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Abstract—We present a novel scheme for node localization in a Delay-Tolerant Sensor Network (DTN). In a DTN, sensor devices are

often organized in network clusters that may be mutually disconnected. Some mobile robots may be used to collect data from the

network clusters. The key idea in our scheme is to use this robot to perform location estimation for the sensor nodes it passes based on

the signal strength of the radio messages received from them. Thus, we eliminate the processing constraints of static sensor nodes

and the need for static reference beacons. Our mathematical contribution is the use of a Robust Extended Kalman Filter (REKF)-based

state estimator to solve the localization. Compared to the standard extended Kalman filter, REKF is computationally efficient and also

more robust. Finally, we have implemented our localization scheme on a hybrid sensor network test bed and show that it can achieve

node localization accuracy within 1m in a large indoor setting.

Index Terms—Localization, delay-tolerant sensor networks, Robust Extended Kalman Filter, mobile robot, mobility.
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1 INTRODUCTION

RECENT years have witnessed a boom in sensor net-

works research [1], [2] and commercial activities [3].
This has been motivated by the wide range of potential

applications from environmental monitoring to condition-

based maintenance of aircraft. Sensor networks are

frequently envisioned to exist at large scale and char-

acterized by extremely limited end-node power, memory,

and processing capability.

Several large scale environmental monitoring applica-

tions do not require a fully connected, uniformly distrib-

uted sensor network nor do they require real-time sensor

data. Scientific analysis is based on sensor data collected

over a longer period of time. For example, monitoring cane

toads in the 200,000 sq km Kakadu National Park of

Australia, long-term coastline monitoring, etc.

For such applications, the concept of a delay-tolerant

sensor network (DTN) was first proposed by Fall [4]. A DTN

would typically be deployed to monitor an environment

over a long period of time and characterized by noninter-

active sensor data traffic. Sensors are randomly scattered

and organized into one or more clusters that may be

disconnected from each other. Each cluster has a cluster

head. Sensor information is typically aggregated at the

cluster heads, which tend to have more resources and are

responsible for communicating data to outside world.

Wireless mobile robots (e.g., robomote [5]), unmanned

aerial vehicles, can roam around the network to collect data

from cluster heads or to dynamically reprogram or

reconfigure the sensors. Examples of DTNs in existence

are Sammi [6], Zebranet [7], and DataMules [8].
This paper revisits the problem of node localization, i.e.,

estimating sensor node positions for a delay-tolerant sensor

network. A DTN has several distinguishing characteristics

which motivate alternate approaches to node localization

than those previously proposed. In a DTN, sensor nodes

neither need to be localized in real time nor all at once. In

this paper, we propose a novel localization scheme for

DTNs using received signal strength (RSSI) measurements

from each sensor device at a data gathering mobile robot.

Our contributions are threefold:

. We motivate and propose a novel approach that

allows one or more mobile robots to perform node

localization in a DTN, eliminating the processing

constraints of small devices. Mobility can also be
exploited to reduce localization errors and the

number of static reference location beacons required

to uniquely localize a sensor network.
. We develop a novel Robust Extended Kalman Filter

(REKF)-based [9] state estimation algorithm for node

localization in DTNs. Localization based on signal

strength measurements is solved by treating it as

online estimation in a nonlinear dynamic system

(Section 3). Our model incorporates significant

uncertainty and measurement errors and is compu-
tationally more efficient and robust in comparison to

the extended Kalman filter implementation used to

solve similar problems in cellular networks [10], [11]

(Section 4).
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. We implement and validate our scheme on a novel

hybrid sensor network testbed of motes, Stargates,

and Lego Mindstorm robots (Section 5).

2 RELATED WORK

In this section, we review research most relevant to our
work: 1) delay-tolerant sensor networks and 2) sensor
network localization.

2.1 Delay-tolerant Sensor Networks

Fall first proposed a Delay-tolerant Network architecture [4]

for sensors deployed in mobile and extreme environments

lacking an always-on infrastructure. These sensors are

envisioned to monitor the environment over a long period

of time. Herein, communication is based on an abstraction

of message switching rather than packet switching. The

abstraction of moderate-length messages (known as bundles)

delivery for noninteractive traffic can provide benefits for

network management because it allows the network path

selection and scheduling functions to have a priori knowl-

edge about the size and performance requirements of

requested data transfers.
DTNs are already being used in practice. DataMules [8]

uses a Mule that periodically visits sensor devices and

collects information from these devices, in effect providing

a message store-and-forward service that enables low-

power sensor nodes to conserve power. The Sammi Net-

work [6] is a community of Sammi people who are reindeer

herders in Sweden and keep relocating their base. The

Sammi communities do not have a wired or wireless

communication infrastructure. Their relocation is controlled

by a yearly cycle which depends on the natural behavior of

the reindeer. In the Zebranet wildlife tracking system [7],

wireless sensor nodes attached to animals collect location

data and opportunistically report their histories when they

come within radio range of base stations. While previous

research has focused on communication abstractions, we

are investigating the challenges and opportunities that arise

from mobile data collecting elements in DTNs.

2.2 Sensor Network Localization

Localization is one of the most widely researched topics

within the areas of sensor networks and robotics [12], [13],

[14], [15]. Previous localization systems for sensor networks

[13], [14] have been designed to simultaneously scale and

continuously localize a large number of devices. To meet

these requirements, devices usually compute their own

location from their distance (or other measurement) made

to nearby reference beacons. However, localization require-

ments for these sensor networks are different from delay-

tolerant sensor networks.

In a DTN, nodes neither need to be localized concur-

rently nor continuously. We trade off node localization

computation time for several other benefits. We can reduce

the computational requirements for small sensor devices by

instead using one or more mobile robots to compute the

location of sensors. We can employ more sophisticated

algorithms since processing is performed by the robot

rather than sensor devices. We can also reduce the number

of static location reference beacons required by exploiting

the mobility of the robot. For instance, Eren et al. [16]

estimate that, to uniquely localize a sensor network of

n nodes in Oð
ffiffi
ð

p
lognÞÞ steps, Oð n

lognÞ reference location

beacons are required, using the iterative trilateration

scheme proposed in [14]. To localize with just one beacon,

OðnÞ steps will be required.

In our scheme, assume that the mobile robot can localize

OðlognÞ sensors in each step (a single Filter computation).

This is not an unreasonable assumption to make since

logn � 10, even for a very large n. Using just one mobile

robot, node localization can be achieved in Oð n
lognÞ steps. To

localize in Oð
ffiffiffiffiffiffiffiffiffiffi
logn

p
Þ steps, our scheme requires Oð n

logn
ffiffiffiffiffiffiffi
logn

p Þ
steps.

Cricket [13] and AHLoS [14] are ultrasound localization

systems which can potentially provide superior accuracy to

a radio-based localization scheme, such as the REKF

proposed in this paper. However, compared to these

systems, we require no additional hardware for extremely

small sensor devices as our scheme leverages existing RF-

communications capabilities.

Previous research has also investigated RSSI-based

localization schemes for wireless networks, one of the first

of which was RADAR [17]. One of the main drawbacks in

RSSI-based localization schemes is the RSSI measurement

noise caused by short-scale and medium-scale fading when

both transmitter and receivers are stationary. In our scheme,

we reduce the impact of fading to make RSSI-based

localization more viable. Because the robot-receiver is

mobile, over a period of time we can statistically eliminate

the fading noise in RSSI measurements (not possible with a

static transmitter-receiver pair).

Previously, Kalman filters and Bayesian filters have been

applied to the localization problem (mainly in the context of

robotics and cellular networks). In this paper, we propose

using a Robust Extended Kalman Filter (REKF) as a state

estimator in predicting sensor locations. These robust state

estimation ideas emerged from the work of Savkin and

Petersen [18]. It not only provides satisfactory results [19],

but also eliminates requiring knowledge of measurement

noise in the more commonly used standard Kalman filter

implementation presented in [10]. It is significantly more

computation and memory efficient than the more adaptive,

but computationally complex and memory-intensive Baye-

sian filters, making it better suited to the sensor networks

regime. In the next section, we describe in detail our node

localization scheme using mobile robots in a delay-tolerant

sensor network.

3 LOCALIZATION METHODOLOGY

To solve node localization based on RSSI measurements at a

mobile robot, we model it as an online estimation in a
nonlinear dynamic system. In this section, we describe this
system dynamic model and the nonlinear measurement

model. We present the theoretical background for the
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Robust Extended Kalman filter used with this model in
Appendix A.

3.1 System Dynamic Model

We use the terminology mobile robot for a mobile node
fitted with a wireless base station. The sensors to be located
are randomly distributed in an environment. The dynamic
model for n sensors and the mobile robot can be given in
two-dimensional cartesian coordinates as [20]:

_xxðtÞ ¼ AxðtÞ þB1uðtÞ þB2wðtÞ ð1Þ

where

A ¼
� 0

. .
.

0 �

2
4

3
5; �B1 ¼

�
..
.

�

2
4

3
5; B2 ¼

� 0
. .
.

0 �

2
4

3
5;

� ¼

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

2
664

3
775; � ¼

0 0
0 0
�1 0
0 �1

2
664

3
775:

The dynamic state vector xðtÞ ¼ ½x1ðtÞ . . .xiðtÞ . . .xnðtÞ�0
with xiðtÞ ¼ XiðtÞ YiðtÞ _XXiðtÞ _YYiðtÞ

� �0
, where i 2 1 . . .n½ �,

XiðtÞ, and YiðtÞ represent the position of the ith sensor

(Sensori) with respect to the mobile robot at time t, and

their first order derivatives, _XXðtÞ and _YYðtÞ, represent the

relative speed along the X and Y directions. In other

words, if xcðtÞ ¼ xcðtÞ ycðtÞ _xxcðtÞ _yycðtÞ½ �0 represents the

absolute state (position and velocity in order in the X

and Y direction, respectively) of the mobile robot and

xi
sðtÞ ¼ xi

sðtÞ yi
sðtÞ _xxi

sðtÞ _yyi
sðtÞ

� �0
denotes the absolute state

of the Sensori in the same order, then xiðtÞ ¼4 xcðtÞ � xi
sðtÞ.

Furthermore, let uðtÞ denote the two-dimensional driving/

acceleration command of the mobile robot from the

respective accelerometer readings and wðtÞ denote the

unknown two-dimensional driving/acceleration command

of the sensor if moving. Although it can be generalized for

the moving sensor case as most applications rely on

stationary sensors, here we consider the sensors as

stationary and set wðtÞ ¼ 0. This system can be represented

in graphical form in the form of an input (uðtÞ) and

measurement (y) system, as in Fig. 1. We omitted B2 as we

only consider the case of stationary sensors. The basic idea

in such a system is to estimate state x from measurement y.

In the localization problem, as the sensor locations are

unknown, we assume an arbitrary location (0, 0). We show

that this assumed state converges to the actual state and,

hence, the unknown sensor location can be estimated (as

the position/state of the mobile robot is known) within the

prescribed time frame.

3.2 RSSI Measurement Model

In wireless networks, the distance between two commu-

nicating entities is observable using the forward link RSSI

(received signal strength indication) of the receiver. When

multiple transmitters are present, the data association is

unambiguous, i.e., which measurement comes from which

transmitter can be precisely determined simply by examin-

ing the source (transmitter) identifier in the data packet.
Measured in decibels at the mobile robot for our case,

RSSI can be modeled as a two-fold effect: due to path loss

and due to shadow fading [10]. Fast fading is neglected

assuming that a low-pass filter is used to attenuate Rayleigh

or Rician fade. Denoting the ith sensor as Sensori (Fig. 2), the

RSSI from the Sensori; piðtÞ can be formulated as [21]

piðtÞ ¼ poi � 10" log diðtÞ þ viðtÞ; ð2Þ

where poi is a constant determined by the transmitted

power, wavelength, and antenna gain of the mobile robot. "

is a slope index (typically 2 for highways and 4 for

microcells in the city) and viðtÞ is the logarithm of the

shadowing component, which is considered as an uncer-

tainty in the measurement. diðtÞ represents the distance

between the mobile robot and Sensori, which can be further

expressed in terms of the position of the ith sensor with

respect to the location mobile robot, i.e., XiðtÞ;YiðtÞð Þ

diðtÞ ¼ XiðtÞ2 þYiðtÞ2
� �1=2

ð3Þ

For sensors within a network cluster, we use measurements

at a single mobile robot, as opposed to multiple ones [10].

The observation vector,

yðtÞ ¼
p1ðtÞ
..
.

pnðtÞ

2
64

3
75; ð4Þ

is sampled progressively as the mobile robot moves in

the coverage area. The measurement equation for the
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measurements made by the mobile robot for the n

number of sensors are in the form of

yðtÞ ¼ CðxðtÞÞ þ vðtÞ; ð5Þ

where vðtÞ ¼ ½v1ðtÞ � � � vnðtÞ�0 with

CðxðtÞÞ ¼
poi � 10" log X1ðtÞ2 þY1ðtÞ2

� �
..
.

poi � 10" log XnðtÞ2 þYnðtÞ2
� �

2
6664

3
7775: ð6Þ

We provide a brief intuitive explanation of REKF here (see

the Appendix for a detailed theoretical background). We

use the state space model (a representation of the dynamic

system consisting of the mobile robot and the n sensors

using a set of differential equations derived from simple

kinematic equations). Our dynamic system considers two

noise inputs: 1) measurement noise (this is standard with

any measurement), v in y ¼ CðxÞ þ v, and 2) w-acceleration,

which is also considered noise as it is unknown. In this

application, the initial condition errors are quite significant

as no knowledge is available regarding the sensor locations.

This issue is directly addressed as the proposing algorithm

is inherently robust against estimation errors of the initial

condition (see (21) in the Appendix). The two noise inputs

and the initial estimation errors have to satisfy the IQC

equation (see (21) in the Appendix). If there exists a solution

to the Ricati equation (see Section A.2 in the Appendix),

then the IQC, presented in a suitable form by (21), is

satisfied and the states can be estimated from the measure-

ments using (23), which is a robust version of the Extended

Kalman Filter (REKF).

In the application of REKF in a delay-tolerant network,

the ith system (the mobile robot and the Sensori), during

a corresponding time interval, is represented by the

nonlinear, uncertain system in (16), together with the

following Integral Quadratic Constraint (IQC) (from (21)) :

xð0Þ � x0ð Þ
0
Ni xð0Þ � x0ð Þ

þ 1

2

Z s

0

wðtÞ
0
QiðtÞwðtÞ

� �
þ vðtÞ

0
RiðtÞvðtÞdt

� dþ 1

2

Z s

0

zðtÞ
0
zðtÞdt:

ð7Þ

Here, Qi > 0, Ri > 0, and Ni > 0 with i 2 f1; 2; 3g are the

weighting matrices for each system i. The initial state (x0) is

the estimated state of respective systems at startup. It is

essentially derived from the terminal state of the previous

system, together with other data available in the network

(i.e., robot position and speed) to be used as the initial state

for the next system taking over the tracking. With an

uncertainty relationship of the form of (7), the inherent

measurement noise (see (5)), the unknown mobile robot

acceleration, and the uncertainty in the initial condition are

considered as bounded deterministic uncertain inputs. In

particular, the measurement equation with the standard

norm bounded uncertainty can be written as (5):

y ¼ CðxÞ þ �CðxÞ þ v0; ð8Þ

where j�j � �, with � being a constant indicating the upper
bound of the norm bounded portion of the noise. By
choosing z ¼ �CðxÞ and � ¼ �CðxÞ,

Z T

0

j�jdt �
Z T

0

z0zdt: ð9Þ
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Considering v0 and the corresponding uncertainty in w as

w0 satisfying the bound

� xð0Þð Þ þ
Z T

0

w0ðtÞ0Qw0ðtÞ þ v0ðtÞ0Rv0ðtÞ
� �

dt � d; ð10Þ

it is clear that this uncertain system leads to the satisfaction
of condition in (17) and, hence, (21) (see [9]). This more
realistic approach removes any noise model assumptions
in algorithm development and guarantees the robustness.

3.3 Robust versus Optimal State Estimation

REKF tends to increase the robustness of the state
estimation process and reduce the chance that a small
deviation from the Gaussian process in the system noise
causes a significant negative impact on the solution.
However, we lose optimality and our solution will be just
suboptimal. To explain the connection between REKF and
the standard extended Kalman Filter, consider the system
(16) with

Kðx; uÞ ¼ �K0ðx; uÞ; ð11Þ

where K0ðx; uÞ is some bounded function and � > 0 is a

parameter. Then, the REKF estimate ~xxðtÞ for the system (11),

(16), and (21), as defined by (23) and (24), converges to ~xx0ðtÞ,
as � tends to 0. Here, ~xx0ðtÞ is the extended Kalman state

estimate for the system (16) with the Gaussian noise

wðtÞ0 vðtÞ0
� �

satisfying

E
wðtÞ
vðtÞ

� �
wðtÞ0 vðtÞ0

� �� 	
¼ QðtÞ 0

0 RðtÞ

� �
:

The parameter � in (11) describes the uncertainty in the

system and measurement noise. For small �, our robust

state estimate becomes close to the Kalman state estimate

with Gaussian noise. For larger �, we achieve more

robustness, but less optimality. We show via simulation

that, for larger uncertainty (which is quite realistic), our

robust filter still performs well, whereas the standard

extended Kalman estimate diverges.

4 SIMULATIONS

To examine the performance of the Robust Extended

Kalman Filter for a sensor network, we simulate a mobile

robot equipped with a radio transceiver moving in the

sensor coverage area. We assume the network knows the

acceleration and position of the mobile robot via GPS and

accelerometer readings, but has no information about the

sensors. We simulate two scenarios—large sensors and

small sensors.

4.1 Large Sensors

In Scenario 1, we simulate large sensors scattered over a
wide area. We expect sensors to be low cost and equipped

with modest transmitters. To model this, we use a slow
sampling rate of 2 seconds per sample. We simulate a
mobile robot and four sensors. The algorithm can be scaled
to as many sensors as required by appropriately increasing

the number of mobile robots. Simulation parameters are
listed in Table 1. The mobile robot measures the forward
link signal from the four sensors and estimates the state of
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the system from an arbitrary initial estimate (zero). Fig. 1
shows how the estimated sensor location from an initial
position converges to the actual sensor positions within the
simulation time. Fig. 4, Fig. 5, Fig. 6, and Fig. 7 show the
distance variation in the X and Y directions separately for
each sensor, as well as the predicted distances approaching
the actual distances. Fig. 9 shows that the extended Kalman
filter cannot be used with large uncertain instances as it
diverges.

4.2 Small Sensors

In Scenario 2, we use sensors with much less signal strength

(600mW), as in [22], with higher sampling rate, as in

commercially available systems. To demonstrate scalability,

we increase both the time scale and the number of sensors in

this scenario. The simulation parameters are given in Table 2.

The arbitrary acceleration of the mobile robot is taken as

uðtÞ ¼ Amax �3 sinð0:2tÞ þ �1 0:9 cosð0:05tÞ þ �2½ �.
In the dynamic system simulation, we choose the

functions given in Table 2 for the arbitrary mobile robot

acceleration (u), with �1 and �2 being uniform random

distributions in the interval ½0 0:1Amax�. We consider

uniformly distributed measurement noise in the interval

½0 0:01kyðtÞk� with yðtÞ being the noise-free measurement

and � ¼ 0:05. The equation for the state estimation and the

corresponding Riccati Differential equation obtained from

(23) and (24) are:

_~xx~xxðtÞ ¼ A~xxðtÞ þB1uiðtÞ
þX�1ðtÞ½�1 ~xxðtÞð Þ0Ri yðtÞ � � ~xxðtÞð Þð Þ

þ�2�1 ~xxðtÞð Þ0�1 ~xxðtÞð Þ�
~xxðtÞ ¼ x0

ð12Þ

and

_XX þA0X þXAþXB2Q
�1
i B0

2X�
�1 ~xxðtÞ0Ri�

1 ~xxðtÞ þ �2�1 ~xxðtÞð Þ0�1 ~xxðtÞð Þ ¼ 0
Xð0Þ ¼ N;

ð13Þ

where

�ðxÞ ¼ CðxðtÞ; ð14Þ

as shown in (6). Also, here,

�1ðxÞ ¼ rx�ðxÞ; ð15Þ

where x0 is xð0Þ, the relative initial dynamic state of the

system. In the second scenario, 10 sensors with lesser signal

strength are used with the mobile robot. Fig. 8a plots the

estimated trajectory approaching each respective sensor

location from an initial estimate of each sensor location of

(0, 0). Fig. 8b plots the percentage error in localizing each

sensor with respect to the initial estimation error.

5 IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented our REKF-based localization scheme

toverify its computational efficiency and estimation accuracy

in a real environment. We now describe this implementation

and report on preliminary experimental results.

5.1 Hybrid Sensor Platform

Our hybrid platform consists of three devices: 1) motes,

2) Stargates, and 3) Lego Mindstorm robots. They differ in

processing, memory, battery, and mobility capabilities, as

well as in their operating systems software.
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5.1.1 Motes

Motes [23], shown in Fig. 10, are our resource impoverished

devices that run the TinyOS event-driven operating system.

The Mica2 mote sensors deployed in our experiment use the

CC1000 radio from ChipCon, which provides an analog

RSSI measurement that can be connected to an analog to

digital converter (ADC) to produce digital signals. These

RSSI measurements can be used for localization.

5.1.2 Stargate

Stargate [24], shown in Fig. 10, is a resource-rich node that

provides more capabilities than the MICA motes. It is a

powerful Linux-based single board computer with an Intel
400MHz X-Scale processor (PXA255), Compact Flash,
PCMCIA, Ethernet, USB Host, 64 MB SDRAM, and an
additional interface to communicate with a mote. We use a
Stargate as the computational substrate for the mobile robot.
The Stargate runs the Robust Extended Kalman Filter which
is implemented in Java. RSSI readings are measured for the
mote interfaced with the Stargate communicating with other
sensors.

5.1.3 Lego MindStorm: Mobility

Weuse the popular LegoMindStorm [25] platform, shown in
Fig. 10, to emulate a mobile robot. It is a programmable,

PATHIRANA ET AL.: NODE LOCALIZATION USING MOBILE ROBOTS IN DELAY-TOLERANT SENSOR NETWORKS 7

Fig. 8. (a) Estimation path for each sensor (Scenario 2). (b) Percentage error and the absolute error from the initial estimation.

Fig. 9. (a) Using the standard Kalman filter as the state estimator. (b) Divergence of state estimation when using the standard Kalman filter.

TABLE 2
Stargate and MICA2 Comparison



nonmaneuvring robot that is constructedby connecting small
Legos together.AStargate ismountedonto theLego.An Infra
Red tower isused toprogramtheRCXbox,which controls the
Lego MindStorm. At the core of the RCX is a Hitachi H8
microcontroller with 32K external RAM. Themicrocontroller
is used to control threemotors, three sensors, and an infrared
serial communications port. Both the driver and firmware
accept and execute commands from the PC through the IR
communications port. To calculate the velocity, the Lego
MindStorm is programmed to move at a constant speed
(selected from eight power options) in a straight line.

5.2 Experimental Results

We placed the motes in the topology shown in Fig. 11 and
programmed the Lego Mindstorm robot to move in a
straight line. We measured the distance traveled and time
elapsed to accurately deduce the velocity of a mobile robot
(sampling rate = 0.3 seconds). The values of the weighting
matrices are tuned with simulations using the modeled
system parameters.

5.2.1 Computational Efficiency

To characterize computational efficiency, we measured the

REKF computation time (for 10 sensors) as a function of the

number of RSSI samples for the following cases:

. Java implementation (Sun’s JVM) on a Pentium IV
3GHz machine,

. Matlab implementation on a Pentium IV 3GHz
machine, and

. Java implementation, with Open-Wonka on a Star-
gate 400MHz machine.

The computation time in milliseconds is shown in
Table 3. The performance of Matlab and Java running on
a Pentium IV 3 GHz does not differ much (in the same
order). However, for a Stargate, the performance degrades
significantly with the number of samples. The Stargate has
very limited memory (64 MB SDRAM), which makes Open-
Wonka’s garbage collector inefficient. To improve the
performance on the Stargate, we can 1) break down the
computation on Stargate to a smaller subsets of samples or
2) implement REKF in C instead of Java.

5.2.2 Estimation Accuracy

To evaluate estimation accuracy, we report on an experi-
ment with four sensors since the visualization of estimation
convergence is clearer with a smaller number of sensors.
The four sensors are positioned at ð6:1; 6Þm, ð12:2; 13:6Þm,
ð18:3; 21:2Þm, and ð24:4; 13:6Þm. The mobile vehicle (robot)
is initially located at ð0; 15:2Þm and moves with a velocity of
2:52m=min. For our indoor implementation, with the
collected data and modeling the RSSI, we use poi ¼ 160mw

and " ¼ 3 (see (2)).
Fig. 12 shows the localization of the four sensors with

approximate error of 1m. The results are very close to the
real positions. The Lego Mindstorm is a nonmaneuvering
robot (constant velocity). By incorporating vehicle maneu-
vers, further improvements to the localization error can
obviously be made.

6 ALGORITHMIC IMPROVEMENTS AND FUTURE
WORK

Experimental evaluation revealed the importance of finding
the right parameters for the weighting matrices, which
model the weighting between different measurement
noises. Our next step is to implement automatic tuning of
these parameters through machine learning techniques to
enhance the usability of our localization scheme.

The algorithm stores all sensor states during the
experiment period in order to validate the convergence of
estimations. To improve computational efficiency in a
production system, where only the final estimation is
needed, only two states for each sensor need to be stored
(instead of nearly 500).

In general, the use of mobile robots in Delay-Tolerant

Sensor Networks opens up a number of other interesting

research possibilities. Once sensor localization has been

performed, it is possible to create a topological map (or a
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Fig. 10. Hardware components of the hybrid test bed. (a) Mica2 mote. (b) Stargate. (c) Lego Mindstorm robot.

Fig. 11. Indoor sensor distribution and robot navigation topology.



path profile) that can be optimized so that the data

collecting mobile robot can follow this path for data

collection in the shortest possible time or to meet storage

and power requirements. Mobile robots could act as relays

between disconnected portions of the network, thereby

forming a relay network. The trajectory of a mobile robot

can be dynamically recalculated so that a mobile robot can

slow down whenever it needs to download a lot of

information. We intend to explore these aspects in future

work.

7 CONCLUSIONS

In this paper, we have provided a scheme for node

localization using mobile robots in a delay-tolerant sensor

network (DTN). To the best of our knowledge, no other

study has been done for such a network. DTNs are

commonly deployed in long-term environmental monitor-

ing applications. In a DTN, node localization does not need

to happen in real time. Using one or more mobile robots to

compute the location of sensors allows us to trade off the

computational time for node localization for several other

benefits. First, we can eliminate processing constraints for

small sensor devices. We can employ more sophisticated

algorithms since processing is performed by the robot

rather than sensor devices. Second, we can reduce the

number of static location reference beacons required by

exploiting the mobility of the robot. Third, it makes RSSI-

based localization more viable. Because the robot-receiver is

mobile, over a period of time we can statistically eliminate

the fading noise in RSSI measurements.

We proposed applying a Robust Extended Kalman

Filter-based state estimator for node localization. It is

computationally more efficient and robust to measurement

noise than the more commonly used extended Kalman filter

implementation. Real experiments in a large indoor area

show that the localization accuracy is approximately 1m.

This compares favorably with the previously proposed RSSI

localization schemes in an indoor setting [17] (accuracies

within 3m), as well as with finer-grained acoustic time-of-

flight localization schemes [13], [14] (accuracies vary 10cm-

25cm). Now that we have validated our ideas through

simulation, implementation, and experiment, we are work-

ing on further localization scheme refinements and on other

mobile robot uses in delay-tolerant sensor networks.

APPENDIX A

We consider a nonlinear uncertain system of the form

_xx ¼ Aðx; uÞ þB2w

z ¼ Kðx; uÞ
y ¼ CðxÞ þ v

ð16Þ
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Fig. 12. (a) Sensor localization, and (b) localization error for the real system.

TABLE 3
Computation Times for REKF Implementations



as a general form of the system given by (1) with

measurement equation in the form of (5) and defined on

the finite time interval 0; s½ �. Here, xðtÞ 2 IRn denotes the

state of the system, while yðtÞ 2 IRl is themeasured output and

zðtÞ 2 IRq is the uncertainty output. The uncertainty inputs are

wðtÞ 2 IRp and vðtÞ 2 IRl. Also, uðtÞ 2 IRm is the known

control input. We assume that all of the functions appearing

in (16) are with continuous and bounded partial derivatives.

Additionally, we assume that Kðx; uÞ is bounded. This was

assumed to simplify the mathematical derivations and can

be removed in practice [9], [26]. The matrix B2 is assumed to

be independent of x and is of full rank.
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TABLE 4
Simulation Parameters for Scenario 2



The uncertainty in the system is defined by the following
nonlinear integral constraint [9], [27]:

� xð0Þð Þ þ
Z s

0

L1 wðtÞ; vðtÞð Þdt � dþ
Z s

0

L2 zðtÞð Þdt; ð17Þ

where d � 0 is a positive real number. Here, �, L1, and L2

are bounded, nonnegative functions with continuous partial

derivatives, satisfying growth conditions of the type

k�ðxÞ � �ðx0 Þk � � 1þ kxk þ kx0 k
� �

kx� x
0 k ; ð18Þ

where k � k is the Euclidian norm with � > 0 and � ¼
�; L1; L2: Uncertainty inputs wð� Þ; vð� Þ satisfying this con-

dition are called admissible uncertainties. We consider the

problem of characterizing the set of all possible states X s of

the system (16) at time s � 0, which are consistent with a

given control input u0ð� Þ and a given output path y0ð� Þ, i.e.,
x 2 X s if and only if there exist admissible uncertainties

such that, if u0ðtÞ is the control input and xð� Þ and yð� Þ are
resulting trajectories, then xðsÞ ¼ x and yðtÞ ¼ y0ðtÞ for all

0 � t � s.

A.1 The State Estimator

The state estimation set X s is characterized in terms of level

sets of the solution V ðx; sÞ of the PDE

@
@t

V þ maxw2IRmfrxV : Aðx; u0Þ þB2wð Þ
�L1 w; y0 � CðxÞð Þ þ L2 Kðx; u0Þð Þg ¼ 0

V ð� ; 0Þ ¼ �:

ð19Þ

The PDE (19) can be viewed as a filter, taking observations

u0ðtÞ; y0ðtÞ; 0 � t � s and producing the set X s as a output.

The state of this filter is the function V ð� ; sÞ; thus, V is an

information state for the state estimation problem.

Theorem 1. Assume the uncertain system (16), (17) satisfies the

assumptions given above. Then, the corresponding set of

possible states is given by

X s ¼ x 2 IRn : V ðx; sÞ � df g; ð20Þ

where V ðx; tÞ is the unique viscosity solution of (19) in

C IRn � ½0; s�ð Þ.
Proof. See [9]. tu

A.2 A Robust Extended Kalman Filter

Here, we consider an approximation to the PDE (19), which

leads to a Kalman filter-like characterization of the set X s.

Petersen and Savkin in [9] presented this as a Extended

Kalman filter version of the solution to the Set Value State

Estimation problem for a linear plant with the uncertainty

described by an Integral Quadratic Constraint (IQC). This

IQC is also presented as a special case of (17). We consider

the uncertain system described by (16) and an integral

quadratic constraint of the form

xð0Þ � x0ð Þ
0
X0 xð0Þ � x0ð Þ

þ 1
2

R s
0 wðtÞ

0
QðtÞwðtÞ

� �
þ vðtÞ

0
RðtÞvðtÞdt

� dþ 1
2

R s
0 zðtÞ

0
zðtÞdt;

ð21Þ

where N > 0; Q > 0 and R > 0: For the systems (16) and

(21), the PDE (19) can be written as

@
@t

V þrxV :Aðx; u0Þ þ 1
2rxV B2Q

�1B
0
2rxV

0

� 1
2 y0 � CðxÞð Þ

0
R y0 � CðxÞð Þ

þ 1
2Kðx; u0Þ

0
Kðx; u0Þ ¼ 0;

V ðx; 0Þ ¼ x� x0ð Þ
0
N x� x0ð Þ:

ð22Þ

Considering a function x̂xðtÞ defined as x̂xðtÞ ¼4 argminx V ðx; tÞ,
and the following equations (23), (24), and (25), define our

approximate solution to the PDE (22):

_~xx~xxðtÞ ¼ A ~xxðtÞ; u0ð Þ
þX�1½rxC ~xxðtÞð Þ

0
R y0 � C ~xxðtÞð Þð Þ

þrxK ~xxðtÞ; u0ð Þ
0
K ~xxðtÞ; u0ð Þ�;

~xxðtÞ ¼ x0:

ð23Þ

XðtÞ is defined as the solution to the Riccati Differential

Equation (RDE)

_XX þrxA ~xx; u0ð Þ
0
X þXrxA ~xx; u0ð Þ

þXB2Q
�1B

0
2X �rxCð~xxÞ

0
RrxCð~xxÞ

þrxK ~xx; u0ð Þ
0
rxK ~xx; u0ð Þ ¼ 0;

Xð0Þ ¼ N

ð24Þ

and

�ðtÞ ¼4 1
2

R t
0 ½ y0 � Cð~xxÞð Þ

0
R y0 � Cð~xxÞð Þ

�K ~xx; u0ð Þ
0
K ~xx; u0ð Þ�d�:

ð25Þ

The function V ðx; tÞ was approximated by a function of the

form

~VV ðx; tÞ ¼ 1

2
x� ~xxðtÞð Þ

0
XðtÞ x� ~xxðtÞð Þ þ �ðtÞ:

Hence, it follows from Theorem 1 that an approximate

formula for the set X s is given by

~XX s ¼ x 2 IRn :
1

2
x� ~xxðsÞð Þ

0
XðsÞ x� ~xxðsÞð Þ � d� �ðsÞ

� 	
:

This amounts to the so-called Robust Extended Kalman

Filter (REKF) generalization presented in [9].
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