
TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153

Combating Software and Sybil Attacks to Data Integrity in
Crowd-Sourced Embedded Systems

AKSHAY DUA, NIRUPAMA BULUSU, and WU-CHANG FENG, Portland State University
WEN HU, Commonwealth Scientific and Industrial Research Organisation, Australia

Crowd-sourced mobile embedded systems allow people to contribute sensor data, for critical applications,
including transportation, emergency response and eHealth. Data integrity becomes imperative as malicious
participants can launch software and Sybil attacks modifying the sensing platform and data. To address
these attacks, we develop (1) a Trusted Sensing Peripheral (TSP) enabling collection of high-integrity raw or
aggregated data, and participation in applications requiring additional modalities; and (2) a Secure Tasking
and Aggregation Protocol (STAP) enabling aggregation of TSP trusted readings by untrusted intermediaries,
while efficiently detecting fabricators. Evaluations demonstrate that TSP and STAP are practical and energy-
efficient.

Categories and Subject Descriptors: C.2 [Computer Systems Organization]; C.3 [Special-purpose and
Application-Based Systems]: Real-time and embedded systems; C.4 [Performance of Systems]: Design
studies

General Terms: Algorithms, Design, Experimentation, Measurement, Performance, Reliability

Additional Key Words and Phrases: Trust, security, mobile computing, embedded systems, crowd-sourced
sensing, critical systems, data integrity

ACM Reference Format:
Akshay Dua, Nirupama Bulusu, Wu-Chang Feng, and Wen Hu. 2014. Combating software and sybil attacks
to data integrity in crowd-sourced embedded systems. ACM Trans. Embedd. Comput. Syst. 13, 5s, Article 153
(August 2014), 19 pages.
DOI: http://dx.doi.org/10.1145/2629338

1. INTRODUCTION

Today, there are over four billion mobile phone users in the world, many of whom use
smartphones. These embedded systems are equipped with built-in positioning, audio,
video, and other sensors and could potentially interface with other sensor-equipped
devices (e.g. automotives and pacemakers). Crowd-sourced sensing from mobile em-
bedded systems offers an unprecedented opportunity to connect our world for critical
applications ranging from intelligent transportation [Hull et al. 2006], disaster re-
sponse, urban monitoring [Agapie et al. 2008], public safety, public health [Reddy et al.
2007], and real-time citizen journalism [CNN] through mobile social applications and

This research was supported by the National Science Foundation under NSF CAREER award 0747442.
A preliminary version of this article appeared in the Usenix Workshop on Hot Topics in Security (HotSec’09)
[Dua et al. 2009]. This article features significant new measurements on the trusted sensing peripheral, and
new contributions on the design and evaluation of a secure and trusted data aggregation protocol, as well as
extending the trusted sensing peripheral to legacy mobile devices.
Authors’ addresses: A. Dua, N. Bulusu (corresponding author), and W.-C. Feng, Portland State University,
Department of Computer Science, 1900 SW 4th Ave, Suite 120, Portland, OR 97201. phone: (503) 725 4036;
fax: (508) 725 3211; email: {akshay, nbulusu, wuchang}@cs.pdx.edu; W. Hu: Commonwealth Scientific and
Industrial Research Organization, 1 Technology Court, Pullenvale, QLD 4069, Australia; phone: 61 7 3327
4043; fax: 61 7 3327 4455; email: wen.hu@csiro.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2014 ACM 1539-9087/2014/08-ART153 $15.00

DOI: http://dx.doi.org/10.1145/2629338

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153:2 A. Dua et al.

instruments. All that is required then, is for sensor-equipped mobile devices to publish
readings to Internet portals like SensorMap [Nath et al. 2006] while people go about
their everyday lives.

This use of existing mobile communications infrastructure makes crowd-sourced
mobile embedded sensing systems cheaper to deploy than dedicated wireless sensor
networks. Data collected from such systems can improve understanding of local en-
vironments, help shape public policy, facilitate new scientific research, or facilitate
large-scale clinical studies. However, government and researchers alike will be reluc-
tant to use the data if they cannot trust its integrity.

This lack of trust would be unfounded if sensed data were infeasible to fabricate, but
that is not the case. The openness of the Internet infrastructure and the potentially
critical role of data provide both a massive opportunity and an incentive to tamper with
these data flows. Consider a crowd-sourced traffic navigation system like Waze [Waze].
Participants of Waze download a client application on their smartphones that activates
the phone’s internal GPS receiver, and periodically reports their GPS coordinates to
Waze. With sufficient user participation, Waze can provide optimal routes to destina-
tions based on the real-time traffic information learned from participants. A malicious
participant could easily fool Waze by modifying the client application to change the GPS
coordinates or delay publishing them. He could launch multiple emulated smartphones
on resource-abundant hardware and submit random GPS coordinates. We classify the
former as a software attack and the latter as a Sybil attack [Douceur 2002]. Such data
distortion attacks could be motivated by mischief, personal gain, or malice. For exam-
ple, a user may want to make a neighborhood street appear congested when it is not,
so others do not take that route. Although our example considers GPS, the software
and Sybil attacks are applicable to any of the phone’s sensors.

Moreover, a common thread across crowd-sourced sensing applications is in shap-
ing data from communication-equipped mobile embedded systems into tools for un-
derstanding the complexity of our physical world and responding to it swiftly, often
working without human intervention. To achieve this transformation, the massive vol-
umes of data originating from the sensors, actuators, and other devices and flowing into
back-end computers must be automatically aggregated and analyzed for rapid decision-
making. In any sophisticated system, such rapid analysis leverages aggregated data
for efficiency; rather than relying on raw data. However, aggregation is also vulnerable
to data fabrication attacks, as an aggregator can easily pollute the aggregate value.

This article presents a trusted hardware-based sensing platform to combat these at-
tacks, enabling crowd-sourced high-integrity data collection, of either raw or aggregate
data. The contributions of this article are the following.

—The design and implementation of a Trusted Sensing Peripheral (TSP). The TSP
is a sensing platform that consists of a Trusted Platform Module (TPM) [Trusted
Computing Group c] and hardware sensors. Our goal is to make the TSP economically
infeasible to emulate or modify without being detected. The TPM facilitates this by
attesting to the authenticity and integrity of the TSP as well as the sensor data.
Successfully verified attestations prove to a data receiver, such as an online portal,
that the data is indeed authentic and was not altered, either by the TSP or during
transit. Experiments show that the TSP is very energy efficient: it has a projected
battery life of over 80 days when sampling, attesting, and transmitting a temperature
sample every 30 seconds.

—An efficient, end-to-end, high-integrity, data aggregation protocol for crowd-sourced
mobile embedded sensing systems. The TSP publishes sensor data to an online portal
via the participant’s mobile device acting as a forwarding proxy. To reduce the energy
expended in transmitting data and the processing overhead at the portal, the mobile

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

Combating Software and Sybil Attacks to Data Integrity 153:3

proxy has the option of aggregating the TSP’s raw data before forwarding it. However,
the online portal has no way of trusting that the aggregation was performed correctly.
To provide aggregation integrity guaratees to the portal, we developed STAP (Secure
Tasking and Data Aggregation Protocol), a protocol modeled on a bit-commitment
scheme [Chaum et al. 1987; Baughman and Levine 2001]. STAP uses a pseudo-
random challenge-response mechanism that allows a portal to detect a lying proxy.
Our results indicate that by checking only 20% of the aggregates, the portal can
detect a lying proxy within the first six false aggregates received.

—A high-integrity platform that augments legacy mobile devices with trustworthy sens-
ing. The Trusted Sensing Peripheral (TSP) enables legacy untrustworthy mobile
devices to produce trusted data. Section 6.2 discusses challenges to making contem-
porary sensing-capable phones trustworthy: namely the absence of proper hardware
support, distrust in trusted hardware, and growing exposure to remote attacks.
Besides trustworthy sensing, the TSP provides greater sensing modalities than com-
modity mobile devices.

2. RELATED WORK

Existing research on crowd-sourced mobile embedded sensing systems does not ad-
dress the data integrity problem the way we define it, namely, “How can a data
portal—receiving data from sensors not under its control—trust that the data is a
true representation of the real-world phenomenon being sensed?”.

Research on traditional sensing, however, suggests some approaches that might be
adapted to solving the problem. For example, a reputation-based framework imple-
mented at the portal could identify and ignore data from sources with a low reputation
[Ganeriwal et al. 2008]. A source is assigned a low reputation as long as it generates
outlying data samples when compared to others in its neighborhood. Note that this
approach does not provide protection from Sybil attacks, where an adversary could
create any number of virtual sources and use them to artificially raise a given source’s
reputation. A reputation-based system will also be more effective in detecting faulty
sources than malicious ones, because malicious sources will try to avoid detection by
publishing fabricated, but not necessarily outlying data [Ganeriwal et al. 2008]. Among
other issues, reputation-based frameworks require redundant sources of data to detect
outliers, and are specific to the type of data being collected.

Another approach, also from traditional sensing, involves filtering fabricated data
that is injected into the sensor network [Zhu et al. 2004]. Data that at least t + 1
local sensors don’t agree on, or data coming from unauthentic sensors is considered
fabricated. The system is thus resilient to adversaries that have compromised at most
t sensor nodes. Since each sensor in the network can be authenticated, the sensor
network is resilient to Sybil attacks. However, the assumption is that each sensor node
already shares a key with the authenticator (the base station). This assumption might
be realistic for traditional wireless networked embedded systems, but is not realistic
for crowd-sourced mobile embedded sensing systems, where the data portals and data
producers (participants from the crowd) are different autonomous entities. It would
be unreasonable to expect that every potential data portal has a preexisting secret
key with every potential data producer. The Sybil attack, could thus be launched by
a data producer during the time a shared secret key is established with a new data
portal. Another disadvantage is that software attacks where data is modified after
being sensed, can be detected only when less than t + 1 nodes have been compromised.

An orthogonal approach, as opposed to these, and closer to what is presented in this
article, is for data portals to use systems like Pioneer or SWATT (SoftWare-based AT-
Testation) to externally verify the code executing on a remote data producer’s platform
[Seshadri et al. 2004, 2005]. With assurance in the producer’s sensing platform, the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153:4 A. Dua et al.

Fig. 1. The TSP publishes data via the participant’s mobile device, which can then process the data, or
forward it as is.

portal will be inclined to trust data from it. Unlike our trusted-hardware approach, both
SWATT and Pioneer are software-based systems that challenge the remote platform to
compute a digest of its memory contents. The digest is computed by traversing the mem-
ory in a pseudo-random fashion as determined by the random challenge. The challenger
is expected to know the memory contents of the remote platform beforehand and can
therefore independently compute the correct digest for verification later in the protocol.
A remote platform could fool the challenger by separately storing the original contents
of the modified portions of memory, allowing it to still provide the correct digest. How-
ever, since the traversal is pseudo-random, the malicious platform cannot know before-
hand the order in which the memory will be checked. As a result, the attacker will have
to check each memory access to see if the address matches one of the modified ones. This
extra check will cause the digest computation operation to take longer than expected,
causing the challenger to become suspicious. Notice though, that neither SWATT not
Pioneer can prevent a Sybil attack from an adversary that has abundant computational
resources. The attacker could simulate the remote platform on more powerful hardware
while still meeting the expected response time. Since the response time of the remote
platform is an estimate based on the hardware configuration and the expected com-
munication latency, SWATT and Pioneer only provide a probabilistic guarantee of the
remote platform’s integrity. Estimating response times may itself be a daunting task.

More recently, YouProve [Gilbert et al. 2011] studied the question of how to verify
the authenticity of user-modified data. Their focus is on audio and images, rather than
aggregated scalar data. Like our earlier work, their approach explores how a Trusted
Platform Module could be leveraged. Their work assumes the eventual availability of a
TPM on a smartphone. Unlike us, they do not actually implement their system using a
physical TPM due to the nonavailability of TPMs on current commodity smartphones.

Our protocol is inspired by an approach in traditional sensing called Secure Informa-
tion Aggregation (SIA) [Przydatek et al. 2003]. Most research on fault-tolerant sensor
data aggregation focuses on faults that arise due to the natural data loss arising from
the noise and asynchrony of physical deployments [Denantes et al. 2008; Sharma et al.
2007], rather than due to a malicious adversary. SIA, however, assumes a malicious
adversary. However, unlike our approach, SIA assumes that the sensors are trustwor-
thy and does not provide an implementation of the protocols. Our framework makes
it easy to incorporate other SIA algorithms that are more suitable for the respective
aggregation function.

3. SYSTEM MODEL AND TRUST RELATIONSHIPS

As Figure 1 shows, the TSP collects sensor data, has the TPM sign it, and forwards
it to the mobile proxy, which either aggregates the raw data or forwards it as is. The
portal does not trust that the TSP is functioning as expected, and thus requires that
the TSP prove its trustworthiness. The portal also does not trust the mobile proxy
to correctly perform the aggregation and expects proof of aggregation integrity. An

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

Combating Software and Sybil Attacks to Data Integrity 153:5

aggregation may be incorrectly performed by the mobile proxy if it does not use inputs
from the TSP, or if it uses a different aggregation function than what is expected by the
portal. In either case, once the TSP proves that it is indeed trustworthy, it assists the
portal with establishing aggregation integrity. The portal is assumed to be trusted by
all parties. However, it can prove its true identity by presenting a public-key certificate
signed by a trusted authority. The certificate can be presented using standard secure
communication protocols like SSL/TLS [openssl.org].

4. THREAT MODEL

In our system, we consider threats to the proper operation of the TSP and the mobile
proxy.

4.1. Threats to the TSP

Our goal is to prevent or detect software and Sybil attacks [Douceur 2002] against the
TSP. This will ensure that data reported to the portal was not modified in unintended
ways by the TSP software, and did not originate from emulated, simulated, or fake
devices. We considered the following specific threats.

—Software Attacks. This refers to any modification of the TSP firmware or of the
memory at run-time. Such modifications can be used to compromise the integrity
of the data collected by the sensor. Protecting the TSP from software modification
attacks ensures that the data output is the same as the data collected by the sensors
on the TSP. Thus, preventing software modification also preserves data integrity.

—Sybil Attacks. The adversary can have a device that either pretends to be a legitimate
TSP, or creates multiple emulated or simulated TSPs. Each instance of such a fake
TSP is called a Sybil [Douceur 2002]. The Sybil attack can only be successful if the
system cannot reliably distinguish between a real and a fake TSP.

4.2. Threats to the Mobile Proxy

The participant’s mobile device serves either as a forwarding proxy for raw data orig-
inating from the TSP, or as a data aggregating proxy when processing the raw data
before sending it to the portal. A malicious participant may modify its mobile proxy to
compromise the integrity of published data. Thus, the proxy is not trusted by the portal
or the TSP and is assumed to pose the malicious data aggregation threat. Malicious
data aggregation involves a compromised proxy faking the aggregate values, dropping
them, or injecting any new ones. In this scenario, the portal must be able to detect and
reject data from the malicious proxy.

4.3. Threats to Communication

A man-in-the-middle can inject, modify, drop, or replay messages in transit between
the TSP and the portal. This includes any changes made by the mobile proxy to the
data it is forwarding, or any changes made to the data being transmitted between
the TSP and the proxy, or between the proxy and the portal. A successful attack on
communication integrity can result in the publication of false, corrupt, or stale data.
Moreover, these threats are the same as those posed by a compromised forwarding
proxy. Thus, addressing communication integrity threats simultaneously addresses
threats from a malicious proxy.

4.4. Threats not Addressed

Although we address some of the most challenging threats to data integrity in
crowd-sourced mobile embedded sensing systems, the following threats have not been
addressed.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153:6 A. Dua et al.

—Availability. A remote adversary may force the TSP or proxy to continuously receive
messages, depleting their battery [Stajano and Anderson 2000]. Or the mobile proxy
may drop all communications between the TSP and the portal. Such forms of Denial
of Service (DoS) attacks are currently not addressed.

—Confidentiality. We primarily address data integrity in crowd-sourced mobile embed-
ded sensing systems as such, we rely on other components to provide confidentiality.
For example, the channel between the TSP and the mobile proxy (see Figure 1) can be
secured using Bluetooth’s security features [Bluetooth Special Interest Group 2009;
Padgette et al. 2012].

—Physical Data Poisoning. A participating adversary may alter the very phenomenon
being sensed. For example, he could collude with others to drive slowly, thus, depict-
ing congestion. It is important to note that the TSP necessitates physical tampering of
the phenomenon to publish fabricated data, as opposed to simple software modifica-
tion to do the same. We believe this greatly decreases the likelihood of data-poisoning
attacks.

—Hardware attacks on the TPM. Since the TPM is the root of trust for our approach,
we assume that it is tamper-proof as claimed, not compromised, and functioning as
expected. This is a reasonable assumption given that simple yet effective hardware
attacks on the TPM, like the timing and reset attacks, have already been addressed
[Atmel Corporation; Trusted Computing Group b]. Furthermore, the most recent at-
tack involving extraction of an obsolete TPM’s burned-in private key took specialized
skills, around six months, and costly equipment worth about 200,000 USD [The H.
Security 2010]!

—Privacy. The TSP is a sensing device that is carried by paraticipants as they go about
their daily lives. Sensitive data like location information published by the TSP could
compromise the privacy of the participant. As a result, the participant must trust the
portal with their sensitive data. Although mix networks like Tor [Dingledine et al.
2004] anonymize the origin of data, privacy threats due to sensitive information
(e.g. location) in the data itself still remain. Moreover, protecting participant privacy
while guaranteeing the integrity of the data they publish is a topic of active research
and out of the scope of this article [Shi et al. 2011; Rastogi and Nath 2010; Popa et al.
2009]. We do, however, acknowledge the fundamental privacy implications of TPM
on hardware and software configurations, and believe that our solution works as an
opt-in service. The decision to attest (upload a fidelity certificate, as in YouProve
[Gilbert et al. 2011]) is an explicit choice that remains under the users control. We
see our solution as an opt-in service for users who wish to prove the authenticity
of the data they contribute. Moreover, we believe that the importance of privacy
itself and how it impacts user participation differs across users. The University of
Cambridge researchers recently launched EmotionSense [Lathia et al. 2013], which
logged sensitive information like location, acceleration, call time, call duration and
so on, and streamed this data to a remote database. Many would think that privacy
concerns might stifle the application, but EmotionSense currently has 10,000 active
users and by using opt-in terms of service, has also passed the necessary ethical
hurdles.

5. THE TRUSTED PLATFORM MODULE

As we discuss in Section 6, the TPM is the root of trust for data authenticity and
platform integrity assurance provided by the TSP. The TPM is a tamper-proof se-
cure coprocessor that enables trusted computing principles on commodity computing
platforms. It is housed on the host platform and provides tamper-proof storage for
cryptographic keying material, and platform configuration information. Additionally,
it can digitally sign and report the securely stored configuration information, thus

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

Combating Software and Sybil Attacks to Data Integrity 153:7

indirectly attesting to the integrity of the platform. Further, since the digital signa-
tures are computed using keys protected from extraction, any signed information from
the TPM can be considered authentic once the signature is verified.

A TPM is associated with several credentials, each containing information regarding
the TPM or its associated platform, and digitally signed by the entity issuing the cre-
dentials. References to the various TPM credentials (in the form of message digests)
along with the public portion of the TPM’s RSA signing key (AIKpub: Attestation Iden-
tity Key) are included in a final attestation identity credential that is then signed by
a trusted certificate authority. Once presented to remote entities, the successful verifi-
cation of the attestation identity credential proves that the specified platform indeed
contains a certified TPM and that any digital signatures performed by that TPM (using
AIKpriv) can be verified using the included public signing key. Since the corresponding
private key is securely created, stored, and protected from extraction by the TPM itself,
the TPM’s signature cannot be repudiated.

The TPM also provides load-time platform integrity verification via its platform
attestation feature. However, run-time changes to the platform cannot be directly cap-
tured by the TPM. Section 6.2 discusses the design of our Trusted Sensing Peripheral
(TSP), which inherently resists run-time software attacks. Thus, trust in the run-time
state along with trust in the initial platform configuration transitively induces trust
in the load-time state of the platform, allowing the TSP to use the TPM solely as a
signing authority.

6. DESIGN

In this section, we describe the Trusted Sensing Peripheral (TSP) and the Secure
Tasking and Data Aggregation protocol (STAP).

6.1. Design Assumptions

We assume that the online portal has the TPM’s attestation identity credentials, which
contain its public Attestation Identity Key AIKpub, used to verify the TPM’s signature.
For STAP, we assume a secure transmission channel (e.g. the Secure Sockets Library
(SSL)) between the proxy and the portal, and that the portal has a strong pseudo-
random number generator (our protocol’s security depends on the assumption that it is
intractable for a malicious proxy to reliably predict the sequence of random numbers
generated by the portal).

6.2. Design Rationale

Designing a high-integrity sensing platform is not trivial. Especially, when the platform
can potentially be in the physical possession of an adversary. This, by-definition, is the
case with crowd-sourced mobile embedded sensing systems: participants carry mobile
platforms with built-in sensors that upload data to an online portal. Although most
participants may be honest, one cannot ignore that malicious participants may poison
data integrity (see Section 4).

At the very least, the portal must be able to detect sensory data tampering, or the
sensing platform must be able to prevent it entirely. Since participation in crowd-
sourced sensing is voluntary, people may register at any time with private heteroge-
neous sensing devices. Thus, the system must be able to detect fake devices or prevent
their participation.

Cryptographic techniques that detect data tampering across a communication chan-
nel (e.g. message digests) work only if the communicating parties have a vested inter-
est in protecting the transmitted data. However, in crowd-sourced mobile embedded
sensing systems, one of the parties, namely the data producer, could very well be the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153:8 A. Dua et al.

adversary, making it very hard for the portal to discover if fabricated data was being
protected in the first place.

The portal could compare multiple data values produced in the same region and
reject the outliers. Although this method may be effective at detecting outliers, it
may not be effective with an adversary who wants to avoid detection (see Section 2).
Consider again, the example of an adversary that emulates multiple distinct mobile de-
vices and publishes GPS data to make a quiet neighborhood street appear congested.
This situation will hardly appear to the system as outlying activity. Furthermore,
since the portal cannot distinguish between real and emulated platforms, this sort of
software collusion attack using multiple Sybil (or fake) identities will go undetected.
Other issues with this approach are the need for redundant data sources in any re-
gion, and different outlier detection mechanisms depending on the type of data being
collected.

Consequently, our design takes the prevention approach. Here, the sensing platform
itself prevents any modification to the sensed data. We use a trusted third-party housed
on the platform to vouch for the integrity of all the software running on it. If the portal
cannot verify the presence of a trusted third-party on the remote sensing platform, it
can choose not to trust the data emanating from it. Since the presence of the trusted
third-party cannot be cloned or faked, it is impossible for a sensing platform to appear
trustworthy when its not. Our trusted third-party housed on the sensing platform is
the TPM. It forms the root of trust for data and platform integrity assurances provided
by the associated sensing platform.

Recall that the sensing platform in crowd-sourced mobile embedded sensing systems
is usually the participant’s mobile device, which is assumed to already have existing
sensing capabilities (e.g. GPS, accelerometer, microphone). However, our approach was
to build a separate “closed box” high-integrity sensing platform we now call the Trusted
Sensing Peripheral (TSP). Several factors motivated this approach.

—As Garfinkel et al. [2003] stated in their work on a trusted virtualization platform
called Terra. “The security benefits of starting from scratch on a closed box special-
purpose platform can be significant.” They believed, like us, that an opaque special-
purpose platform can more easily protect the integrity of its contents.

—Providing closed box semantics on most commodity mobile devices is not possible
due to the lack of required hardware support and effective protection of software
from run-time attacks. Terra [Garfinkel et al. 2003] provides load-time application
integrity guarantees using the TPM, and strong isolation by running it inside a vir-
tual machine managed by a Trusted Virtual Machine Monitor. However, we are not
aware of any existing commodity mobile devices equipped with TPM chips. Further,
Terra does not protect software from run-time attacks by malicious device drivers
that have access to the DMA controller. Another system, proposed by McCune et al.
[2008], called Flicker, provides a secure execution environment for a portion of an
application’s logic. Besides the need for a TPM, this approach also requires addi-
tional hardware support (like the SKINIT instruction found on certain AMD proces-
sors [Advanced Micro Devices], or the GETSEC + SENTER instructions on certain
Intel processors [Intel Corporation]) to set up the secure execution environment.
Flicker provides protection from DMA attacks and strong isolation, by disabling all
interrupts and debugging support. However, regardless of hardware support, certain
practical limitations remain. Flicker requires that the OS and all associated tasks
be suspended during the time the secure execution environment is active. Given the
high overhead of the SKINIT instruction and the required TPM operation on a desk-
top (912.6msec on a 2.2GHz AMD Athlon 64-bit Dual Core processor), it is safe to
assume that the situation will be worse on a mobile platform with users frustratingly

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

Combating Software and Sybil Attacks to Data Integrity 153:9

noticing their mobile device freeze periodically to allow secure sensing activities to
take place.

—Existing mobile devices with sensing capabilities (e.g. smartphones) are as exposed
and vulnerable as today’s desktops. Our always-on Internet-connected smartphones
are already at risk of being usurped by active botnets [Higgins 2010]. A closed box
sensing platform, such as one without a connection to the Internet, will make remote
attacks on sensory data integrity more challenging.

—Decoupling trustworthy sensing from trusted computing like we have done with the
TSP will make trustworthy sensing less invasive and encourage its adoption. Fea-
tures provided by trusted computing, like TPM-based platform attestation, have been
the topic of much debate. Some like Ross Anderson and Bruce Schneier have been
vocal critics and consider it to be an invasive technology that encourages software
monopolies, facilitates DRM, and compromises privacy [Schneier 2002; Anderson
2003]. For example, since it is necessary to verify the integrity of all software compo-
nents on a platform to provide integrity assurances about a single one [Sailer et al.
2004], the verifier would effectively know all about the platform’s OS and application
configuration. Thus, the TPM’s platform attestation feature may inadvertently pose
a threat to privacy. Isolating the TPM into the closed-box TSP helps alleviate this
concern.

—A separate trustworthy sensing device, like our TSP, could expand sensing capa-
bilities. Mobile devices, like smartphones are equipped with only those sensors that
help their functionality (e.g. GPS, microphone, accelerometer). However, some crowd-
sourced sensing applications may require more specialized sensors, such as smog,
dust, or chemical pollutant sensors to measure air quality.

6.3. TSP Architecture

The TSP architecture consists of a TPM-capable hardware platform with attached
sensors (see Figure 1). Also, a Bluetooth module allows the TSP to communicate with
an array of mobile devices supporting the technology.

We achieve closed-box semantics on the TSP by building it using a special-purpose
Modified Harvard-architecture sensing platform [Francillon and Castelluccia 2008],
and permanently disabling features that may compromise its software integrity. It is
widely known, that run-time attacks exploiting memory-related vulnerabilities with
the intent of modifying program instructions, have little or no chance of success on such
platforms [Francillon and Castelluccia 2008]. Such platforms provide strong physical
isolation between executable instructions in program memory, and information in data
memory. The program memory on such devices is read-only, and the program counter
is not allowed to refer to addresses in data memory. Consequently, program instruc-
tions can neither be changed, nor be executed from data memory at run-time. All
usual methods to reprogram the TSP—physical or remote—are disabled permanently.
Normal communication methods, like the radio, are also disabled. The only connec-
tion between the TSP and the outside world is via a Bluetooth channel that provides
secure encrypted communication facilities [Bluetooth Special Interest Group 2009;
Padgette et al. 2012]. Additionally, the size and format of each STAP packet received
via the Bluetooth channel is verfied before being processed any further. These protec-
tions shield the TSP from a recent permanent code injection attack against Modified
Harvard-architecture platforms [Francillon and Castelluccia 2008].

Given these protections, a physical or remote adversary will not be able to change
the preprogrammed firmware on the TSP. Consequently, the on-board TPM need only
attest to a firmware version identifier on the device when challenged by a remote entity.
Any data sensed by the TSP is signed by the TPM to guarantee its authenticity and
integrity. Trust in the data is induced via trust in the platform integrity.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153:10 A. Dua et al.

Fig. 2. Secure Tasking and Data Aggregation Protocol (STAP).

6.4. Secure Tasking and Aggregation

Secure tasking involves verifying that the given platform has a TPM (see Section 5),
then challenging it to produce a TPM attestation of the platform’s firmware, then
verifying the attestation is authentic and correctly represents the TSP firmware (e.g.
comparing the respective message digests), and finally scheduling the TSP to collect,
sign, and send data from a subset of its sensors at regular intervals.

To save energy required for data transmission, and help reduce processing overhead
at the portal, the data producer’s mobile device (the mobile proxy) may choose to
aggregate the raw data from the TSP before forwarding it to the portal. For example,
instead of sending raw GPS coordinates from the TSP every 30 seconds, the mobile
proxy may send a coarser region covered by those coordinates every five minutes. The
problem is that the portal has no way of knowing if the mobile proxy is using the right
inputs to the aggregation function (raw data from the TSP) or if it is even computing
the correct aggregation function. What is needed is a way for the portal to check the
integrity of the aggregation.

We have developed STAP (Figure 2), a protocol that allows the portal to detect
whether the untrusted mobile proxy is fabricating the aggregates, as opposed to com-
puting them using the TSP’s signed raw data. In the past, algorithms for check-
ing aggregation integrity of data originating from sensors have enabled a large re-
mote sensor network to report aggregation results that were close to the true result
[Przydatek et al. 2003]. To achieve complete accuracy, sensor network aggregators
needed to send all the raw data input to the aggregation function. Since the transmis-
sion costs were assumed to be prohibitive, an approximation was considered accept-
able. However, in our scenario, the transmission costs between the mobile proxy (the
aggregator) and the portal are not similarly high, so STAP is able to guarantee the
accuracy of the aggregation. In addition, STAP allows the portal to tune the number
of aggregation results it wants to check. This flexibility enables the portal to trade off
resources required to perform integrity checking with the amount of integrity desired.
The following paragraphs describe the STAP protocol.

To detect a lying proxy, the portal must know the aggregation function in advance.
This can be done using predefined campaigns that specify the data to collect, when to
collect that data, and how to aggregate it [Burke et al. 2006; Kapadia et al. 2008]. Then,
during the course of receiving data, the portal pseudo-randomly requests the mobile
proxy for the latest window of signed raw data used to compute the just-received
aggregate (the proxy needs to buffer this data). When the portal receives the raw
data from the mobile proxy, it verifies that the TSP signed them, then recomputes the
aggregate using the aggregation function, and finally compares the computed aggregate

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

Combating Software and Sybil Attacks to Data Integrity 153:11

Fig. 3. Trusted Sensing Peripheral with a Bluetooth and GPS module.

with the one already sent. If the comparison fails, the portal can choose to reject further
transmissions from this lying proxy. This is similar to the concept of bit-commitment
[Chaum et al. 1987], where one commits to a value before it is checked for correctness.

The pseudo-random challenge forces the mobile proxy to guess when it is safe to
fabricate an aggregate. Eventually, a lying proxy will guess wrong and get caught.
Lying more only causes the proxy to be detected faster, and lying less only delays that
outcome. The following equation represents the expected number of aggregates E(n)
a portal accepts, when challenging aggregates with probability q, before detecting a
proxy lying with probability p.

E(n) =
∞∑

n=1

n × (1 − pq)n−1 × pq. (1)

We evaluate STAP in Section 8 and show that the experimental results closely match
the results obtained using this equation.

7. IMPLEMENTATION

In this section, we discuss our TSP prototype and the implementation of STAP.

7.1. Trusted Sensing Peripheral (TSP)

We use secFleck [Hu et al. 2009] as the foundation of the TSP. secFleck is the portion
of the TSP consisting of the Atmel TPM chip (based on v1.2 of the Trusted Computing
Group specification [Trusted Computing Group a]), and the Fleck sensor board (see
Figure 3).

The Fleck is a sensing platform with 8KB of memory and an 8MHz Atmega micro
controller [Sikka et al. 2007]. It houses the TPM module, and is extensible with various
sensors. The TSP firmware, including the FleckOS, sensor device drivers, and our
application, runs on the Fleck hardware.

Figure 3 shows the TSP. Attached to it, is a Parani-ESD Bluetooth module. The mobile
proxy application communicates with the TSP using a local, intermediary Python relay
service called foslisten. foslisten communicates locally using TCP sockets, while
with the TSP, it uses a serial-over-Bluetooth channel (Figure 4).

7.2. Online Portal

The online portal is responsible for tasking the TSP, verifying the TSP’s platform
integrity and the integrity of any data received from it, requesting the mobile proxy
to aggregate data if necessary, and pseudo-randomly challenging the mobile proxy
to prove its trustworthiness when aggregated data is received. The portal runs as a

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153:12 A. Dua et al.

Fig. 4. Data producers on the mobile proxy communicate with the TSP via a Python relay service called
‘foslisten’.

standard multi-threaded TCP server on a 2.2GHz Intel(R) Core(TM)2 Duo platform
with 1.9GB of memory running Linux kernel version 2.6.32.10.

7.3. Mobile Proxy

The service running on the mobile proxy is responsible for receiving a task from the
portal, in turn tasking the TSP via the Bluetooth channel using our custom RPC
protocol, retrieving data from the TSP, and forwarding that data to the portal. The
mobile proxy is a Nokia N800 tablet with 128 MB of memory running Linux kernel
version 2.6.21 on an ARMv6 processor. Although we use the N800, a widely popular
tablet, our work is applicable to any smartphone or tablet device.

7.4. Secure Tasking and Aggregation

The details of STAP are shown in Figure 2. Here, we limit our discussion to how the
TSP is tasked. The portal first sends a task description [S, c, t, f] to the mobile proxy,
where S is the set of sensors to collect data from, c is the number of data samples to
collect, t is the time (in seconds) within which to collect the c samples (sampling interval
is thus t/c seconds), and f is the aggregation function. S is expressed using a 16-bit
mask, allowing sixteen sensors to be tasked simultaneously with the same sampling
interval. Each set of data samples is reported in an attested response message signed
using AIKpriv (see Figure 4), and can be verified by the portal using AIKpub. A mobile
proxy modifying the task description will be detected when the portal verifies the one
echoed back by the TSP in the first attested response.

8. EVALUATION

We first evaluate the performance of the TSP, and then evaluate STAP in Section 8.2.

8.1. TSP Performance

We analyze the performance of the TSP in terms of time and energy required to perform
and transmit data attestations. Then, we discuss other costs involved in building the
TSP: code size, memory usage, and monetary cost. The TSP runs on three 1.5V bat-
teries with a 2500mAh capacity each, and is configured with two sensors: an on-board
temperature sensor, and an attached GPS sensor (Figure 3).

8.1.1. Timing Measurements. The TSP is made to repeatedly perform and return forty
attestations, each over a set of temperature data samples varying in size from 2 to
92 bytes at 10 byte intervals. Average time spent performing attestations, along with
the 95% confidence interval, is shown in Table I. The small confidence interval is due
to the dominant RSA signature operation that is always performed over a fixed size

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

Combating Software and Sybil Attacks to Data Integrity 153:13

Table I. Average Time Required to Perform and Transmit
an Attestation

Compute Time Transmit Time
Task (sec) (sec)
Single
Attestation 1.72 (±0.01) 0.3 (±0.1)

Table II. Average Current Drawn in Various TSP
Energy States

Energy State Current Draw
Idle 80μA
Attesting 50mA
Transmitting 42mA

Fig. 5. TSP energy measurements.

SHA-1 digest of the data. Table I also shows the average transmission time of the
signed data samples. As we can see, the TSP can only sample, attest, and report data
at intervals greater than ≈2 seconds. This lower limit on sampling and reporting is
more than acceptable for existing crowd-sourced mobile embedded sensing systems,
most of which, require data samples less frequently than that [Hull et al. 2006; Reddy
et al. 2007; Eisenman et al. 2007; Agapie et al. 2008].

8.1.2. Energy Measurements. We measured the TSP’s current draw in different energy
states using an oscilloscope with an internal resistance of 10M� across a 1� resistor
placed in series with the TSP. Table II shows the average current drawn by the TSP T
while it was performing attestations (includes sampling), performing transmissions,
and while it was idle (no attestations or transmissions).

Using the timing and current draw measurements, we computed the energy con-
sumed by the TSP while attesting and transmitting a 2 byte sample of data at various
intervals. Figure 5(b) compares energy consumption of the TSP with the TPM, without
any security, and when the TPM’s operations are performed in software [Hu et al. 2009].
Hardware attestations end up being half as expensive as those performed in software,
because, although they draw more current, they can be computed much faster. How-
ever, the TPM requires three times more energy than if there were no security (no
attestation, signatures, etc.) at all.

We also computed an estimate of the TSP’s battery life. Figure 5(a) shows that when
tasked with Attesting and transmitting a 2 byte sample every 30 seconds and remaining
idle in-between, the TSP can achieve a battery life of over 80 days. This is quite
sufficient for crowd-sourced mobile embedded sensing systems, where participants will
carry and eventually recharge these platforms. Also, notice that battery life is nearly
double that when all security is in software.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153:14 A. Dua et al.

Fig. 6. Compiled code size comparison of various software components on the TSP.

8.1.3. Other Costs. Figure 6 compares compiled code sizes of various software compo-
nents running on the TSP. The code size of our application is smaller than both the
TPM library and the FleckOS. Memory (RAM) used by the firmware is approximately
4.2 KBytes, which is a little over half the available memory (8 KBytes) on the current
version of the Fleck. Monetary costs involved are currently high: the cost of the TSP
hardware is approximately 300 USD (March, 2010). The TPM chip itself is inexpensive,
about 6 USD when purchased in large quantities (≥1000). These monetary costs are
high due to the limited scale at which our TSP is currently produced; with economies
of scale we believe that the cost could be brought down to lower than 50 USD.

8.2. Secure Tasking and Aggregation Protocol

We conducted experiments to answer the following questions about our protocol.
(1) How many fabricated aggregate values are accepted by the portal before a lying
mobile proxy is detected? (2) How long does it take for the portal to find a lying proxy?
(3) What is the overhead of detection?

In each experiment, the mobile proxy is configured to randomly fabricate (or lie
about) an aggregate with probability ranging between 1/10 to 1/2 (or 10% to 50%
of aggregates). The online portal then pseudo-randomly challenges the integrity of a
received aggregate with the same probabilities (Equation (1)). Aggregations are per-
formed on every 10 two-byte samples of temperature data. The aggregation function f
performed by the proxy is a mean of those samples. An experiment continues until the
portal detects the first fabricated aggregate value. When necessary for clarity, we omit
data points that don’t add significantly to the information conveyed by the graphs.

Figure 7(a) shows that the portal can quickly and efficiently detect a lying proxy.
While pseudo-randomly challenging only 20% of the aggregates, the malicious proxy
is detected within the first six fabrications received—no matter how much it lies. The
advantage of challenging more than 20% of the aggregates is not significant, thus,
this threshold reasonably trades off the integrity of aggregates with the overhead of
challenging.

Figure 7(c) shows how long it takes the portal to detect the malicious proxy in terms
of the number of aggregates (false or otherwise) accepted before detection. Not surpris-
ingly, the less a proxy lies the longer it takes to detect it. We also plotted Equation (1)
with the portal’s checking probability q set to 1/5 (or 20% of the aggregates). It can be
seen that the analytical plot closely matches the experimental one (Figure 7(c)). Notice
also, the large drop in aggregates accepted when challenging 20%, rather than 10% of
them.

Figure 7(b) shows the detection overhead in terms of the number of challenges issued
before detecting a lying proxy. Surprisingly, the overhead largely depends only on how
often the proxy lies. Figure 7(c) provides an intuitive explanation: although the number
of aggregates accepted before detection varies significantly, the number of challenges
issued does not. This result works in favor of the portal, which can now minimize

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

Combating Software and Sybil Attacks to Data Integrity 153:15

Fig. 7. Performance of the Secure Aggregation Protocol, STAP.

the number of challenges based on factors like reducing the number of fabrications
accepted.

Currently, the portal issues challenges to the proxy uniformly at random. This is
because the protocol is currently designed to be general, work for any application or
data type, and all data is assumed to be equally important. We believe that more
efficient variants of the STAP protocol can be designed by leveraging domain-specific
knowledge when deciding how frequently to challenge in large systems. These decisions
can be cast in terms of a Stackleberg security framework [Korzhyk et al. 2011].

While outside the scope of this article, we point the readers to recent relevant work
that we believe might be fruitfully applied to our problem. Algorithmically, we believe
that our problem is similar to recent work on solving the problem of optimizing coast
guard patrols, given finite patrolling resources and adversaries that can observe secu-
rity measures before deciding to attack [An et al. 2013]. Their solution involved the
use of Stackelberg Security Games to model the interaction between attackers and a
security provider. In the Stackelberg security game framework, the security provider
(defender) is modeled as the leader and the attacker is modeled as the follower. The au-
thors, found that the optimal defensive strategies to these games are mixed strategies
over different patrolling actions, making decisions unpredictable to the attacker while
accounting for the varying importance of different targets and the strategic behavior of
the attackers. They model adversaries using Quantal Response (QR) Theory, wherein
individuals respond stochastically in games, selecting nonoptimal strategies when the
cost of such an error decreases.

9. THREAT ANALYSIS

We now revisit our threat model (Section 4) and describe how our system addresses
those threats to the TSP and mobile proxy.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153:16 A. Dua et al.

9.1. Threats to the TSP

A majority of the threats are addressed as a consequence of the TPM’s special capabil-
ities, namely, a closed-box platform containing a private key and the property of being
infeasible to replicate.

—Software attacks. Such attacks are mitigated by building the TSP using a modified
Harvard-architecture-based platform that provides strict isolation between program
and data memory, and permanently disabling all methods that can possibly alter the
TSP’s firmware.

—Sybil attacks. The TPM’s sealed private key ties the identity of the TSP (represented
by that key) with the hardware platform. Since the TPM cannot be cloned, and its
private key cannot be extracted, the adversary has no way to masquerade as a TSP.

9.2. Threats to the Mobile Proxy

The portal combats the malicious data aggregation threat by using STAP to detect a
mobile proxy fabricating aggregates. The key idea is that a mobile proxy commits to
the aggregate value by the very act of sending it to the portal. The portal then pseudo-
randomly verifies the integrity of that commitment. A lying mobile proxy may be able
to publish some fabricated aggregates (see Figure 7(a)), but will eventually get caught.

9.3. Threats to Communication

The portal can detect modification or injection of data because an adversary without
the TSP cannot fabricate its signatures. Replay attacks can be detected because each
data sample generated by the TSP has an incremental sequence number.

10. LIMITATIONS AND FUTURE WORK

We recognize that the use of the TPM cannot protect against all failure modes. For
example, sensor measurements may be inherently corrupt, sensors may be damaged,
or a sensor’s environment may be doctored. It is also likely that not every user has a
Trusted Sensing Peripheral. In this case, the crowd-sourced mobile embedded sensing
systems could still collect data from untrusted sensing platforms, but then use the
data from trusted peripherals to calibrate or validate the untrusted data. We plan to
address a solution along these lines in future work.

The types of aggregation functions addressed in this article work on discrete windows
of data. Thus, calculating metrics like the median would require a different aggregation
protocol. Nonetheless, such a protocol could easily be integrated within our current
framework.

The TSP may duplicate some functionality of built-in smartphone sensors such as
audio and GPS, however, it also enables the addition of a wide range of new sensors
such as CO, CO2, humidity, temperature, seismic, and medical sensors. For example,
carbon monoxide studies in Ghana used an additional device attached to the phone
[Paulos et al.]. Furthermore, the TSP can be connected to a legacy mobile device, so
that it is possible to deploy a trustworthy crowd-sourced sensing application without
the cooperation of smartphone OEMs such as Apple or Nokia.

11. CONCLUSION

This article presented the design and implementation of a Trusted Sensing Peripheral
(TSP) to provide data authenticity and integrity for crowd-sourced mobile embedded
sensing systems. The TSP has built-in sensors, and a Trusted Platform Module (TPM)
that helps it resist software and Sybil attacks to its platform. The TPM attests to the
integrity of published data at the source, and this attestation is verified at a remote

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

Combating Software and Sybil Attacks to Data Integrity 153:17

server. The TSP is energy-efficient, with a battery life of over 80 days when collecting
a temperature sample every 30 seconds.

Our secure data aggregation protocol STAP allows an untrusted intermediate mobile
proxy to aggregate the TSP’s raw signed sensor readings, while allowing the data portal
to detect a malicious proxy that fabricates those aggregates. The portal can detect a
lying proxy with little overhead and within the first six fabricated aggregates received.

To the best of our knowledge, this is the first work to present a practical implemen-
tation of a trusted platform-based approach using a physical TPM device applied to
the data integrity problem in crowd-sourced sensing, and a secure and trusted data
aggregation protocol. This article shows that such an approach is practical, computa-
tionally feasible, and energy-efficient, especially with the introduction of new system-
on-chip solutions such as those from Texas Instruments [TI 2012]. However, the prob-
lem with the approach for now is the high cost of the TSP, high which every user needs
to have.

REFERENCES

Advanced Micro Devices. SVM: AMD’s virtualization technology. www.xen.org/files/xs0106 amd
virtualization.pdf.

E. Agapie, G. Chen, and D. Houston et al. 2008. Seeing our signals: Combining location traces and Web-based
models for personal discovery. In Proceedings of ACM HotMobile. 6–10.

B. An, F. Ordez, M. Tambe, E. Shieh, R. Yang, C. Baldwin, J. DiRenzo, K. Moretti, B. Maule, and G. Meyer.
2013. A deployed quantal response-based patrol planning system for the U.S. Coast Guard. Interfaces
43, 5, 400–420.

R. Anderson. 2003. ‘Trusted Computing’ frequently asked questions. http://www.cl.cam.ac.uk/∼rja14/tcpa-
faq.html.

Atmel Corporation. The Atmel trusted platform module. www.atmel.com/dyn/resources/prod documents/
doc5128.pdf.

N. Baughman and B. Levine. 2001. Cheat-proof playout for centralized and distributed online games. In
Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM).

Bluetooth Special Interest Group. 2009. Core version 3.0 + HS. https://www.bluetooth.org/DocMan/handlers/
DownloadDoc.ashx?doc id=174214.

J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. Srivastava. 2006. Participatory
sensing. In Proceedings of the ACM Sensys Workshop on World-Sensor-Web.

D. Chaum, I. Damgård, and J. van de Graaf. 1987. Multiparty computations ensuring privacy of each party’s
input and correctness of the result. In Advances in Cryptology, Springer, 87–119.

CNN. CNN iReport - Share your story, discuss the issues with CNN.com. http://www.ireport.com/.
P. Denantes, F. Bénézit, P. Thiran, and M. Vetterli. 2008. Which distributed averaging algorithm should I

choose for my sensor network? In Proceedings of the 27th IEEE International Conference on Computer
Communications, Joint Conference of the IEEE Computer and Communications Societies (INFOCOM).
986–994.

R. Dingledine, N. Mathewson, and P. Syverson. 2004. Tor: The second-generation onion router. In Proceedings
of the 13th Conference on USENIX Security Symposium.

J. Douceur. 2002. The Sybil attack. In Proceedings of the IPTPS Workshop.
A. Dua, N. Bulusu, W. Feng, and W. Hu. 2009. Towards trustworthy participatory sensing. In Proceedings of

the 4th USENIX Workshop on Hot Topics in Security (HotSec).
S. Eisenman, E. Miluzzo, N. Lane, R. Peterson, G. Ahn, and A. Campbell. 2007. TheBikeNet mobile sensing

system for cyclist experience mapping. In Proceedings of the 5th International Conference on Embedded
Networked Sensor Systems. ACM, 87–101.

A. Francillon and C. Castelluccia. 2008. Code injection attacks on Harvard-architecture devices. In Proceed-
ings of the 15th ACM Conference on Computer and Communications Security. 15–26.

S. Ganeriwal, L. Balzano, and M. Srivastava. 2008. Reputation-based framework for high integrity sensor
networks. ACM Trans. Sens. Netw. 4, 3.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. 2003. Terra: A virtual machine-based platform
for trusted computing. ACM SIGOPS Oper. Syst. Rev. 37, 5, 206.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

153:18 A. Dua et al.

P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, and L. P. Cox. 2011. Youprove: authenticity and
fidelity in mobile sensing. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor
Systems (SenSys). 176–189.

K. Higgins. 2010. Smartphone Weather App Builds a Mobile Botnet. http://www.darkreading.
com/insiderthreat/security/client/showArticle.jhtml?articleID=223200001.

W. Hu, P. Corke, W. C. Shih, and L. Overs. 2009. secFleck: A public key technology platform for wireless
sensor networks. In Proceedings of EWSN. 296–311.

B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Balakrishnan, and S. Madden.
2006. Cartel: A distributed mobile sensor computing system. In Proceedings of ACM SenSys. 125–138.

Intel Corporation. Intel trusted execution technology. http://www.intel.com/technology/security/.
A. Kapadia, N. Triandopoulos, C. Cornelius, D. Peebles, and D. Kotz. 2008. Anony- Sense: Opportunistic and

privacy-preserving context collection. In Lecture Notes in Computer Science, vol. 5013, 280.
D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe. 2011. Stackelberg vs Nash in security games:

An extended investigation of interchangeability, equivalence, and uniqueness. J. Artif. Int. Res. 41, 2,
297–327.

N. Lathia, K. K. Rachuri, C. Mascolo, and P. J. Rentfrow. 2013. Contextual dissonance: Design bias in
sensor-based experience sampling methods. In Proceedings of the ACM International Joint Conference
on Pervasive and Ubiquitous Computing (UbiComp). 183–192.

J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. 2008. Flicker: An execution infrastructure for TCB
minimization. In Proceedings of ACM SIGOPS/EuroSys. 315–328.

S. Nath, J. Liu, J. Miller, F. Zhao, and A. Santanche. 2006. SensorMap: A Web site for sensors world-wide. In
Proceedings of ACM SenSys. 373–374.

openssl.org. Openssl: The open source toolkit for ssl/tls. http://www.openssl.org/.
J. Padgette, K. Scarfone, and L. Chen. 2012. Guide to Bluetooth Security. http://csrc.nist.gov/publications/

nistpubs/800-121-rev1/sp800-121 rev1.pdf.
E. Paulos, I. Smith, and R. Honicky. Participatory urbanism. http://www.urban-atmospheres.net/

ParticipatoryUrbanism/index.html.
R. A. Popa, H. Balakrishnan, and A. J. Blumberg. 2009. Vpriv: Protecting privacy in location-based vehicular

services. In Proceedings of the USENIX Security Symposium. 335–350.
B. Przydatek, D. Song, and A. Perrig. 2003. SIA: Secure Information Aggregation in Sensor Networks. In

Proceedings of ACM SenSys. 255–265.
V. Rastogi and S. Nath. 2010. Differentially private aggregation of distributed time-series with transforma-

tion and encryption. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 735–746.

S. Reddy, A. Parker, J. Hyman, J. Burke, D. Estrin, and M. Hansen. 2007. Image browsing, processing, and
clustering for participatory sensing: Lessons from a DietSense prototype. In Proceedings of ACM SenSys.
13–17.

R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. 2004. Design and implementation of a TCG-based integrity
measurement architecture. In Proceedings of the USENIX Security Symposium. 223–238.

B. Schneier. 2002. Palladium and the TCPA. http://www.schneier.com/crypto-gram-0208.html#1.
A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. 2005. Pioneer: Verifying code integrity

and enforcing untampered code execution on legacy systems. In Proceedings of ACM SIGOPS 39, 5,
1–16.

A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. 2004. SWATT: Software-based attestation for embedded
devices. In Proceedings of the IEEE Symposium on Security and Privacy. Citeseer, 272–282.

A. Sharma, L. Golubchik, and R. Govindan. 2007. On the prevalence of sensor faults in real-world deploy-
ments. In Proceedings of the 4th Annual IEEE Communications Society Conference on Sensor, Mesh and
Ad Hoc Communications and Networks (SECON). 213–222.

E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. 2011. Privacy-preserving aggregation of time-series
data. In Proceedings of NDSS. Vol. 2. 4.

P. Sikka, P. Corke, L. Overs, P. Valencia, and T. Wark. 2007. Fleck: A platform for real-world outdoor sensor
networks. In Proceedings of the 3rd International Conference on Intelligent Sensors, Sensor Networks
and Information. 709–714.

F. Stajano and R. Anderson. 2000. The resurrecting duckling: Security issues for ad-hoc wireless networks.
Lecture Notes in Computer Science, vol. 1796, 172–182.

The H. Security. 2010. Hacker extracts crypto key from TPM chip. http://www.h-online.com/security/news/
item/Hacker-extracts-crypto-key-from-TPM-chip-927077.html.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

TECS1305-153 ACM-TRANSACTION August 18, 2014 15:33

Combating Software and Sybil Attacks to Data Integrity 153:19

TI. 2012. Wireless Connectivity - ZigBee (IEEE 802.15.4/ZigBee PRO) - CC2538 - TI.com. http://www.ti.
com/product/cc2538.

Trusted Computing Group a. About TCG. http://www.trustedcomputinggroup.org/about tcg.
Trusted Computing Group b. Platform reset attack mitigation specification, Version 1.0. http://www.

trustedcomputinggroup.org/resources/pc client work group platform reset attack mitigation specificat
ion version 10/.

Trusted Computing Group c. Trusted platform module (TPM) specifications. http://www.trustedcomput
inggroup.org/developers/trusted platform module/specifications.

Waze. Free GPS navigation with turn by turn directions. http://www.waze.com/homepage/.
S. Zhu, S. Setia, S. Jajodia, and P. Ning. 2004. An interleaved hop-by-hop authentication scheme for filtering

of injected false data in sensor networks. In Proceedings of the IEEE Symposium on Security and Privacy.
259–271.

Received April 2013; revised November 2013; accepted February 2014

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 5s, Article 153, Publication date: August 2014.

