tries to locate a grid (Critical Point) i, which is covered
by a group of sensors, the summation of the operation cycles that can support
are the smallest. Then GCPF greedily turns on sensor j .node at time j .time,
which can increase the largest network coverage (lines 4 and 5). A sensor will be
removed from set S if its operation cycle has been completely allocated (line 10).
A grid k will be removed from set G if it is fully covered (line 17). If the critical
point i can no longer be covered by any possible sensor, it will removed from
set G (line 28). This greedy process will continue until either set G is empty
(all the grids has been handled) or set S is empty (the operation cycles of all
sensors have been allocated completely), as shown in line 2.

Algorithm 2 Phase 2 of GCPF algorithm

1: procedure Phase 2(S, G, P, C) � S is a set of sensors, G is a set of grids, P is a
mapping between sensors and grids, C is network coverage result

2: while (S is not empty) OR (G is not empty) do
3: i ← min coverage grid (S, G, P, C);
4: turn on sequences ← sort new coverage(i, S, G, P, C);
5: for each j ∈ turn on sequences do
6: if j .node.duty cycle > 0 then � If node j .node has remaining duty cycles
7: turns on node j .node at time j .time;
8: j .node.duty cycle ← j .node.duty cycle − 1;
9: if j .node.duty cycle = 0 then

10: remove j .node from S;
11: end if
12: for each k ∈ G do � Remove the grids that the sensor covers from set G
13: if Pk

j .node = 1 then
14: if C j .time

k = 0 then � If grid k hasn’t been covered at time j .time
15: C j .time

k ← 1;
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16: if k has been fully covered then
17: remove k from G;
18: end if
19: end if
20: end if
21: end for
22: if i /∈ S then
23: break; � current min coverage grid i has been fully covered
24: end if
25: end if
26: end for
27: if i ∈ S then
28: remove i from S; � No sensor can cover grid i anymore
29: end if
30: end while
31: end procedure

5.3.2 GCPF Algorithm Examples. Let’s apply GCPF to the example intro-
duced in Section 5.1 and Figure 10. Phase 1 of GCPF will do nothing because
none of the sensors can operate at all required sensing time units (2). At Phase
2, either g1 or g3 will be chosen as the first critical point because they are cov-
ered by either sensor s1 or s2, the summation of the operation cycles that can
support are the smallest, which is one time unit. Let us further assume that
g1 is chosen as the first critical point. Then, s1 will be turned on at either t1 or
t2 as both of which will increase network coverage by two units. Let us assume
that s1 will be turned on at t1, then s1 is removed from set S. Consequently, g3

will be chosen as the second critical point, and s2 will be turned on at t2, which
will achieve the maximum network coverage increase (two units). Note that if
s2 is turned on at t1, the network coverage increase will be one unit. Next, s2

is removed from set S, and the algorithm terminates as set S becomes empty.
The sensor schedule chosen by GCPF: {Q1

1 = 1, Q2
1 = 0, Q1

2 = 0, Q2
2 = 1}, is one

of the optimal solutions to the optimization problem.

6. EVALUATION

In this section, we evaluate the performance of our system and the GCPF algo-
rithm for energy management.

6.1 Performance Results

To evaluate the performance of our systems, we tested them over a range of sce-
narios. Our performance metrics include not only baseline systems criteria such
as transmission sizes and operational latency; but also application-determined
criteria, in this case, whether the frog species was correctly identified.

(1) Test Environments. In our experiments, the playbacks of nine individual
frog species calls and seven different mixtures of frogs’ calls were used as
sound sources. Each mixture was created by mixing calls from two to three
different species of frogs. For six of the mixtures, cane toad is present; in
the seventh mixture, cane toad is absent. Our Stargate system consists
of a Stargate with a Logitech USB Desktop Microphone that can respond
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Table II. Tests Results of Our Two Prototypes with respect to Frog Species

Identification

Stargate Hybrid

IND MIX IND MIX

Indoor Correct 9 5 9 5

Wrong 0 2 0 2

Cane toad: False positive or negative 0 0 0 0

Outdoor Correct 9 5 9 4

Wrong 0 2 0 3

Cane toad: False positive or negative 0 0 0 0

IND — 9 types of individual frog’s call

MIX — 7 types of mixtures of frogs’ calls

to 100–16 KHz frequencies. In the hybrid system, Mica2 uses the standard
microphone on MTS300CA sensor board. We test the systems in both indoor
and outdoor environments. The indoor tests are conducted in our lab, where
external noise is minimal. The outdoor tests were conducted on a lawn with
environment noises such as insect, bird calls and wind present.

(2) Performance Test Results. The test results are summarized in Table II. For
IND, a trial is Correct if our system identifies correctly the frog species; in
case of MIX, a Correct trial means all frog species in the mixture are cor-
rectly identified by the system. Therefore, a Wrong trial has one or more
false positives or false negatives. However, note that in all our MIX exper-
iments, we were able to correctly identify the presence of cane toad even
we did not get the other species right. Both indoor and outdoor tests show
that our systems can successfully recognize the individual calls of nine
species of frogs. Not surprisingly, it is more difficult to recognize the mixed
calls of different frog species. The system gave incorrect results between
similar species a few times. The pure Stargate system achieved one more
correct recognition outdoors than the hybrid system since it operated at
wider frequency ranges. Note that we also tested the pure system sampling
at 11 kHz, and the performance results were similar to those of hybrid
system. The hybrid system performs better indoor than outdoor because of
outdoor environmental noises. However, neither system ever gave incor-
rect results for the cane toad species (our principal species, see rows 3, 6,
Table II) since the cane toad has a very different vocalization compared to
the other native species. Figure 11 shows the result screen shot of one of
the experiments. A mixed sound of two frogs’ (Bufo marinus/cane toad and
Cyclorana cryptotis) calls were played back in this experiment, and both
calls were successfully detected by our hybrid system.

(3) Transmission Sizes. We collected the calls of frogs in field using Micas and
store them as raw data. Then we used our thresholding algorithm to com-
press the raw data before transmissions. The results are summarized in
Table III. It shows that the algorithm achieves 25 percent to 45 percent
compression ratio in different scenarios. The lower bound of the compres-
sion ratio is 10 percent and occurs when the whole sampling period is silent.
Since the frogs are active during midnight only, the system operates within

ACM Transactions on Sensor Networks, Vol. 5, No. 1, Article 4, Publication date: February 2009.



4:22 • W. Hu et al.

Fig. 11. Screen shot of one of the experiments, where two frogs (Bufo marinus/cane toad, Cyclo-
rana cryptotis) are successfully detected by our hybrid system.

Table III. Compression Ratio for Different Scenarios

Frog(s) Original Compression Compression

Size Size ratio

1 99366 26319 26.59%

2 99622 25561 25.66%

3 99622 32699 32.82%

4 99544 36688 36.86%

5 99466 41623 41.85%

1 — Bufo marinus call
2 — Notaden melanoscaphus call
3 — Cyclorana cryptotis call
4 — Mixed sound of 1 and 3

5 — Mixed sound of 1, 2 and 3

that period. We expect there will be large periods of silence and the thresh-
olding algorithm should be more effective.

(4) Latency and Cost. As shown in Section 4.3.1, the first prototype can provide
real time feedback to the users. The second prototype has about 45 sec-
ond latency, which includes 15 second sampling time, and about 30 second
transmission time. This latency is inconsequential for our purposes. How-
ever, the costs between the two prototypes have large, differences since the
cost of Mica is projected to drop dramatically. Therefore, we believe the
hybrid model is more suitable for the cane toad monitoring application.

6.2 Network Coverage Results

We compare the proposed GCPF algorithm to the original Integer Linear
Programming (ILP), Linear Programming (LP), and Random Scheduling
algorithms in terms of both performance and computer runtime.
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Fig. 12. The performance results of small scale ILP problems.

We implemented the ILP and LP algorithms with the state-of-the-art opti-
mization software CPLEX 5. ILP produces the exact solution to the optimization
problem, however it can only handle small-scale problems. Scale here refers to
the number of required time units over which GCPF is scheduled. LP relaxes
the integer constraint of the optimization problem and gives an upper bound of
the optimization problem solution.

For large-scale problems, we applied a Random Scheduling algorithm over
1000 iterations, and computed the worst, mean and the best network coverage.

The size of the network is chosen to be 50 nodes. All the sensors are randomly
deployed in a 100 meter ×100 meter area. The sensing range is 30 meters. The
operation cycle that a sensor can support is chosen uniform-randomly from
[0, k], where k is the number of time units that sensors are required to operate.
For small-scale problems, we generate ten different duty cycle sets, and com-
pute the worst, mean, and the best network coverage, and record the computer
runtime.

Figure 12 shows the network coverage performance of GCPF, ILP, and LP
with small-scale required sensor operation time units. The x-axis shows the
different required operation time units from two to seven; the y-axis shows the
coverage results of different algorithms normalized by the coverage results of
LP. GCPF can achieve the mean results that are less than 3% from the optimal
results produced by ILP. There is approximately 0.5% difference between the

5ILOG Inc. http://www.ilog.com
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Table IV. Small-Scale Problem Runtime

Comparison (Seconds)

Time Units (k) GCPF ILP LP

2 mean 0.18 0.1175 0.076

best 0.16 0.097 0.092

worst 0.2 0.149 0.079

3 mean 0.1842 0.6839 0.0984

best 0.171 0.127 0.089

worst 0.197 1.219 0.127

4 mean 0.1767 2.5154 0.1339

best 0.158 0.119 0.11

worst 0.193 6.724 0.191

5 mean 0.1741 11.3558 0.1761

best 0.162 0.132 0.119

worst 0.185 72.798 0.227

6 mean 0.1758 114.7694 0.241

best 0.164 1.101 0.16

worst 0.189 519.029 0.379

7 mean 0.1715 2,828.561 0.3217

best 0.156 1.758 0.2

worst 0.183 19,015.9 0.483

Table V. Large-Scale Problem Runtime

Comparison (Seconds)

Time Units (k) GCPF Random LP

100 0.2 53.481 29.886

110 0.201 56.225 31.559

120 0.209 59.148 31.33

130 0.209 62.16 45.662

140 0.213 65.404 42.651

150 0.217 69.715 51.545

160 0.219 73.272 55.871

170 0.219 77.694 57.647

180 0.222 80.895 63.705

190 0.225 85.945 73.058

optimal mean results and mean upper bounds produced by LP. Table IV shows
the computer runtime of the experiment. When the required sensor operation
time units, k, increase from two to seven, the mean runtime of GCPF is almost
unchanged, at 0.18 second; the mean runtime of ILP increases exponentially
from 0.1175 second to 2, 828.561 seconds, which demonstrates the complexity of
the optimization problem; the runtime of LP increases linearly as k increases.

Figure 13 shows the network coverage performance of GCPF, Random, and
LP, with large-scale required sensor operation time units. GCPF can achieve
a performance 1.5% lower than the upper bounds produced by LP. The perfor-
mance results of Random algorithm range from 94% to 95% of the upper bound.
When the required sensor operation time units k increase from 100 to 190, the
runtime of GCPF is between 0.2 and 0.225 second; the runtime of Random al-
gorithm increases from 53 to 86 seconds; the runtime of LP increases from 30
to 73 seconds. The runtime of GCPF is less than 1% of the runtime of both
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Fig. 13. The performance results of large time scale ILP problems.

Random and LP, which shows that our algorithm is computation-wise suitable
for the Stargates.

7. CONCLUSIONS AND FUTURE WORK

We presented the design and evaluation of two sensor network architecture
prototypes—pure and hybrid for cane toad monitoring, an application charac-
terized by high frequency sampling, complex signal processing for in-network
reasoning, wide-area sensing coverage, and long-lived unattended operation re-
quirements. Our prototypes can recognize the call of up to nine species of frogs
in northern Australia. To enable the hybrid architecture, we designed and im-
plemented a thresholding and noise-reduction algorithm, which can reduce the
transmission sizes by up to 90 percent and dramatically increase the perfor-
mance of the system. Moreover, to enlarge the sampling frequency for a given
monitoring period, we design a sampling scheduling algorithm that exploits
the redundancy of sensor networks and increases the system process rate by
up to 60 percent. We compare the performance of the two systems by evaluating
them over a range of scenarios, which demonstrates the feasibility of a hybrid
systems approach. Finally, to extend the lifetime of the hybrid system, we pro-
pose to add energy-harvesting capabilities to the motes. Because the amount
of energy a sensor can harvest from the environments is weather-dependent
and uncontrollable, and there are significant spatial differences in the energy
a sensor can harvest at different locations, we designed an online harvesting-
aware energy management algorithm to maximize the network coverage by
dynamically activating sensors.
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We are planning to investigate the possibility of adding a DSP (Digital Signal
Processing) board to a mica for greater local processing. The aim is to enable
micas to perform the detection task locally. More details about this research
can be found at: http://www.cse.unsw.edu.au/~sensar/research/projects/
canetoads.

APPENDIX

A. OPTIMIZATION PROBLEM COMPLEXITY ANALYSIS

We will prove that the Maximum Network Coverage with Energy Provisioning
problem introduced in Section 5.1 is NP-complete by a polynomial time trans-
formation from an NP-complete Minimum 2Set Breach problem [Cheng et al.
2005].

Minimum 2Set Breach problem is formally defined as: given a collection (S)
of sensors, a collection (G) of grids, and the sensor-grid coverage map, divide
the sensors into two disjoint subsets to minimize the overall coverage breach.

Lets consider a special case of Maximum Network Coverage with Energy Pro-
visioning problem where time serials T = {1, 2}, and the energy that sensors can
harvest from environment can support one sensing time unit. Then, the Max-
imum Network Coverage with Energy Provisioning problem becomes: given a
collection (S) of sensors, a collection (G) of grids, and the sensor-grid coverage
map, divide the sensors into two disjoint subsets to maximum the overall net-
work coverage. Because the maximum network coverage is fixed, for example,
six units in the example introduced in Section 5.1, when all grids {g1, g2, g3} are
completely covered at all times {t1, t2}, maximizing the total network coverage
equals to minimizing overall network coverage breach. Therefore, this special
case of the Maximum Network Coverage with Energy Provisioning problem is
NP-complete. Hence, Maximum Network Coverage with Energy Provisioning
is NP-complete.
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