
1

Resilient Event Detection in Wireless Sensor Networks
Angelika Herbold1, Thierry Lamarre2 , Nirupama Bulusu3 and Sanjay Jha4

1 Western Washington University, USA
2 ENSEIRB, France

3 Systems Software Lab, Department of Computer Science,
Portland State University, Portland, OR 97207-0751 USA

4 University of New South Wales, Australia and
National ICT Australia Limited, Randwick, Australia

 herbola2@cc.wwu.edu, lamarre@enseirb.fr, nbulusu@cs.pdx.edu, sjha@cse.unsw.edu.au

Abstract
As wireless sensor networks become widely used, the
need to provide fault tolerant, user-friendly middleware
for detecting sensed events increases. Our contribution is
the motivation, design, implementation and evaluation of
ResTAG, which provides fault-tolerant aggregate
queries in the popular, user-friendly TinyDB
middleware. If a sensor becomes mis-calibrated or
physically compromised, the fault-tolerant queries use
the network redundancy to reduce the confidence in any
report from that sensor. Queries implemented using
ResTAG detect faulty nodes within a predictable
threshold that depends on both the percentage and
failure type of faulty nodes.

1. Introduction
Wireless sensor networks are being deployed for diverse
sensing applications[1][2][3]. Sensor networks present
unique challenges: individual nodes are resource-
restricted, radio communication between nodes is loss
prone and a major energy consumer[4], and the networks
are tightly coupled to the physical environment. A sensor
network must run unattended for long periods of time.
Moreover, users are unlikely to be systems programmers,
motivating robust sensor middleware that enables user-
friendly control and data gathering from a sensor
network.

In this paper, we address the important challenge of
making sensor middleware fault-tolerant. Sensor
networks are inherently insecure, and they can easily be
snooped or spoofed by introduced malicious nodes.
Security in sensor networks is difficult, since security
protocols often use extra memory , processor time, and
can require larger network packets. Secure
communication protocols for sensor networks which
provide for authentication, data confidentiality and
message integrity do not address the complementary
problem of resilience to corrupted sensor data, generated
by failed sensors.

A possible cause of failures, non-malicious
physical sensor error or mis-calibration, is not managed
at all by security protocols. This is a very likely failure
scenario in a low-security application such as a wildlife
monitoring system. In this case the sensor board on a
mote becomes physically compromised. An example of
this would be dust obscuring the light sensor on a mote,
causing it to read lower than expected light levels.

In light of the likelihood and importance of non-
malicious failures, and the resource-expensive and

incomplete nature of current security protocols, we find
that a more comprehensive solution is data-centric fault
tolerance. Instead of securing each node, we attempt to
exploit redundant node distribution in the network to
provide a confidence value to node reports. Although
similar ideas have been studied previously in [5] et al, we
have chosen to provide a practical robust implementation
of fault tolerance in the popular TinyDB middleware[6].

The TinyDB middleware allows the user to gather
data from the network as if it were a relational database.
The average user does not need to write embedded code,
and can use simple SQL-style language to collect sensor
data over time. An implementation of resilient event
detection in TinyDB will allow those less technical users
to obtain a measure of the reliability of query responses.
This implementation, which we call ResTAG, is the
major contribution of this work, and the purpose of this
paper is to explicate it and demonstrate its effectiveness.

2. Related Work
A simple approach to conserve energy and bandwidth in
sensor networks is to fuse data packets together as they
move from source to sink, and to eliminate redundant
information whenever possible. This data fusion is
known as in-network aggregation. We review it here.

Tiny Aggregation (TAG): One of the most widely used
aggregation protocols is TAG, or TinyAGgregation,
[6], which is implemented as the core of TinyDB. In
TAG, packets are routed to the sink in a tree structure.
Sensor data is sent to parent nodes, who aggregate the
data with their own, and that of their other children. The
tree structure remains in place unless a parent node
becomes unavailable, wherein a child chooses a new
parent from a list of possible parents. The merging of
data at parent nodes works well in TinyDB, which
allows the user to query the sensor network using SQL-
style statements. The nature of many aggregate query
types allows parent nodes to send only relevant data
upstream, rather than send all data from its sub-tree. This
dramatically reduces number of packets sent for each
query response period, or epoch.

TinyDB embedded requirements include an
interface for new aggregate queries that the new
aggregate must implement. The embedded part of
TinyDB is written in nesC[17], using the TinyOS
operating system [15]. Our version of resilient event
detection is implemented as several new aggregate query

mailto:herbola2@cc.wwu.edu
mailto:lamarre@enseirb.fr
mailto:nbulusu@cs.pdx.edu
mailto:sjha@cse.unsw.edu.au

2

types in TinyDB. They use the same TAG routing
protocol, but each new aggregate chooses its own data
structure(s) and methods for merging new data with the
old. Our work builds on the existing TinyDB/TAG
framework by providing aggregate query types that
deliver confidence values in addition to data readings.

Corroborative Aggregation Protocol (CAP): This
paper’s approach to resilient event detection is inspired
by Byzantine fault tolerance. The Corroborative
Aggregation Protocol[5] explores similar ideas. When an
event occurs in a sensor network, it is likely that more
than one node will detect its occurrence. If several reports
generated from the same event are collected, they should
reinforce or repudiate the reliability of the report. In [5],
the authors describe CAP, in which they “simply quantify
credibility of the aggregated report by the number of
corroborative individual sensor reports that are fused in
the aggregated report”.

However, their results were achieved using the ns-2
simulator [18], which does not fully encompass the
limitations of real wireless sensor devices. CAP requires
more mathematical capability than typical motes have.
(eg., floating-point capability, large memory). Moreover,
the simplified event model used in [5] assumes that a
node only generates a report that represents whether or
not an event occurs. Our TinyDB based implementation
requires a more complex event model.

In TinyDB, the query results are usually one
integer value per epoch, which represents the state of all
or part of the network. We attempt to expand the ideas
from [5] to provide reliable query results with a
quantified confidence value, in TinyDB. Our work is a
valuable extension of both [5] and [6], wherein the ideas
behind CAP are altered to fit into an existing piece of
usable software, TinyDB.

3. ResTAG Design
3.1 Event and data models
The ResTAG event model is consistent with TinyDB.
Sensor data is gathered upon user request, and is repeated
every epoch. The epoch length is also user specified. This
differs from the event model used in [5], where nodes
generate a data report in response to an event occurrence,
not upon user request. The data model used is also
inherited from TinyDB. For each aggregate query we
implemented, the result is the same data type as it would
be for the original version of the query, with an additional
confidence index. We implemented a resilient MAX,
ResMAX, which returns the same maximum as MAX, but
with a representative confidence value. The resilient
AVG, ResAVG, uses confidences computed in-network to
weight the sum as it is fused at the parent nodes. The
result of ResAVG is not necessarily the same as AVG, as
more weight is assigned to partial results with higher
confidences. A final confidence index is also produced.

3.2 ResTAG
ResTAG is the fruition of the ideas in [5], combined
with the usability and optimizations of TinyDB and
TinyAGgregation. It operates in the following

sequence of events. At the request of the user, a resilient
query is injected in the network. As TinyDB dictates, the
query is pushed down to the bottom of the aggregation
tree, the leaf nodes. When a leaf receives data from its
own sensor board, it sends the data to its parent. The
parent node collects its own data and data from each of
its children, in a dynamically allocated array structure. It
may do some calculations at each merge, depending on
the query type. Before the node sends its data upstream, it
calculates disputes and eliminates redundant data. It
sends reduced data up to its parent, repeating up the tree.

Disputes are generated in a probabilistic fashion,
similar to [5]. Since TinyDB offers no built-in
localization, motes are programmed with their x and y
coordinates. If the sensing area overlaps, then it is
determined whether the node agrees with the node in
question. If the node agrees, the value of the first node is
reinforced with a p-packet. If not, an n-packet may
be generated.

The calculation of p is discussed in section 4.1.
Once p is computed, an n-packet is generated with
probability p. The number of p-packets and n-
packets are accumulated, and the data value is
aggregated depending on query type. In ResMAX, the
maximum sensor reading is retained regardless of number
of p- or n-packets, and number of packets
generated in dispute of that maximum is accumulated as
it travels up the routing tree. In the ResAVG query, p-
and n-packets are used to weight the sum that is sent
up the tree with the count and packet counts.

Once the final calculation of disputes has occurred
at the sink, data is sent to the Java reader class associated
with the aggregate query type. The average is computed
from the sum and count. The p- and n-packet
counts of the ResMAX aggregate are converted into a
percentage value using the formula:

100

packetsnpacketsp

packetsp
CI

This value is reported to the user along with the data
value. At each aggregation point, the same formula is
used to compute the confidence of each node value in
ResAVG. The mean of the confidences of the values is
reported to the user.

4. ResTAG Implementation
4.1 Implementation Details
The embedded portion of the ResTAG implementation
is based on the process for adding new aggregate query
types that was built into TinyDB by its authors. The
first step in this process is to write the module file for the
aggregate, which implements or provides the Aggregate
interface, defined in Aggregate.nc. The provider of the
Aggregate interface must implement these commands:
init, update, merge, stateSize,
hasData, finalize and getProperties.

The init command is called at the beginning of
each epoch. In our implementation, init initializes the
counts to zero. If it is the first time, it attempts to allocate
memory for the first few child nodes. Memory allocation

3

is accomplished using TinyAlloc, which uses split-
phase implementations of both allocate and realloc.
When update is called, a node simply replaces its own
data with the new sensor data. In the ResMAX query, the
parent always keeps track of which child is the
maximum, or if it is the maximum. The merge
command is called when a node receives a data packet
from one of its child nodes. If there is not enough
memory allocated, the child is ignored for this epoch.
This is unlikely to occur after the first few epochs,
because the routing tree is mostly static.

Before a node sends data to its parent node,
stateSize and hasData are called. The
stateSize command returns the size of the data
structure sent upstream. The hasData command
returns a true if the node has data from itself or a child,
false otherwise. However, before hasData is finished, it
calls the helper function doPackets, which does the
majority of the computation in both aggregates. The
computePackets function is responsible for
computing all relevant packets for each of the children of
this node. The helper function doPackets computes a
dispute or reinforcement for one node by a second node,
which are passed as parameters.

 The actual p value is computed by
computeProbability, which utilizes fixed-point
decimal techniques that we have implemented in the
header file ResFP.h. ResFP.h contains functions for
multiplication and division, as well as a square root
function based on the algorithm described in [19]. This
algorithm uses a technique similar to long division to
generate the square root of a fixed-point number bit-by-
bit. The procedure is explained in detail in [19].

Figure 2a: Area of a circular segment

 Figure 2b: Overlapping sensing area
Computing arcos through either a lookup table or a Taylor
series approximation was too precise for our needs. Instead
we use this approximation for the area of a circular
segment:

c

h
chS

23

2 3

This is accurate to within 0.1% for 1500 , and
0.8% for 180150 [20], where h is the height of
the circular segment above the chord, and c is the length

of the chord partitioning the circular segment (see fig.
2a). The total overlap area then is SB 2 . The chord
length is:

 hRhc 22

where R is the radius of the circle, or sensing area.

The height of the segment, where d is the distance
between two nodes (see fig. 2b) is:

d
R

h
2

The approximation we used to calculate p is:

2

3

23

2
2

R

c

h
hc

A

B
p

 .

The variables h, d, and c are computed in 32-bit fixed-
point format, with 16 bits each for the fraction and whole
parts. The final result is converted into an integer
percentage value between 0 and 100.

Finally, the TinyDB where clause has been
modified to allow its use with resilient aggregates. The
TinyDB approach to where is to evaluate the condition
at each node, and if it is not met, to immediately discard
it. If the condition is not met at a child node, the parent
does not receive data from that child. Consequently a
node whose data does not meet the where condition will
not generate disputes for any nodes who do send reports.
An example of a query that might create this problem:
SELECT ResMAX (light) FROM sensors
WHERE temp > 50. As this work is limited to
resilience on the request of only one sort of measurement,
the where condition will only be on this measurement.
The modification makes each node send its measured
value regardless of the where condition. This value is
checked at the parent, used to compute reinforcement or
disputes, and eventually thrown (managed at aggregation
time and has to be implemented in new aggregates).

4.2 Limitations
The use of dynamic memory allocation (inherent to
TinyOS programs) introduces the possibility that a node
could miss child data while allocating memory to store it.
This is a drawback to using split-phase memory
allocation routines. TinyDB itself allows the user to
specify a wide range of epoch lengths, although the
shorter periods often bring with them more data loss. In
our experiences with TinyDB in the TOSSIM simulator,
we do not receive data from every node every epoch.
Depending on network size and epoch length, anywhere
from 30% to 95% of nodes send data in a given epoch.

5. Results and Analysis
5.1 Goals, Metrics and Methodology
The purpose of these experiments is to determine the
effectiveness and reliability of ResTAG. For different
failure modalities, what percentage of the network can be
faulty without generating false reports with a high
confidence index? What other factors affect the
performance of ResTAG? Our experiments attempt to

R

θ

d

AA B

R
 θ

 S h

c

4

answer these questions and illustrate typical results when
using ResTAG in a network with faulty nodes.

We explore the following metrics for the results of
ResMAX and ResAVG queries as a function of the
percentage of faulty nodes in the network:

1. Percent results with high confidence: Any
result having a confidence greater than 50%.
2. Percent false results with high confidence: A high-
confidence result where the reported value, is not equal
to the actual data value within a given threshold. In our
experiments we set the threshold to be 8% for ResMAX
and the data used.
3. Percent true results with low confidence: A result
within a given threshold of the actual maximum or
average, but has confidence less than or equal to 50%.

Three different failure modalities were studied:
(1) Correlated Low Failures: The faulty nodes generated
the same low value, which was 0.
(2) Correlated High Failures: The faulty nodes generated
the same high value, which was 50.
(3) Uncorrelated Failures: Each faulty node was
randomly assigned a failure value between the low and
high failure values (0 and 50), inclusive.

For all experiments, we used the TOSSIM
simulator [16], which can run TinyDB code over a
simulated network of sensors. It does not model power
consumption, but it does accurately represent the
processor and memory limitations of mica motes.
TOSSIM emulates the mica network stack at a low level,
and allows the user to specify a lossy radio model using a
text file that represents a directed graph. In our
experiments, we did not introduce bit error due to a loss
prone network. Instead we used the directed graph file to
define a radio range, in which a node can hear perfectly
up to twelve of its neighbors (see Fig. 3). Using
TOSSIM, we simulated 101 nodes including the sink.
The node layout is displayed in Fig. 3. The sink is
directly on top of node 21 and does not generate data.
The locations of the nodes were calculated using the
nodeids, and were based on Fig. 3.

Each experimental run followed these steps:
(i) The query was injected into the network:
SELECT ResMAX(TEST) FROM sensors
epoch duration 4096
SELECT ResAVG(TEST) FROM sensors
epoch duration 4096
(ii) In increments of 10%, from 0% to 50%, a list of
faulty nodes was randomly generated. (iii) The data file
containing the simulated sensor data. (iv) Repeat step iii
using the correlated high failure value, and uncorrelated
failure values.
5.2 Results
5.2.1 Total High Confidence Results
Figure 5 plots the percent results received that had a
confidence greater than 50% vs. percent faulty nodes.
The pattern is very different for the three failure
modalities, but this is intuitively sensible.
ResMAX: When the failure nodes report a low value, it
decreases the confidence of the “honest” nearby reports.
In Fig. 5a there is a steady decrease in high confidence
reports, which is likely due to this phenomenon. When

failure nodes report a high value, the value reported as
the maximum may be disputed by the surrounding

Figure 3: Node layout
with radio range shown in
pink, for node 35.

Figure 4: Node layout
with sensing range. The
overlapping sensing
ranges of nodes 44
(green) and 55 (red) are
shown.

 Percent Results with High Confidence vs. Percent Faulty
Nodes

Correlated Failure Value = 0

50

60

70

80

90

100

0 10 20 30 40 50

Percent Faulty Nodes

P
er

ce
n

t
R

es
u

lt
s

w
it

h
 C

o
n

fi
d

en
ce

>

 5
0

% ResMax

ResAvg

5(a)

5(b)

5(c)
Figure 5: % results with high confidence vs. % faulty
nodes

(a) correlated failure value = 0
(b) correlated failure value = 50

 (c) uncorrelated failure values
uncompromised nodes. In Fig.5b, the percentage of high-
confidence reports decreases until the percentage of
faulty nodes reaches 30%. This is likely because of the
high level of data loss per epoch, which means that the
smaller percentage of nodes reporting 50 will be reported
more frequently, with low confidence, until that point.
After 30% faulty nodes, the percentage of high-

 Percent Results with High Confidence vs. Percent Faulty
Nodes

Uncorrelated Failure Value

50

60

70

80

90

100

0 10 20 30 40 50

Percent Faulty Nodes

Percent Results with Confidence

> 50% ResMax

ResAvg

 Percent Results with High Confidence vs. Percent Faulty
Nodes

Correlated Failure Value = 50

50

60

70

80

90

100

0 10 20 30 40 50

Percent Faulty Nodes

> 50%
ResMax

ResAvg

5

confidence results increases, because faulty nodes
corroborate each other, and uncompromised nodes are
less likely to dispute. For random (uncorrelated) failure
values, there is a similar inflection point at 30%, shown
in Fig. 5c. Because faulty nodes may not corroborate
each other, and uncompromised nodes are likely to be
disputed, the percentage of high-confidence reports
decreases as the percentage of faulty nodes increases.
ResAVG: Contrary to ResMAX, Fig. 5 shows that the

number of high confidence results decreases when the

number of faulty nodes increases, regardless of the
correlation between faulty values. A higher decrease is
noticed after there are 30% faulty nodes, which is the
theoretical limit after which the number of disputes
should logically decrease significantly the confidence.
However, there is still a significant percentage of high
confidence results. This is because each result is
generated by an average of 40% of nodes, which lowers
number of disputes.

Percent False Results with High Confidence vs. Percent Faulty
Nodes

Correlated Failure Value = 0

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Percent Faulty Nodes

P
er

ce
n

t
F

al
se

 R
es

u
lt

s
w

it
h

C

o
n

fi
d

en
ce

 >
 5

0%

ResMax

ResAvg

Actual Maximum: 25
Threshhold of Agreement:
8%

6a.

Percent True Results with Low Confidence vs. Percent Faulty
Nodes

Correlated Failure Value = 0

0

5

10

15

20

0 10 20 30 40 50

Percent Faulty Nodes

P
er

ce
n

t
T

ru
e

R
es

u
lt

s
w

it
h

C

o
n

fi
d

en
ce

 <
=

 5
0%

ResMax

ResAvg

Actual Maximum: 25
Threshhold of Agreement:
8%

7a.

Percent False Results with High Confidence vs. Percent Faulty
Nodes

Correlated Failure Value = 50

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Percent Faulty Nodes

P
er

ce
n

t
F

al
se

 R
es

u
lt

s
w

it
h

C

o
n

fi
d

en
ce

 >
 5

0%

ResMax

ResAvg

Actual Maximum: 25
Threshhold of Agreement:
8%

6b.

 Percent True Results with Low Confidence vs. Percent Faulty
Nodes

Correlated Failure Value = 50

0

5

10

15

20

0 10 20 30 40 50

Percent Faulty Nodes

P
er

ce
n

t
T

ru
e

R
es

u
lt

s
w

it
h

C

o
n

fi
d

en
ce

 <
=

 5
0%

ResMax

ResAvg

Actual Maximum: 25
Threshhold of Agreement:
8%

7b.

 Percent False Results with High Confidence vs. Percent Faulty
Nodes

Uncorrelated Failure Values

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Percent Faulty Nodes

P
er

ce
n

t
F

al
se

 R
es

u
lt

s
w

it
h

C

o
n

fi
d

en
ce

 >
 5

0%

ResMax

ResAvg

Actual Maximum: 25
Threshhold of Agreement:
8%

6c. Figure 6: Percent false results
with high confidence vs. percent
faulty nodes with

(a) CFV = 0
(b) CFV = 50
(c) uncorrelated failure

 Percent True Results with Low Confidence vs. Percent Faulty
Nodes

Uncorrelated Failure Values

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Percent Faulty Nodes

P
er

ce
n

t
T

ru
e

R
es

u
lt

s
w

it
h

C

o
n

fi
d

en
ce

 <
=

 5
0%

ResMax

ResAvg

Actual Maximum: 25
Threshhold of Agreement:
8%

7c Figure 7: Percent true results
with low confidence vs. percent
faulty nodes with

(a) CFV = 0
(b) CFV = 50
(c) uncorrelated failure

6

5.2.2 Further Results
The second two metrics, which are shown in figures 6 and
7, represent the ability of ResTAG to detect faulty nodes in
a network of nodes which all detect the same event. We
would like those numbers to remain reasonably low
beneath some threshold of percentage of faulty nodes.

For the second metric studied, percentage of false
reports with high confidence, the situation of most concern
is when faulty nodes are corroborated (only at a high value
for ResMAX), such as in Fig. 7a. In this “worst-case”
scenario, the percent of false reports with high confidence
remains reasonably low, below one-third, for up to 20%
faulty nodes. With uncorrelated failures, similar results
were achieved at a threshold of 30% faulty nodes.

In the last three figures, we can see the second type
of failure in ResTAG: true reports with a low confidence.
In this scenario, we are concerned about the presence of
low reported failures reducing the confidence of the true
report. Except for ResAVG with uncorrelated failures, we
observe that this value remains below 5% for up to 50%
faulty nodes, for all three failure modalities.

Although Figs, 6b and 7a for ResMAX and Figs. 6b
and 6c for ResAVG show the extreme pathological cases of
corroborated faulty nodes reducing the confidence of the
true report. In our experiment using uncorrelated failure
values, false results were detected for a higher percentage
of faulty nodes than with a correlated failure value, and
true reports were reported with high confidence for a higher
percentage of faulty nodes than with a correlated failure
value. These results suggest that ResTAG is more resistant
when values of faulty nodes are not corroborated.

6. Conclusions and Future Work
We discussed the motivation, design, implementation and
evaluation of ResTAG, which provides fault-tolerant
aggregate queries in the popular, user-friendly TinyDB
middleware. These new query types return not only data
values, but a quantified measure of confidence in those
values. If a sensor becomes mis-calibrated or physically
compromised, the fault-tolerant queries use the redundancy
in the network to reduce the confidence in any report from
that sensor. Varying properties such as the network density
and epoch length of queries may have a significant impact
on the results. Further research could investigate utilizing
data reports over time to generate confidence in particular
nodes. In conclusion, ResTAG shows promise as a
method for providing confidence in the results of TinyDB.
We intend to implement several additional varieties of
resilient aggregate queries and explore its use and
effectiveness in real sensing applications.

Acknowledgements
Nirupama Bulusu initiated research on resilient event
detection while she was at National ICT Australia Limited
(NICTA) and continued it at Oregon Health and Sciences
University (OHSU). Angelika Herbold was supported by
the NSF CRA-W Distributed Mentor Project.

References

[1] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J.
Anderson. “Wireless Sensor Networks for Habitat
Monitoring.” ACM WSNA'02, 2002.

[2] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L.
Luo, R. Stoleru, T. Yan, L. Gu. Energy-Efficient Surveillance
System Using Wireless Sensor Networks. Mobisys, 2004.

[3] D. Malan, T. Fulford-Jones, M. Welsh and S. Moulton.
“CodeBlue: An Ad Hoc Sensor Network Infrastructure for
Emergency Medical Care.” Intl. Workshop on Wearable and
Implantable Body Sensor Networks, April 2004.

[4] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava.
“Energy Aware Wireless Sensor Networks”. IEEE Signal
Processing 19, 2, 40--50.

[5] W. Yuan, S. V. Krishnamurthy, and S. K. Tripathi.
“Improving the Reliability of Event Reports in Wireless
Sensor Networks”. ISCC, 2004.

[6] S. Madden, M. J. Franklin, and J. M. Hellerstein. TAG: a
Tiny AGgregation Service for Ad-Hoc Sensor Networks.
OSDI, December 2002.

[9] D. Estrin, R. Govindan, J. S. Heidemann,
 S. Kumar. “Next Century Challenges: Scalable Coordination

in Sensor Networks.” MOBICOM 1999: 263-270
[15] TinyOS – “http://www.TinyOS.net”
[16] P. Levis, N. Lee, M. Welsh and D. Culler. TOSSIM:

Accurate and Scalable Simulation of Entire TinyOS
Applications. ACM SenSys 2003.

 [17] D. Gay, P. Levis and R.von Behren. “The nesC Language: A
Holistic Approach to Networked Embedded Systems.”

[18] The Network Simulator - ns-2
“http://www.isi.edu/nsnam/ns/”.

[19] K. Turkowski. Fixed Point Square Root. Media
Technologies: Computer Graphics, Advanced Technology
Group, Apple Computer, Inc., October 1994

[20] Harris, J. W. and Stocker, H. "Segment of a Circle." §3.8.6
in Handbook of Mathematics and Computational Science.
New York: Springer-Verlag, pp. 92-93, 1998.

http://www.amazon.com/exec/obidos/ASIN/0387947469/weisstein-20

