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ABSTRACT 

This paper describes the design and implementation of Cascades, a scalable, flexible and composable middleware 
platform for multi-modal sensor networking applications.  The middleware is designed to provide a way for application 
writers to use pre-packaged routines as well as incorporate their own application-tailored code when necessary.  As 
sensor systems become more diverse in both hardware and sensing modalities, such systems support will become 
critical.  Furthermore, the systems software must not only be flexible, but also be efficient and provide high 
performance.  Experimentation in this paper compares and contrasts several possible implementations based upon 
testbed measurements on embedded devices. Our experimentation shows that such a system can indeed be constructed. 
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1. INTRODUCTION 

As the ability to incorporate new data types such as audio, imaging and video within the sensor network becomes 
possible, applications can benefit tremendously from multi-modal sets of sensors that include video.  For example, 
environmental scientists and oceanographers are interested in the evolution of near shore phenomena along the coastal 
margin.  Oceanographers have developed techniques to use imaging data to understand the evolution of sandbars 
underneath the water’s surface off the coast. While they could use a massive array of in-water scalar sensors, a 
combination of one video sensor and some scalar environmental readings can provide the same information for their 
research with significant infrastructure cost savings, ease of deployment, and reduced maintenance costs  10.   

While multimedia data can provide rich information for applications, a number of challenging trends are emerging.  
First, the diversity of data types implies diversity in the underlying hardware devices, requiring the systems software to 
adapt to a plethora of devices.  Second, the actual in-network handling of the data becomes more application specific.  
Finally, the systems software must support re-tasking a deployed network.  The most difficult challenge is to provide 
easy-to-program, application-tailored mixtures of traditional scalar sensors as well as image and video sensors while still 
providing a high degree of performance.    

In this paper, we propose Cascades, a middleware system that supports composable, retaskable and application-
tailorable systems software for sensor networks that contain both multimedia and scalar sensor data types.  It provides a 
number of properties to the application.  First, it provides a high-level way in which application can specify the operation 
of the sensor system.  This includes how the data should be managed and prioritized while it is being collected.  Second, 
it allows the user to specify application-specific algorithms (optimized in the program language of their choice) to 
operate on the data within the network.  For example, a particular sensor application may have a specific image 
processing algorithm or compression mechanism in mind. Finally, it provides a way in which heterogeneous sensors can 
be brought together while providing reasonable performance to the application.  The focus of this work will be on video 
support in the Cascades system.  Experimental data will show that the system can be built using an application-tailored 
way while still providing a reasonable amount of performance. 

In the following section, we briefly highlight the diversity and the systems software requirements to support such 
applications.  In Section 3, we propose our Cascades middleware as well as several example implementations of the 
system.  Section 4 describes a number of experiments that compare and contrast our proposed approach with other types 
of implementations. Section 5 provides an overview of the related work.  Finally, we provide some directions for future 
research and conclude the paper. 

 

 

 



2. THE VIDEO SENSING LANDSCAPE 

In this section, we briefly describe some of the issues that need to be addressed for multi-modal video sensor networking 
applications and the ramifications on the implementation of the systems software necessary to support the system.  In 
particular, we provide the two extremes between which we believe the software will ultimately lie. 

Heterogeneity: The systems software will need to support a diversity of sensor hardware.  To maximize efficiency, the 
systems software can export the bare minimum abstraction of the underlying hardware (e.g. TinyOS  3) but this makes it 
hard to manage, program, and connect with other hardware in an application-specific way.  At the other extreme, one 
could provide a virtual machine interface to all hardware   9.  This approach makes programming and management of the 
system more efficient.  Given its higher overhead, however, it may not even be possible to push the abstraction to the 
smaller devices.  Furthermore, providing virtual machine abstractions may be very inefficient for large data streams such 
as video because performance features such as memory mapping I/O devices may not be allowed. 

Composability: Undoubtedly, the actual operation of the system will need to be tailored to a specific application’s 
requirements.  We expect that the sensor system will provide (i) a number of pre-defined components that can be used, 
(ii) mechanisms to support the addition of new components, and (iii) the ability to combine the components in a 
meaningful way.  At one extreme, composability can be accomplished through pre-defined code segments that are 
compiled together into a single monolithic executable, allowing the system to run as efficiently as possible, while 
making changes to a running system more difficult.  At the other end of the spectrum, one could imagine using a shell-
level scripting program to compose such a system together from a number of smaller executables.  While making it 
easier to distribute smaller sub-components, the system may suffer from a large amount of overhead in switching 
between address spaces and marshalling of data between executables. 

Adaptability: The system will need to adapt to a number of conditions including available computation, networking 
availability, and power.  For example, an embedded device may be able to capture video but may be constrained in its 
ability to compress or transmit it.  To provide the most efficient operation, one could tune the sensor software to capture, 
compress, and transmit as much information as the smallest bottleneck in the system can handle.  Furthermore, one could 
hard code exactly how the system should respond to a number of external events such as network congestion and 
variable power generation (e.g. solar panel).  Clearly such a system would be hard to retask or specialize to a new 
application.  At the other end of the spectrum, the individual components could “self-adapt” or infer the amount of data 
that ought to generated, stored, or thrown away through indirect measures (e.g. the network buffer is getting full).  While 
such a system may not be optimal in its operation, it is easier to maintain and tune in place. 

System performance: The optimization of data flow through a sensor can have a tremendous impact on its power usage 
and its performance.  As an example, consider the Panoptes video sensor   2. Using a plethora of optimizations including 
memory mapping the camera device into the address space, using compression across the USB 1.0 interconnect, and 
using the Intel Performance Primitives, the sensor is able to achieve the capture and compression of approximately 24 
320x240 frames per second on a 3 Watt, 200-MHz embedded device.  The Intel Performance Primitives nearly tripled 
the frame rate achievable for DCT-based video compression.  These primitives, however, are designed for only one 
processor architecture.  As a result, one can highly optimize the code for a particular hardware platform and camera 
combination, but it may not be suitable for any other hardware and camera combination. Using generic interfaces 
without much optimization yields only a handful of frames per second with nearly the same code.   

Mobility: While not currently in the sensor networking landscape, having dynamic entities such as robots or other 
UAVs interacting with static sensor components to achieve a more complex goal will eventually be the future of sensor 
networking deployments.  Of course, the dynamic aspect of such systems will place an even further burden on the 
systems software that must support it.   

Clearly, the creation of next generation sensor systems will need to manage the conflicting goals of performance and 
management.  We will propose middleware for such a system in Section  3. 

3. CASCADES INFRASTRUCTURE 

We propose Cascades, a middleware system to support the diversity of sensor networking applications, while providing 
reasonable system-level performance.  We considered a number of options with the issues we outlined in Section 2 in 
mind.  Sensor code compiled into one executable was ruled out because updating the functionality of a video sensor 
would require a significant amount of wireless bandwidth to be used to distribute all the code, whether it changed or not.  
One could also use shell-level scripting, connecting individually compiled pieces of code to be brought together.  This 



solution was also ruled out as not having high enough performance.  The other alternative was using a high-level 
scripting language like TCL or Python.  The key advantage of such languages is that they are interpreted scripting 
languages, allowing users to specify rather complex systems with minimal code.  Furthermore, they allow programs 
written in high-level languages such as C or C++ to be called as part of the script.  This allows a majority of 
computationally intensive code (such as video processing algorithms) to be written in a highly optimized way. 

3.1 The CASCADES Infrastructure 
Our middleware uses Python-based interfaces to connect filters together.  Filters can be constructed from and attached to 
other filters to specify actions that may be taken on the data flowing through the filter.  The basic concepts of building a 
system out of TCL and Python are similar.  We chose Python over TCL for several reasons.  First, it provides more 
complex data structures.  Second, it is more efficient, which is extremely important for power-constrained sensor 
systems.  Third, Python provides the ability to add or change the behavior of parts of the system while it is running.  As a 
result, for the parts of the system that are connected via Python, re-tasking the system involves distributed the new code 
segment and updating the script so that it points to the new code (e.g. a new video compression algorithm)a.  Fourth, 
Python interfaces also provide the opportunity to provide type checking of the data so that the components that are 
plugged together can be verified for compatibility, if so desired.  Finally, it is easier to construct more complicated 
programs in Python, giving the user more control over the system rather than hiding many details.  The last point is both 
a positive and negative.  In the hands of more experienced programmers, Python is easier to adapt to application 
specifics.   

3.2 Constructing Cascades 
 The primary mechanism to support the management and integration of multi-modal data are cascading filters.  The 
filters can be constructed at a number of levels.  Filters are user-supplied or toolkit-derived functions that allow the 
sensor system to tailor its data for the user application.  The idea of each filter is that it allows the processing of the data 
within the filter to be accomplished with a highly optimized piece of code (rather than an interpreted language).  There 
are several basic types of filters that we envision: 

Efilters are the primary mechanism by which the handling of faulty sensors can be specified.  Faulty readings can occur 
from bio-fouling of the sensors in outdoor scenarios. These filters can consist of standard statistical filtering techniques 
in a default-model as well as allow the application user to specify the exact way in which the faulty data may be handled.  

Dfilters are used to manage scalar data within the sensor network.  They take one or more streams of scalar dat and 
produce an output of one or more data streams as well as meta-information about the sensor data.  As an example, one 
filter might calculate the average value measured per hour, either for a single sensor or a group of sensors.  The filter 
                                                           
a This assumes that the Python script periodically checks whether or not the script has been updated. 
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FIGURE 1: This figure shows an example of the overall architecture for our proposed sensor 
networking middleware.  The nodes labeled Stargate are slightly more powerful, in-network, 
sensor nodes that can both capture video and be used to manage a number of scalar sensor nodes. 
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might also add meta-information such as timing information or relational information between sensors.  The sensor 
output can then be used by other filters.  As we will describe later,  

Vfilters are used to manage video data being collected by video sensors.  Vfilters might consist of application specific 
video processing algorithms or off-the-shelf components.  Application-specific algorithms may include image processing 
techniques for the environmental monitoring example previously described.  An off-the-shelf component might include a 
compression algorithm or video adaptation algorithm within the network. 

Ufilters are user specified filters that allow the user to specify the integration of data from the other types of filters. 
These can include annotation of video streams using scalar sensor data. 

Each filter supports a basic “container” mechanism with headers that describe the type of data (e.g. scalar sensor data, a 
compressed video frame, a raw image, etc.) along with the size of the data.  The Python subsystem can then be viewed as 
a message passing interface that shuttles data in between the various filters.  Filters are obviously a somewhat loose term 
that implies some basic functionality.  The filters can be composed of smaller filters that wrap some optimized 
functionality and can, therefore, provide some hierarchical organization of the filtering mechanism. 

The overall Cascades infrastructure is shown in Figure 1.  The actual hardware devices are abstracted just enough to 
provide data into one of the filters.  For example, scalar data sensors will have the operating system of their choice 
running on the system and will talk upstream to a node (such as a Crossbow Stargate device) that will provide the 
Python-based abstraction.  We have built a filter that encapsulates the functionality of TinyDB on the Stargate and that 
exports the data through our generic python interconnect.   

3.2.1. Video Filters 
As previously mentioned, filters can be constructed out of other “filters”.  In the remainder of this section, we will 
describe how we have constructed the systems code for a video sensor.  As described in the original Panoptes paper  2, 
the video sensor code consists of a number of smaller modules including: video capture, application-specific filtering, 
compression, and buffering and adaptation.  We have re-written each of these modules so that they are exportable into 
Python interconnects.  The overall video sensor architecture is shown in Figure 2.  Each of the modules adheres to a 
message format containing items such as the type of data within the message, the length of the message, and the data. 
The actual interface to Python can be hand generated or done via an automatic interface generator such as SWIG.  We 
will describe these details in the following section.   

The actual Python script for a video sensor is shown in Figure 3.  The top section of code is for initialization purposes 
and imports the C modules that will be used in the video capture and compression filter.  The second section of code 
initializes the camera, buffer, and modification time of the Python script.  The modification time is used by the Python 
script to automatically reload the components if the Python script gets modified.  This is an important aspect of our 
system as it allows (i) a new piece of sensor code (such as a new compression algorithm) to be loaded into the sensor and 
(ii) allows the system to modify its behavior without having human intervention.  The third part of the code is used to 
initialize the interconnections and the network connection to the upstream camera manager and sink (as described in the 
Panoptes paper  2).  Finally, the last part of the code is the actual script for running the video sensor.  As shown by the 
code in Figure 3, there are relatively few lines of code necessary to construct the system and these components can be 
connected in other ways as the objects are relatively generic in calls. 

 

 

FIGURE 2: Video capture filter.  This figure shows the construction of the video 
sensor capture and compression system that we have built.  Each of the 
subcomponents has a Python interface, allowing it to be arranged in a variety of ways. 
The Python script for this example video capture system is shown in Figure 3. 

 

Video for 
Linux 

 

Capture 

Application- 
Layer 

Filtering 

Compression 
(JPEG, MPEG, 

JPEG-IPP) 

 

Buffering  
and  

Adaptation 

Python Video Capture Filter Script 



3.3 A Larger Example System 
The power of the Python-based infrastructure is that it allows more complex systems to be built out of smaller 
components.  As an example, we have built a hierarchical buffering algorithm for a video data aggregator within the 
sensor network.  We focus on a three-node system.  Two of the nodes are the Panoptes video sensors  2 running the code 
shown in Figure 3 and the third is a video manager in the middle of the network.  The idea is that the video manager can 
provide a common buffer shared amongst the other sensors.  When the common buffer is full, two video sensor nodes 
should stop sending data to the manager node to save energy.  The basic code for the manager node is shown in Figure 4.  
Python functions is_time_to_stop_receiving() and is_time_to_resume_receiving() specify buffer management 
polices in a few lines and can be changed easily.  The key idea to take away is that the in-network video manager can be 
handled through fairly high-level actions but has sufficient access to data to allow the programmer to apply application-
specific algorithms in the code. 

4. EXPERIMENTATION 

4.1 Experimental Setup 
To understand the performance of the proposed Cascades middleware, we measured the amount of overhead introduced 
by connecting the system via generic interfaces and the amount of extra space on the sensor needed to hold the code and 
Python executables, given the memory premium on such devices. 

  
#Initialization and minor procedures removed.
 
def is_time_to_resume_receiving(): 
global buffer_full, buffer 
if buffer_full and buffer.HasSpareSpace(8): 
  buffer_full = 0 
  return 1 
return 0 
 

while not end_of_experiment(): 
  messenger.PollSockets() 
  update_dropping_level() 
  msg = secretary.GetMsgFrom("sensor1") 
  buffer.PutMsg(msg) 
  msg = secretary.GetMsgFrom("sensor2") 
  buffer.PutMsg(msg) 
 
  if is_time_to_stop_receiving(): 
    cmd = secretary.MakeStopSendingMsg() 
    messenger.SendMsg("sensor1", cmd, -1) 
    messenger.SendMsg("sensor2", cmd, -1) 
 
  if is_time_to_resume_receiving(): 
    cmd = secretary.MakeStartSendingMsg() 
    messenger.SendMsg("sensor1", cmd, -1) 
    messenger.SendMsg("sensor2", cmd, -1) 
 
  if network_on(): 
    msg2send = buffer.GetNextMsgToSend() 
    if messenger.SendMsg("sink",msg2send,-1): 
      buffer.RemoveSelectedMsg() 

VideoManager.py 

FIGURE 4: In-network video manager.  This code show the 
construction of an in-network buffer management routine.  It 
manages two video sensors, which are sending prioritized frame 
information to it.  The functions is_time_to_stop_receiving() and 
network_on() are 4-8 line Python code segments similar to 
is_time_to_resume_receiving()  (removed for space reasons). 

 import os, sys 
from stat import * 
from cam import * 
from secretary import * 
from messenger import * 
import filters 
 
modify_time = os.stat("filters.py")[ST_MTIME]
camera = Camera() 
buffer = MsgBuffer(10, 100) 
camera.Initialize() 
 
messenger = Messenger("capture") 
secretary = Secretary() 
messenger.SetPrivMessenger(secretary) 
messenger.AddSocket("sink", 2183, "10.0.0.1")
 
def run(): 
  global modify_time 
  messenger.PollSockets() 
  raw_image = camera.CaptureOneFrame() 
  JPEG_msg = filters.run(raw_image) 
  buffer.PutMsg(JPEG_Msg) 
  msg2send = buffer.GetNextMsgToSend() 
  if messenger.SendMsg("sink", msg2send,-1): 
    buffer.RemoveSelectedMsg() 
 
  new_time = os.stat("filters.py")[ST_MTIME] 
  if modify_time != new_time: 
    modify_time = new_time 
    reload(filters) 

VideoCapture.py 

FIGURE 3: Video Capture Python Script.  This figure shows the 
Python script necessary to combine the various components of the 
video sensor (as shown in Figure 2).  The modify_time lines are 
used by the Python script to watch for the modification of the filter, 
allowing the Python script to reload upon being modified (e.g. 
having a new compression algorithm installed). 



We used the Crossbow Stargate embedded sensor platform.  The Stargate is meant to be a higher-level processing board 
for scalar sensors.  As such, it is a natural place in the sensor hierarchy in which to start using higher-powered video 
sensing.  The Stargate platform we have runs the embedded Linux operating system 2.4.19-rmk7-pxa2.  The platform 
has a 400 MHz Intel Xscale processor, 64 Mbytes of memory, a 100 Mbit Ethernet connector, and a compact flash 
wireless 802.11 card.  The video capture is accomplished through a Logitech QuickCam 4000 Pro USB camera  2. 

For experimentation, we will compare and contrast four different types of system architectures.  We have built the video 
sensor with a single monolithic C program.  We will refer to this approach as the C approach.  We have also built each 
of the components as standalone executables, using a shell script with pipes to interconnect the components.  We will 
refer to this approach as the Shell approach.  For the Python-based system we have two approaches.  Both approaches 
use the same compiled C modules.  One approach, referred to as the Python-SWIG approach, uses the Simplified 
Wrapper and Interface Generator (SWIG) system to generate the Python interfaces for the C code.  The other approach, 
which we refer to as Python-Native, uses hand coded C to Python interface mappings.  SWIG can generate necessary 
glue code automatically but may lead to excess code given its generic nature.   

For compression performance, we have implemented three different compression algorithms in order to get an 
understanding of the efficacy of various compression routines on the Stargate platform.  We expect such numbers to be 
useful in understanding what can and cannot be done in future multi-modal sensor networks and what the minimum 
requirements are.  The three compression algorithms that we have implemented are JPEG, JPEG-IPP, and MPEG.   The 
JPEG algorithm is based upon the standard libJPEG source code that is freely available.  The code is optimized in a 
CPU independent way, and thus, represents a generic image compression algorithm.  The JPEG-IPP algorithm takes 
advantage of the Intel Performance Primitives (IPP) libraries that are available from Intel.  The IPP libraries provide 
routines for copying large amount of memory, performing DCT functions, encoding Huffman symbols, and other 
multimedia related tasks.  The libraries are primarily low-level assembly routines that take advantage of the architecture 
in any way possible.  The MPEG algorithm is the MPEG-1 video coder from ffMPEG, which has been relatively 
optimized for the StrongArm and Xscale processors when the right compile flags are chosen.   

4.2 System Performance 
In this section, we compare and contrast the four different approaches that we have implemented using the three different 
compression algorithms.  The numbers were generated by capturing 300 frames with the experimental set up and then 
measuring the number of frames per second it was able to capture.  The numbers are shown in Figure 5.   

For JPEG, the system is able to keep up with the camera’s capture rate at the resolution 160x120 in all cases except the 
Shell programming case.  The multiple threads and I/O necessary to move information between shell scripted entities are 
non trivial, as expected.  Moving to 320x240 pixel frames, we see that the C, Python SWIG and Python Native 
algorithms perform similarly.  This is relatively encouraging as it suggests that the overhead of using SWIG is not that 
high.  It is also noted that using shell scripting in this case requires approximately 20% overhead.  Finally, in the 
640x480 case, we see that the processor is completely overwhelmed with data per frame.  As a result the shell scripting 
version performs similarly to the Python and C versions because each frame requires much more relative processing, 
mitigating the context switching cost for the Shell program. 

For JPEG-IPP at 160x120, the Stargate processor is able to keep up with the camera’s capture rate.  The Shell version is 
slightly faster primarily due to the IPP code freeing up some of the compute cycles to do context switching.  For the 
320x240 pixel video, we see that the IPP-based code is able to achieve a video capture rate of nearly 80 to 87% better 
than its non-IPP-based counterpart.  As reported previously, this suggests that in building such sensor systems, the need 
to support hand tuning on specific platforms is critical to performance.  As a result, systems that attempt to abstract 

  JPEG JPEG-IPP MPEG 

 C Python 
Native 

Python-
SWIG 

Shell C Python 
Native 

Python-
SWIG 

Shell C Python 
Native 

Python-
SWIG 

Shell 

160x120 29.60 29.55 29.57 27.09 29.69 29.41 29.88 28.68 22.55 21.96 21.43 20.25 

320x240 10.01 10.00 9.45 8.07 18.37 18.38 17.74 13.95 8.46 8.32 8.35 7.55 

640x480 2.62 2.59 2.60 2.07 5.04 5.04 5.04 3.77 2.41 2.45 2.40 2.18 

FIGURE 5:  This table shows the performance of the libJPEG code, JPEG code optimized by IPP, and
ffMPEG MPEG-1 code using the four interconnect techniques.  The numbers shown are in frames per second 



video devices should probably be avoided.  For the 320x240 pixel case, we again see that the C and various Python 
versions are similar again.  The Shell version increased its overhead from 14% to 22%.  As the CPU is fairly saturated at 
this resolution, the context switching overhead is higher relative to the JPEG version.  Finally, we see that in the 
640x480 case, the IPP version allows for nearly a doubling of the frame rate achievable.   

For ffMPEG MPEG-1 video compression algorithm, it is interesting to note that adding motion compensation between 
frames requires approximately 50% overhead in the 320x240 pixel and 640x480 pixel case compared to JPEG-IPP.  We 
believe that this is partially due to the slower memory hierarchy of the embedded processor.  Another point worth 
mentioning is that the Shell version does relatively better in the MPEG than the JPEG cases.  This is entirely due to the 
fact that there is a significantly higher computation per frame requirement than in the JPEG cases, allowing the overhead 
to be amortized over more cycles. 

In general, we found that the Python-SWIG and Python-Native algorithms had very similar performance.  This is not 
entirely unexpected as the amount of marshalling of data is fairly minimal (as designed).  We would expect that if the 
users want access to the data in Python that a higher overhead would manifest itself.  We also found that the Python 
versions perform similarly to the C versions of the code.  Given its interpretive nature, we believe that this is a 
significant achievement for the writers of Python and something that we should take advantage of for composability and 
retasking of sensor networking code.  Finally, we note that it appears that the trade-off between using JPEG and MPEG 
is approximately 50% for the 320x240 case.  It would appear that for extremely bandwidth-stringent environments such 
a trade-off may be worth making. 

4.3 Code Size 
The one potential drawback of using Python is that it requires that the Python interpreter be installed on the each 
machine running the Python scripts.  Clearly, this could limit the types of embedded processors that the code can run on.  
In Figure 6, we have listed the code sizes for the JPEG-IPP algorithm.  Here, we see the clear differences between the 
various approaches.  The C code is a single compiled object allowing all the standard libraries to be compiled in just 
once.  As a result, the Shell connected code is approximately 51% larger than the C code.  The Python versions require 
even more space.  This is mostly due to the interface specification between C and Python.  Writing the interface between 
C and Python (i.e. Python-Native) saves 120 kilobytes, at the expense of additional programming.  We also see that there 
is approximately a 1 Mbyte overhead to store the Python interpreter as well. 

In Figure 7, we have listed the MPEG-based code sizes.  As shown in the table, MPEG requires significantly more space 
(and processing power) in order to operate on the embedded devices.  Because of the relatively large size of the MPEG 
compiled code, much of the overhead of Python is amortized in the larger code.  As the Python interfaces are fairly 
similar, by design, the overhead between the various approaches are constant as well.   

5. RELATED WORK 

Several sensor platforms have been developed with varying capabilities for use in sensor networking applications, 
including the Berkeley mote family of WeC, Rene, Dot, Mica, MicaZ, and XSM sensors  7.  The main characteristics of 
these sensors are that they have small amounts of memory, have very limited processing capabilities, and are very 
efficient with battery power.  The Cyclops image sensor is a low-power image sensor that can be attached to a Crossbow 
Mica2 sensor  8.  The Panoptes video sensor (based on the Crossbow Stargate device)  2 is the only generic low-power 
video sensor that we are currently aware of. These developments just highlight the fact that the systems software will 
have to evolve to support a diversity of hardware.  

Techniques such as Directed Diffusion  5 or TinyDB  4 to process scalar data in a sensor work have been developed.  They 
provide mechanisms for simple in-network data aggregation.  Cascades provides support for more complex tasks.  In 
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Compiled 
Code 

95.7 184.8 299.6 145.0 

Script -- 1.0 0.6 0.6 

Interpreter -- 1103.7 1103.7 -- 

 
FIGURE 6:  Code Sizes.  This table shows the size in
kilobytes of the various subcomponents for the JPEG-IPP
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Python-
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Script -- 1.2 0.6 0.6 

Interpreter -- 1103.7 1103.7 -- 

 FIGURE 7:  Code Sizes.  This table shows the size in
kilobytes of the various subcomponents for the MPEG-based



addition, Cascades enables a whole-network reconfigurable deployment of filters instead of filter deployment on 
individual sensors.  Cascades can also be used with Diffusion or TinyDB.  For example, one can control a herd of motes 
via TinyDB, and use TinyDB’s data stream output as an input to a Cascade filter.   

There are many stream query processing systems for sensor networks including Cougar, Telegraph, Stream, and 
Aurora/Borealis  1.  One key difference between the existing stream processing work and Cascades is the inclusion of 
video processing and filtering within the sensor substrate as well as application-specific data handling and adaptation in 
the event of insufficient resources exist.  We believe that much of the functionality of such stream processing engines 
can be incorporated into the filtering mechanisms we propose. 

Finally, we note that finding efficient “plug and play” architectures for multimedia has been the focus of some previous 
research.  The Continuous Media Toolkit (CMT) from Berkeley focuses on the rapid development and deployment of 
distributed streaming applications  6.  The CMT toolkit is a TCL/TK-based system that allows users to construct 
streaming applications through scripts that combine lower-level components together. The Cascades approach is similar 
in vein to the CMT toolkit.  The sensor networks we envision, however, will force the scripting languages to manage 
more complex data sharing between components.  We believe that Python is more usable in this context because it 
provides real data structures to the scripts and runs faster than TCL.  The data structures are necessary to support the 
movement of data between the filters. 

6. CONCLUSION AND FUTURE WORK 

In this paper, we have outlined Cascades, a potential middleware system to support diversity and programmability in 
multi-modal sensor networks. As sensor networks continue to evolve, the systems software that supports such 
applications must also evolve while continuing to provide highly optimized and efficient operation.  Python-based 
cascading filters can effectively manage the trade-off of highly optimized systems and the need to tailor the system to the 
user application.  We have presented a number of experimental results that have shown that using Python interconnects 
can allow basic scripts to orchestrate the sensor network, while requiring very little overhead. 

There are still a number of open issues that we are working to address with Cascades.  Currently, there is no explicit 
mechanism to adapt computation to conserve power.  This requires coordination among filters.  Another avenue of future 
work is managing power on a larger time-frame.  For example, in the oceanographic example, it may be more beneficial 
to store data during the day and only transmit at night (while no video capture is happening).  
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