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Abstract—Infrastructure-based Indoor Positioning Systems
(ITPS) have emerged as critical components of wireless deploy-
ments for many enterprises so as to track mobile devices without
additional device-side applications or computation. To provide
transformative location-based services, it is important that IIPS
compute accurate locations over a long period of time, scaling
with a large number of tracked devices cost-effectively. In this
paper, we present MotionScanner, which includes novel feature-
based and end-to-end deep learning motion detection models
to detect device motion solely from noisy, temporally sparse,
and partial Wi-Fi measurements at access points. We further
integrate MotionScanner into an IIPS so that the IIPS can exploit
previously computed locations effectively to improve location
accuracy, and skip unnecessary location computation. Building
on observations of how location estimates of stationary devices
scatter over time, we can monitor and enhance the performance
of IIPS. We evaluate MotionScanner with data sets collected from
real-world deployments of IIPS at two enterprises, and show that
MotionScanner achieves 83% motion detection accuracy while
saving 80% of computational resources.

I. INTRODUCTION

Infrastructure-based Indoor Positioning Systems (IIPS)
leverage the existing wireless LAN (WLAN) infrastructure
within enterprise buildings. They aim to provide accurate
device tracking to improve enterprise operation at ease and
low-cost [8], [12], [22]. IIPS servers localize and track devices
such as phones and Wi-Fi tags using only Wi-Fi measure-
ments reported from access points (APs) and not requiring
applications running on the tracked devices [8], [20], [34].
However, tracking thousands of devices accurately over time
in multipath indoor environments without a significant increase
in the cost of IIPS deployment is extremely challenging.
This work focuses on detecting and leveraging device motion
context (stationary or moving) from the infrastructure side to
achieve essential requirements of IIPS deployment.

A. Requirements of IIPS Deployment

Below, we describe the three main requirements of IIPS
deployment and explain how device motion context can be
leveraged to achieve these requirements.

1. Location accuracy: IIPS need to localize and track
a device accurately. Most prior work focuses on improving
location accuracy by using only the latest Wi-Fi measurements
[20], [37] without considering device motion. When it is
known that a device is stationary, more historical measure-
ments or location estimates can be exploited to improve the
current location estimate.

2. Scalability: IIPS need to track a large number of devices
in real time without reducing location accuracy or increasing
the cost significantly. Though extra computational resources
could be allocated dynamically by using a cloud computing
service, when we deployed the location server on Amazon
Web Service, the cost of running a minimal cluster, databases,
storage, and bandwidth was high (about $8,000 per month
for tracking 10,000 devices every four seconds on average).
We observe that within many enterprise buildings, people and
devices are often stationary for long durations. For example,
in office spaces, people are typically stationary 75% of the
time [23]. Moreover, Wi-Fi tags are often stationary for long
periods of time. Thus, IIPS can scale cost-effectively by not
computing locations of stationary devices repeatedly.

3. Location-accuracy monitoring: Monitoring location ac-
curacy of IIPS over space (floor areas) and time is essential in
understanding and improving IIPS performance. Traditionally,
site-surveys are performed periodically to check how location
accuracy of TIPS change. However, performing site-surveys at
many enterprise buildings requires extensive human efforts.
We often observe that multiple devices are stationary for long
periods. Given location estimates of these devices, IIPS can
monitor how these estimates scatter over time.

B. MotionScanner: Infrastructure-Side Motion Detection

This work addresses the problem of detecting device motion
at the infrastructure side using only Wi-Fi measurements
received by the IIPS. Exploiting device sensor data [15], [26],
[38] can further improve motion detection accuracy. However,
this approach does not fit well with the IIPS design as it
requires (i) all tracked devices running motion detection appli-
cations (ii) network protocols to support collecting device data
(iii) explicit permission of device users for storing their data
(iv) correctness and trustworthiness of motion data sent from
devices. This work focuses on investigating to what extent
detecting device motion using only the Wi-Fi measurements
can improve IIPS performance.

We present MotionScanner, which enables motion-aware
IIPS by using only Wi-Fi measurements (RSSIs and phase
vectors) received by the IIPS, and addresses three main
challenges: temporally sparse and non-periodic measurements,
noisy measurements and missing measurements (Section IV).

C. Contributions

We summarize our contributions below.



e We develop feature-based and deep learning-based models
that exploit temporal patterns of measurements from multiple
APs to detect device motion accurately in real time (Section
V). We focus on the generalizability and simplicity of our
models. Our models consist of three main steps: feature ex-
traction for extracting temporal patterns of each AP’s measure-
ments, feature aggregation for aggregating temporal features
across multiple APs, and modeling for learning the relationship
between the features and device motion. The main novelty of
our models is the method of computing and aggregating the
features, especially phase correlations, effectively regarding
temporally sparse, multipath, and missing measurements.

e We evaluate our methods by using dataset collected from
real-world deployments of IIPS at two different enterprise set-
tings: a retail and a cafeteria (Section VI). Our results showed
that our methods achieve 83% motion-detection accuracy on
average by using both features extracted from RSSIs and phase
vectors. We also showed that RSSI features proposed in prior
work [19], [21], [25] achieve at most 75% accuracy on average
with our dataset. Moreover, our feature-based models trained
by using data collected in one building can be applied for
another building with negligible accuracy reduction. Finally,
our deep-learning model exploiting only temporal patterns
of RSSI measurements can achieve higher motion detection
accuracy compared to the prior work [19], [21], [25].

e We show that MotionScanner improves IIPS perfor-
mance in terms of location accuracy and scalability, as well
as enabling location-accuracy monitoring (Section VII). In
particular, MotionScanner reduces the number of location
computations by as much as 80% without any impact on
location accuracy.

II. RELATED WORK

We describe various motion types, categorize the motion
detection literature based on these motion types, and highlight
where MotionScanner fits in the overall literature (see Figure
1). According to Sun et al. [28], there are three types of
object motion: stationary, micro motion, and macro motion.
Stationary implies an object is completely static. Micro motion
implies the object only moves a small distance (less than
one meter) or part of the object (human hand) moves. Macro
motion implies the object moves more than one meter. Given
these object motion definitions, there are two main categories
of motion detection problems that prior work has focused on:
(i) stationary (including micro motion) versus macro motion,
and (ii) stationary versus motion (including micro and macro).
Our work MotionScanner belongs to the first category.

A. Stationary (including micro motion) versus macro motion

In this category, motion detection is performed either at the
infrastructure side or at the device side (Figure 1). Motion-
Scanner is performed at the infrastructure side by using RF
data that the IIPS measure in a best effort manner (Section III).
Therefore, IIPS sample Wi-Fi measurements at a non-periodic
and low rate (about 0.2 Hz for RSSIs and 0.15 Hz for phase

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

'

|

Infrastructure- H
side

Motion
Scanner

RSSI and phase

Stationary (including micro
motion) versus macro motion

‘ Device-side RSSI ‘

RSSI and inertial
sensor data
Intrast‘ructure- ‘ RSST and CST ‘

side

Fig. 1: Related work on motion detection

Motion
detection

Stationary versus motion
(including micro and macro)

vectors). This is one of the unique challenges in detecting
device motion with ITPS measurements (Section IV).

Prior infrastructure-side approaches [28], [35] detect device
motion by requiring tracked devices or transmitters to send RF
signal periodically at SHz and 50Hz, respectively. Moreover,
[28] needs to aggregate many measurements in 4 seconds to
detect device motion with 98% accuracy. [35] achieves 95%
accuracy but assumes there is only one tracked device in
an environment. Both these approaches detect device motion
using measurements (channel state information or time of
flight) reported from a single receiver deployed in test beds
(office spaces). MotionScanner combines different temporal
correlations of measurements (RSSIs and phase vectors) re-
ported from multiple commercial-off-the-shelf (COTS) APs to
detect device motion in real time.

Prior device-side approaches detect device motion using
data (RSSIs or inertial sensor data) collected from applications
running on a device. Prior work [19], [21] samples RSSI
measurements periodically at 0.4 Hz and 3 Hz, respectively.
Prior work proposed several RSSI features in both frequency
domain and time domain for detecting device motion. Extract-
ing features in the frequency domain requires periodic mea-
surements, while measurements from IIPS are non-periodic.
We exploit features in the time domain and show that using
these features achieves much lower accuracy in our dataset
(Section VI). Prior work [21] also assumes a fixed frequency
of a person’s movement in a test bed. Without this assumption,
and with a low and non-periodic sampling rate, MotionScanner
exploits not only a combination of RSSI features but also a
phase feature to detect device motion accurately in real-world
deployments of the IIPS. Moreover, as we discussed in Section
I-B, requiring applications running on every tracked device
does not fit well with TIPS design.

B. Stationary versus motion (including micro and macro)

Recent non-invasive (device-free) solutions have focused on
detecting either micro motion or macro motion of tracked
objects for health care applications such as in-home elderly
or child monitoring and gesture recognition [17], [18], [33],
[36]. Custom hardware [17], [18] or pairs of a transmitter and
receiver [33], [36] are required to analyze RF measurement
changes caused by motion. These solutions are limited to
small, static environments having a single or very few tracked
objects (less than 6) [18]. Also, they do not distinguish
between micro motion and macro motion.



III. BACKGROUND

In this work, we use COTS APs [3], [11] that have been
deployed at many enterprise buildings. Figure 2 shows that
the AP has 4 serving antennas (for transmitting or receiving
signals from Wi-Fi devices) and 32 quasi-circular-array anten-
nas. To localize a device and detect the device motion, we use
two types of Wi-Fi measurements: received signal strength
indicators (RSSIs) measured at the serving antennas and
an angle-of-arrival (AoA) phase vector (consisting of phase
values) measured at the antenna array. The phase vector is
computed from channel state information (CSI) [1] measured
at the physical layer of the AP [14], [37]. We emphasize that
our motion detection approach can be applied for other COTS
APs [9] that have a different number of antennas.
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Fig. 2: Measurements at an AP [8]

Figure 3 illustrates an architecture of IIPS on top of an
enterprise WLAN infrastructure [4]. Each AP measures Wi-
Fi signals emitted from tracked devices and forwards the
measurements to a WLAN controller [2], [6]. The controller
aggregates and then forwards the measurements received from
multiple APs to a location server (LS) deployed on-site or on-
cloud. Based on the measurements, the LS uses a combination
of RSSI-based trilateration and phase-based AoA method to
localize and track the devices [14], [37]. The method achieves
median localization accuracy ranging from 1 m to 3 m for real-
world deployments in many enterprise buildings (including
retail, airports, and workplaces) having about one AP per 15 m
x 15 m (which is required to guarantee good Wi-Fi coverage
[7]). The method also achieves sub-meter accuracy for areas
having line-of-sight between the device and several APs.
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Fig. 3: Tllustration of IIPS [4] on top of a WLAN

IIPS samples Wi-Fi measurements in a best effort manner
without requiring any specific applications installed on a
mobile device. For RSSI measurements, a group of APs in the
vicinity of a device measures the RSSI of the signal emitted
from the device whenever the device transmits a packet. Such
a packet can be a probe request for APs [32], an uplink
data packet, or a response to a request from the AP when
the device’s radio is active [3], [S]. For AoA phase vector
measurements, a group of APs measures AoA of signals
emitted from a device when a master AP exchanges packets
with the device. The master AP selects each of its associated
devices sequentially, and each AP in the group is also selected
as the master AP in a round robin way [10]. However, for
both RSSI and AoA measurements, because of unpredictable

interference, the CSMA nature of Wi-Fi networks as well as
uncontrolled device behavior, the IIPS can not guarantee that
any measurements are conducted at scheduled time instants.
Neither can it guarantee that all packet exchanges (e.g.,
between a device and a master AP) are successful. As a result,
we will observe uncertain delay between consecutive Wi-Fi
measurements of the same device which we called temporally
sparse and non-periodic measurements, as well as partial
measurements which we also name missing measurements.

IV. CHALLENGES

There are three main challenges that we address in detecting
device motion by using Wi-Fi measurements reported from the
infrastructure side.

o Temporally sparse and non-periodic measurements: As
discussed in Section III, ITPS samples Wi-Fi measurements in
a best effort manner. Therefore, measurements are temporally
sparse and non-periodic. In our dataset (Figure 9d), the mean
sampling rate of RSSI measurements is about one sample per
5 seconds with a standard deviation (SD) of 4 seconds. The
average sampling period of phase measurements is about one
sample per 6 seconds with an SD of 6 seconds. Figure 5
illustrates how measurements reported by APs in the vicinity
of a device over time and the histogram of the measurements.
Given the temporally sparse and non-periodic measurements
reported by APs, it is challenging to detect device motion at a
time step, especially when the device stays or moves in short
time intervals.

e Noisy measurements: In an indoor environment, Wi-Fi
measurements at an AP are often noisy due to unpredictable
signal attenuation and multipath signal propagation. For RSSI
measurements, Figure 4a shows RSSI measurements vary
when a phone is moving. However, there are episodes in which
the device is stationary but RSSI measurements fluctuate at
a similar level compared to when the device is moving. For
phase measurements, Figure 4b shows that the correlations
of consecutive phase vectors are relatively higher when the
device is stationary but also fluctuate significantly. Therefore,
it is challenging to detect the device’s motion accurately given
the noisy measurements.

o Missing measurements: We observe three main cases
in which measurements at an AP are missing. First, when
a device stays far from the AP or is moving, we often
observe intermittent measurements at the AP over time [19].
Figure 4 represents missing measurements over time as white
gaps between markers in each motion (stationary or moving)
episode. Second, the device may not respond to all request
packets from the AP during the phase measurement process (as
described in Section III). Figure 5b shows that about 25% of
phase vectors having missing phase values. Third, the device
can switch between different frequency bands (2.4GHz and
5.0GHz) when sending Wi-Fi signals. The switching frequency
is device dependent.
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Fig. 4: (a) Measured RSSIs and (b) computed phase correlations at three APs deployed in a cafeteria (shown in Figure 9a)
when a phone is carried around by a user alternating between stationary (S) and moving (M).
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Fig. 5: (a) Measurements reported by APs in the vicinity of
a device over time. (b) Histogram of the average number of
measured phase values per AP. About 25% of the time, APs
report only RSSIs. About 75% of the time, the APs report
both RSSIs and phase vectors. Within that, about 50% of the
phase vectors have full 32 phase values measured at the 32
circular-array antennas of each AP.

V. DEVICE MOTION DETECTION
We first formalize the motion detection problem. Then, we
describe our approaches for detecting the device motion.
A. Problem statement

Table I introduces the notation we use to define the motion
detection problem. Figure 6 depicts the problem.

Symbol Description
timet Timestamp of time step ¢
RSSIAY Signal strength measured in SGHz at an AP n at time;
RSSIB} Signal strength measured in 2.4GHz at an AP n at time;
RSSIs} [RSSIAT, RSSIBY]
phase? P Phase value measured at antenna p at AP n at time;
phases} Phase vector measured at an AP n having P antennas
n,1 n,P
[phase;”", ..., phase;”"]
ay Data measured at an AP n at time;
[RSSIs}', phases}']
at Data measured at N APs deployed on a floor at time;
[a%,af, "'70‘?7}
me Device motion at time step ¢
my¢ = 0 : the device is stationary (negative)
m¢ = 1 : the device is moving (positive)

TABLE I: Notations

Online device motion detection. Given the time series
ai, ..., a; of Wi-Fi measurements per device reported from a
set of access points within a floor until the current time ¢, an
IIPS needs to detect (classify) the device motion m; at the
time ¢ as stationary (including micro motion) or moving i.e.,
macro motion. The definitions of motion types are in the first
paragraph of Section II.

. . . . QT 4
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Fig. 6: Motion detection problem

B. Feature-based Motion Classifier

The feature-based approach consists of three steps: feature
extraction, feature aggregation, and modeling. The feature
extraction step extracts temporal features from the measure-
ments reported from each AP until time; such that each
feature correlates with device motion at time;. To reduce
the effect of noisy measurements and missing measurements
on the correlation, different temporal features extracted from
measurements at multiple APs are aggregated to generate
robust spatial-temporal features. Finally, the modeling step
trains models to learn the relationship between the features and
the device motion. Below, we describe these steps in detail.

1) Feature Extraction: At the current time step ¢, the fea-
ture extraction step extracts temporal features from the Wi-Fi
measurements reported from each AP in a time window from
t — w until ¢. The window size parameter w is derived from
a training dataset to achieve optimal classification accuracy.

e RSSI features: We experimented with a variety of RSSI
features. In Table II, we list the RSSI features that contribute
to improving the motion detection accuracy together with our
key observations for each feature. Other tested features in time
domain include Tanimoto distance, Spearman’s correlation,
and Euclidean distance over RSSIs. However, those features
do not contribute significantly to improving the accuracy of
motion detection.

e Phase correlation feature: Phase correlation represents
the similarity between two phase vectors measured by an AP
n at two different time steps. If there is a strong correlation
between the phase vectors at the current time step ¢ and the
previous time step ¢ — 1, a device is likely to be stationary.
However, as mentioned in Section IV, we often have missing
phase vectors due to the lower sampling of the phase vectors
compared to RSSIs. Therefore, instead of considering only the
phase vector at ¢t — 1, we consider the phase vector at time



RSSI features Description

Visibility of AP

The ratio between the number of measured RSSIs and the window size w [19].
We observe that the AP visibility reduces when a device is moving.

Consecutive RSSIs

The RSSIs at time steps ¢ — 1 and ¢, which will be used to compute the correlation of RSSIs across
access points in the feature aggregation step.

Consecutive RSSI
difference

The absolute difference between two consecutive RSSI measurements at times ¢ — 1 and ¢. If an access point
does not report RSSI at either of the times, it will not be used in the feature aggregation step.

SD of RSSIs

The standard deviation of RSSIs measured within the window w if the RSSI at ¢ is available and
the number of available RSSIs in the window is greater than 3.

SD of RSSI differences

By first computing the absolute differences between the single current RSSI with all previous RSSIs
in the window w and then computing the standard deviation of those differences.

TABLE II: RSSI features

step ¢’ in a window of w measurements (¢’ € [t — w,t — 1]).
We define the phase correlation below.
|Zp 627rj (phases?’pf phases;l,’p) |

corr(phases;’, phases},) = . (1)

The phase correlation is computed by using only the pairs of
phase values denoted as phases;”” and phases;,”” measured at
the same antenna p (p € [1, 32]) at the AP n at the time step ¢
and t', respectively. Quite often the AP can not measure phase
values at all antennas during the phase measurement process as
discussed in Section IV. We normalize the phase correlation by
dividing the numerator by ¢, which is the number of antennas
that have phases measured at both time steps ¢ and ¢’. To
ensure the certainty of the phase correlation, we select the
phase vector at the latest time step ¢’ in the window such that
c is at least 8.

2) Feature Aggregation: The feature aggregation step ap-
plies different aggregation operators on the temporal features
extracted per AP to generate spatial-temporal features. We
describe our aggregation operators below.

o Average over RSSI feature: For each RSSI feature except
the Consecutive RSSIs feature, the operator computes the av-
erage of the feature values calculated for the APs having RSSI
measurements. For the SD features, the operator considers
only the feature values corresponding to the APs that have
the highest visibility (Visibility of AP). In other words, it
discards the feature values corresponding to the APs having
many missing measurements.

e Pearson correlation over consecutive RSSI: This operator
computes the correlation of consecutive RSSIs at multiple APs.
When a device is stationary, changes of RSSIs are often similar
at most APs, which corresponds to a high correlation value.

e Max of phase correlations: This operator computes the
maximum of phase correlation values computed for multiple
APs having phase measurements. We select this operator
due to two reasons. First, phase vectors measured at an AP
are very sensitive to device motion [18], [33]. Moving the
device to another location affects the measured phase vectors
significantly, which reduces the phase correlations computed at
all APs. Second, when the device is stationary, the APs having
line-of-sight (LOS) with respect to the device’s location often
have stable and high phase correlations. Figure 7a compares
the CDF of phase correlations computed at LOS APs vs. non-
LOS APs when the device is stationary at multiple locations.
With the AP density (about 1 AP per 15 m x 15 m) in typical
enterprise deployments [7], we expect at least one AP having

LOS with respect to a device’s location. Figure 7b shows the
distribution of the max of phase correlations when a mobile
device is moving versus stationary.
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Fig. 7: (a) CDF of phase correlations at the APs having line
of sight (LOS) and non-LOS with respect to device locations
(b) Histogram of a max of phase correlations when a device
is moving versus stationary

Before inputting the spatial-temporal features into models
that we describe below, we scale all of the features to the
range [0, 1]. To further address the challenge of missing mea-
surements as described in Section IV, if a feature computed
from measurements in band A (5 GHz) is missing, we replace
it with the feature in band B (2.4 GHz) and vice verse. If
the features are missing in both bands, we impute them with
the average value of the feature in our training set (mean
imputation method [13]).

3) Modeling: The modeling step trains different models to
learn the relationship between spatial-temporal features and
device motion. We considered different feature-based models:
Recurrent Neural Network (RNN), Random Forest (RF), and
Hidden Markov Model (HMM). For the HMM, we calculate
an emission probability and transition probabilities based on
the distribution of the aggregated SD of RSSIs feature and the
distributions of the other aggregated features, respectively.

C. Deep Learning Approach: End-to-End RNN (E2E-RNN)

As shown in Fig. 8, we design a deep neural network E2E-
RNN that consists of three components. The first component is
an RNN of LSTM cells [16] to capture the temporal correlation
of the Wi-Fi measurements at each AP. As described in
Equation 2, the output vector s} of the LSTM cell for the
AP n at the time step ¢ is a function of si* ; which is the
output from the cell in the previous time step at the AP n and
ay which is the Wi-Fi measurement at the time step ¢. The
length of the output vector m can be optimized by performing
a grid search by using a training set. To help the network
taking into account the missing data, we impute unmeasured



data values with zeros and add a binary indicator mask;’ into
ay to indicate if the measurement is completely missing [24].

1 1 1
a; a; a_y ay

H Aggregation

Dense Dense

M_1 my

Fig. 8: E2E-RNN approach
st = f(si—1,af)
Given the outputs from N RNNs corresponding to N

APs, the aggregation component aggregates the outputs
[s%,...,s7, ..., 5] from the RNNs at each time step. First, we
force the network to ignore outputs where the corresponding
measurement vector inputs are zero vectors by removing s}’ if
ay is a zero vector for n € [1, N], and then take the average
of the remaining output vectors in each dimension. The output
of the aggregation function is a vector s; of length m.

Given the s; at the time step ¢, the dense component [29]
outputs the vector 1, which consists of the probability of
moving and stationary of the device at the time step.

We have described our neural network for classifying a
device’s motion m; at a time step t. We emphasize that all
parameters (weights) in the network are shared across different
APs so that the number of parameters in the whole network
is small. This approach allows us to train the network with
a small training set. We use a gradient descent optimization
method that minimizes the loss function that computes average
cross-entropies of the classified motions in a time window
[30]. We evaluate this approach in Section VI-CI1.

Aggregation

where ai = [mask}', RSSIs, phases}] (2)

VI. EVALUATION

In this section, we describe how we evaluate our motion
detection approach.

A. Goals and Metrics

We focus on answering the following questions:

1) How do our models classify device motion by using
either RSSI measurements or the combination of RSSI
measurements and phase vector measurements?

2) How do our models generalize across different device
types and enterprise types?

3) What is the run-time overhead added by performing
motion classification?

4) What is the tolerance of the IIPS to misclassification of
motion classification?

Table III describes our evaluation metrics. These metrics
are well-defined in literature, yet we describe them here in the
context of device motion classification.

Metric Description

Accuracy Fraction of correctly classified samples

Precision Fraction of samples classified as moving
which are correct

Recall Fraction of moving samples correctly classified

F1 score Harmonic mean of precision and recall

False Negative Rate | Fraction of moving samples incorrectly

(Sensitivity) classified as stationary

TABLE III: Description of metrics used in our evaluation

B. Data Collection

While a person is carrying a phone and walking on a floor,
we record Wi-Fi measurements including RSSIs and phases at
APs, the corresponding location estimates computed by IIPS,
and the corresponding actual motion of the device over time.
The device’s actual motion at time; is determined by the actual
distance that the person moved from time;_; to time;. As we
defined in Section V-A, if the distance is greater than 1 m, the
device motion is moving. Otherwise, it is stationary.

To collect the person’s actual locations every second, first,
we use a mobile application to mark on the application’s floor
map the points corresponding to the locations where the person
makes a turn or stops moving. Then, given any two consecutive
marked points at ¢t and ¢ + T as well as the time stamps
associated with these points, we interpolate the person’s actual
locations every second from ¢, ¢t + 1, ..., t + 7. To ensure
the accuracy of the marked points, we require the person to
make a turn or to stay at the locations where there are visual
landmarks or at intersections. Also, to ensure the accuracy of
the interpolated points, we require the person to walk naturally
(without changing his or her walking speed).

We performed the data collection during the business hours
over multiple days at two different enterprise buildings: a retail
store and a cafeteria. We describe our dataset in Fig. 9. We
use the dataset for training and testing our motion detection
models as well as illustrating device motion-based use cases.

C. Methodology, Results and Analysis

Below, we present our evaluation methodology, results, and
our analysis for each of the goals described in Section VI-A.

1) Comparison of motion detection models: We compare
the accuracy of different models using the same data set in
each enterprise building. Given data collected over multiple
experiments, we first randomly permute the experiments per-
formed in each building. Then, we put 80% of the data into
a training set for training the models and the remaining 20%
of the data for testing the models. To find the best hyper-
parameter values of each model, we hold out 10% of the
training data to evaluate the accuracy of the model with a
different combination of the hyper-parameter values.

Feature-based approach. Table IV shows the testing results
of our models that use either RSSI features or the combination
of RSSI features and the phase correlation to detect device
motion. We summarize our analysis of the results below.
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Fig. 9: (a) AP placements (green squares) at the retail and the cafeteria (about one AP per 15m x 15m) (b) In each floor map,

the white color, black color, and dark grey color represent the

area that participants visited, obstacles, and the area that the

participant did not visit, respectively (c) Histogram of the number of measurements in each motion (stationary or moving)
episode. For retail, a large number of episodes have a small number of measurements (less than 3), which makes it difficult
to classify device motion. (d) Histogram of the sampling periods (inverse of sampling rate) of RSSI and phase measurements.

Phase measurements have smaller sampling rate. (¢) Summary

of our dataset.

Feature-based Training set (Cafeteria) -> Testing set (Cafeteria) Training set (Retail) -> Testing set (Retail)
approach Accuracy F1 FNR FPR | Precision | Recall |Accuracy F1 FNR FPR | Precision | Recall
RNN 0.81,0.85)0.78,0.82 { 0.17,0.17 | 0.19, 0.14 | 0.74, 0.80 | 0.83, 0.84 | 0.71, 0.79 | 0.74, 0.80 | 0.18, 0.14 | 0.41, 0.29 | 0.67, 0.75 | 0.82, 0.86
RF 0.81,0.870.77,0.84 | 0.22, 0.13 | 0.16, 0.13 | 0.76, 0.81 | 0.78, 0.87 | 0.70, 0.77 | 0.72, 0.78 | 0.24, 0.19 | 0.36, 0.27 | 0.68, 0.76 | 0.76, 0.81
HMM 0.78,0.82 | 0.76, 0.79 | 0.16, 0.17 | 0.26, 0.19 | 0.69, 0.75 | 0.84, 0.83 | 0.72, 0.74 | 0.73, 0.74 | 0.24, 0.25 | 0.33, 0.27 | 0.70, 0.74 | 0.76, 0.75

TABLE IV: Testing results of feature-based models trained by using data collected at the same enterprise type. For each metric,
the first number is the result of the model using only RSSI features, the second number (bold) is the result of the model using
both RSSI features and phase feature. The models that use both features outperform the models that use only RSSI features.

Feature-based Training set (Retail) -> Testing set (Cafeteria) Training set (Cafeteria) -> Testing set (Retail)
approach Accuracy F1 FNR FPR Precision | Recall |Accuracy F1 FNR FPR Precision | Recall
RNN 0.78,0.78 | 0.68, 0.67 | 0.41, 0.43 | 0.10, 0.08 | 0.80, 0.83 | 0.60, 0.57 | 0.70, 0.73 | 0.70, 0.73 | 0.31, 0.30 | 0.29, 0.24 | 0.71, 0.75 | 0.69, 0.70
RF 0.83,0.870.79, 0.84 | 0.20, 0.13 | 0.15, 0.13 | 0.78, 0.81 | 0.81, 0.87 | 0.72, 0.78 | 0.75, 0.79 | 0.19, 0.18 | 0.37, 0.26 | 0.69, 0.77 | 0.81, 0.82

TABLE V: Testing results of feature-based models trained by using data collected in the retail and tested by using data collected
in the cafeteria, and vice versa. Compared to Table IV, the performance of the RF models are slightly different though the RF
models, in this case, are trained by using data collected in another building.

e The models that exploit the combination of RSSI features
and phase correlation outperform the models that only exploit
RSSI features in terms of all of the metrics described in Table
III. For example, by using RSSI features only, the RF models
achieve the accuracy of 0.81 and 0.70 for cafeteria and retail,
respectively. By using the combination of RSSI features and
phase correlation, the RF models achieve the accuracy of 0.87
and 0.77 for cafeteria and retail, respectively.

e The RF and RNN models have similar performance. This
indicates that using RNN models to further extract temporal
correlation of features is not necessary.

e Compared to cafeteria, our models have poorer perfor-
mance for retail. This is due to a large number of motion
(stationary or moving) episodes in the retail dataset have a
few number of measurements (as shown in Fig. 9¢). Given
temporally sparse measurements in short periods of stationary
or moving, it is more difficult to determine device motion.

To further analyze the contribution of each RSSI feature into
the performance of our models, we train our models by using
each RSSI feature and analyze the performance of our RF

Feature-based approach using RSSI measurements Cafteria Retail
RSSI features Aggregation operator | Accuracy | F1 | Accuracy | F1
SD of RSSIs Average 0.80 0.76 0.69 0.7
SD of RSSI differences Average 0.76 0.68 0.66 0.69
Consecutive RSSI difference Average 0.75 0.69 0.66 0.69
Consecutive RSSIs Pearson correlation 0.73 0.64 0.59 0.64
Visibility of AP Average 0.61 0.37 0.64 0.63

TABLE VI: Accuracy of feature-based approach when each
RSSI feature is applied separately

models. Table VI shows the accuracy of the RF model when
applying each of the features (described in Table II). The SD
of RSSIs feature gives the best accuracy. For Visibility of AP
feature, though it gives the worst accuracy compared to other
features, it is required by the aggregation operator as described
in Section V-B2. We note that these features achieve much
higher accuracy in the prior work [19]. For example, Visibility
of AP feature achieves the accuracy of 0.86, but only 0.63
with our dataset. It is probably because the sampling rate of
RSSIs in their setups is periodic and doubles the sampling rate
of RSSIs in our setups (Section II).

End-to-end (E2E) motion detection approach. We im-



plemented our E2E Recurrent Neural Network (E2E-RNN) by
using the TensorFlow library. Given the large dataset collected
at the cafeteria (Fig. 9e), we are able to train the E2N-
RNN described in Section V-C to classify a device motion by
using RSSIs. In the training process, we test different hyper-
parameter values, we achieve the following results by using
Gradient descent optimization method with learning rate 0.2.
The number of hidden units in a LSTM cell is 6. For the testing
set at the cafeteria, E2E-RNN achieves accuracy of 0.84 and
F1 score of 0.79. For the testing set at the retail, E2E-RNN
achieves accuracy of 0.70 and F1 score of 0.66. These results
show that the approach can achieve better accuracy compared
RF model using RSSI. However, this approach’s limitation
is that it requires vastly more training data. Therefore, given
many missing phase vectors due to low sampling rate of phase
vector, the model could not learn the relationship between
device motion and changes of phase measurements.

2) Model generalizability: To investigate the generalizabil-
ity of our feature-based models across enterprise types and
device types, we train our models by using data collected in
the cafeteria and test the models by using data collected in
the retail, and vice versa. Table V shows the performance of
our models that use either RSSI features or the combination
of RSSI features and phase correlation for classifying device
motion. Compared to the testing results of the RF models in
Table 1V, the RF models achieve very similar performance in
terms of all of the metrics (as described in Table III) though
the RF models are trained by using data collected in another
building. We conclude that our RF models are generalized
across enterprise types and device types.

o Actual Motion-based computation saving
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Fig. 10: Motion-based computation saving
3) Computation time: To make IIPS scalable, the running
time of detecting a device’s motion at a time step needs to
be significantly lower than the running time of estimating
the device’s location. To investigate the overhead added by
performing motion detection, we compare the average running
time of our motion detection approaches and the localization
method (described in Section III), at each time step. We
measure these running times on the same computer (Intel CPU
@ 3.70GHz). For the feature-based approach that uses the
RNN model, extracting six aggregated features and performing
the model take about 1.3 ms and 0.7 ms, respectively. Thus, at
a time step, the approach takes about 2 ms, which is only 13%
of the running time for a location computation, which takes
about 15 ms. Therefore, for a device correctly classified as
stationary, we can save about 87% of the CPU time spent on
each location computation. For E2E-RNN models, the average

CPU run-time is also relatively small (about 4 ms).
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Fig. 11: Histogram of number of consecutive false negatives
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Fig. 12: CDF of location accuracy of moving device with and

without skipping location computation when device motion is

classified as stationary

4) Tolerance to misclassification: We discuss the impact
of each misclassification type, namely, false positive rates
(actual stationary, classified as moving), and false negative
rates (actual moving, classified as stationary), respectively.
False positives (FPs) have no impact on location accuracy
as the location computation is triggered for the sample. On
the other hand, false negatives (FNs) may impact location
accuracy. In Fig. 10, we depict how FNs impact accuracy.
The estimated location for acts, acts, will be the last computed
location (=esty), and for acts it will be est4. As a result, if the
number of consecutive FNs is large, it may have a significant
impact on location accuracy.

Fig. 11 shows that we rarely have more than 3 consecutive
FNs and 70% of FNs are not consecutive. In addition, Fig. 12
shows that the FNR of our RF model (about 0.16 on average)
has a negligible impact on the location accuracy as the CDFs
of location errors when a device is moving with and without
skipping location computations mostly overlap.

VII. MOTION-BASED ENHANCEMENTS

In this section, we demonstrate three important use cases of
motion classification models towards achieving the essential
requirements of the IIPS as described in Section I.

A. Motion-based Computation Saving

Towards achieving high scalability, proactive location com-
putation savings can be achieved by only computing location
when a device is classified as moving. Thus, in an enterprise
IIPS setup, that tracks thousands of devices, depending on the
fraction of tracked devices that are stationary, a significant
computation saving can be achieved. Computation savings is
directly proportional to the true negative rate (TNR) of the
motion classifier. Tables IV and V list the FPR of our proposed
motion classifiers. For the motion classifiers using RSSIs and
phases, TNR = (1 - FPR) ~ 80%, i.e., 80% of stationary
points can be correctly identified for computation saving. The
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potential risks of misclassification are discussed in Section
VI-C4 where we establish that the impact of misclassification
is not significant. Further, a variety of computation saving
schemes can be realized ranging from most aggressive (not
re-compute for devices classified as stationary) to conservative
ones (selectively re-compute if a device is classified as station-
ary yet skip computation for longer than certain duration).

B. Motion-based Filters

By leveraging motion detection, location accuracy can be
improved by applying certain filters such as Particle Filter or
Kalman Filter [31]. In particular, motion classification based
filter can be applied to the location estimates to mitigate the
errors. Further, different filters can be applied for stationary
vs. moving. To demonstrate this idea, we perform motion
classification over our collected data sets. For simplicity, we
apply a cumulative median filter for stationary devices. Fig.
14 shows the average of location errors with and without
applying the filter on different numbers of consecutive location
estimates that are correctly classified as stationary. The error
bars represent the 90th percentile confidence intervals of the
corresponding average errors. For the cafeteria (Fig. 14b),
the filtered location estimates are much less scattering and
closer to the corresponding actual locations. For the retail,
the location accuracy with and without applying the filter
are similar. The reason could be the number of consecutive
samples classified as stationary is smaller, and participants are
actually stationary for shorter periods of time (Fig. 9c).

C. Motion-based location accuracy monitoring

Monitoring location accuracy across a floor over time is
vital for analyzing and improving the performance of an
IIPS deployment. However, this process is often performed
by doing site surveys repeatedly, which requires an intensive
labor effort. For each site survey, we need to place multiple
devices at different physical locations across a floor and then
collect the location estimates of each device over a period of

(b)
Fig. 13: Location accuracy at a retail represented as heatmaps generated from (a) site-survey approach (b) our approach. (c)
The difference between these heatmaps is small.
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time so that we can measure the differences between devices’
actual locations and their corresponding location estimates.
In our work, we propose an approach towards automating
this process without requiring doing the site surveys or using
additional infrastructures such as beacons which are placed
statically on a floor. Our observation is that there are often
several user devices (phones, laptops, etc.) on a floor that
are stationary for a long period of time. The key idea is
to apply motion-based filters on the location estimates of
the stationary devices to approximate the actual locations of
these devices. Given the approximated actual locations and the
location estimates, we can estimate how the location estimates
scatter over time at each physical location across the floor.
Fig. 13 shows location accuracy monitoring achieved by
doing a site survey and by our approach. In Fig. 13a, the
location accuracy across a floor is represented as a heatmap
in which the colors indicate location accuracy from very good
accuracy (black color) to very bad accuracy (red color). The
white area indicates there is no site survey data in the area. We
generated the heatmap by first applying nearest interpolation
[27] on location errors measured at several locations during
the site survey and then normalizing the results to the range
[0, 1]. Fig. 13b shows our approximated heatmap generated by
using the approximated actual locations as we described above.
Fig. 13c shows that the difference between these heatmaps is
small for most of the areas. Thus, our approach can enable
monitoring location accuracy over time with low human effort.

VIII. CONCLUSION

In summary, we have shown that MotionScanner can exploit
the temporal patterns of noisy, temporally sparse, and partial
measurements from IIPS to detect device motion accurately.
We also demonstrated that MotionScanner can enhance the
performance of IIPS in terms of scalability and location
accuracy, as well as enabling location-accuracy monitoring.
We envision that MotionScanner can enable other interesting
use cases for enterprises such as client behavior analytics and
identifying regions of interest based on how long and how
frequently user devices stay or move in particular areas.
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