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Abstract
As wireless sensor networks become widely used, the 
need to provide  fault tolerant, user-friendly middleware 
for detecting sensed events increases. Our contribution is 
the motivation, design, implementation and evaluation of 
ResTAG, which provides fault-tolerant aggregate 
queries in the popular, user-friendly TinyDB
middleware.  If a sensor becomes mis-calibrated or 
physically compromised, the fault-tolerant queries use 
the network redundancy to reduce the confidence in any 
report from that sensor. Queries implemented using 
ResTAG detect faulty nodes within a predictable 
threshold that depends on both the percentage and 
failure type of faulty nodes.

1.  Introduction
Wireless sensor networks are being deployed for diverse 
sensing applications[1][2][3]. Sensor networks present 
unique challenges: individual nodes are resource-
restricted, radio communication between nodes is loss 
prone and a major energy consumer[4], and the networks 
are tightly coupled to the physical environment. A sensor 
network must run unattended for long periods of time. 
Moreover, users are unlikely to be systems programmers, 
motivating robust sensor middleware that enables user-
friendly control and data gathering from a sensor 
network.

In this paper, we address the important challenge of 
making sensor middleware fault-tolerant. Sensor 
networks are inherently insecure, and they can easily be 
snooped or spoofed by introduced malicious nodes.  
Security in sensor networks is difficult, since security 
protocols often use extra memory , processor time, and 
can require larger network packets. Secure 
communication protocols for sensor networks which 
provide for authentication, data confidentiality and 
message integrity do not address the complementary 
problem of resilience to corrupted sensor data, generated 
by failed sensors.

A possible cause of failures, non-malicious 
physical sensor error or mis-calibration, is not managed 
at all by security protocols. This is a very likely failure 
scenario in a low-security application such as a wildlife 
monitoring system. In this case the sensor board on a 
mote becomes physically compromised. An example of 
this would be dust obscuring the light sensor on a mote, 
causing it to read lower than expected light levels.

In light of the likelihood and importance of non-
malicious failures, and the resource-expensive and

incomplete nature of current security protocols, we find 
that a more comprehensive solution is data-centric fault
tolerance. Instead of securing each node, we attempt to 
exploit redundant node distribution in the network to 
provide a confidence value to node reports. Although 
similar ideas have been studied previously in [5] et al, we 
have chosen to provide a practical robust implementation 
of fault tolerance in the popular TinyDB middleware[6]. 

The TinyDB middleware allows the user to gather 
data from the network as if it were a relational database. 
The average user does not need to write embedded code, 
and can use simple SQL-style language to collect sensor 
data over time. An implementation of resilient event 
detection in TinyDB will allow those less technical users 
to obtain a measure of the reliability of query responses.  
This implementation, which we call ResTAG, is the 
major contribution of this work, and the purpose of this 
paper is to explicate it and demonstrate its effectiveness.

2.  Related Work
A simple approach to conserve energy and bandwidth in 
sensor networks is to fuse data packets together as they 
move from source to sink, and to eliminate redundant 
information whenever possible. This data fusion is 
known as in-network aggregation. We  review it here.

Tiny Aggregation (TAG): One of the most widely used 
aggregation protocols is TAG, or TinyAGgregation,
[6], which is implemented as the core of TinyDB. In 
TAG, packets are routed to the sink in a tree structure. 
Sensor data is sent to parent nodes, who aggregate the 
data with their own, and that of their other children. The 
tree structure remains in place unless a parent node 
becomes unavailable, wherein a child chooses a new 
parent from a list of possible parents. The merging of 
data at parent nodes works well in TinyDB, which 
allows the user to query the sensor network using SQL-
style statements. The nature of many aggregate query 
types allows parent nodes to send only relevant data 
upstream, rather than send all data from its sub-tree. This 
dramatically reduces number of packets sent for each 
query response period, or epoch. 

TinyDB embedded requirements include an 
interface for new aggregate queries that the new 
aggregate must implement. The embedded part of 
TinyDB is written in nesC[17], using the TinyOS 
operating system [15]. Our version of resilient event 
detection is implemented as several new aggregate query 
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types in TinyDB. They use the same TAG routing 
protocol, but each new aggregate chooses its own data 
structure(s) and methods for merging new data with the 
old. Our work builds on the existing TinyDB/TAG
framework by providing aggregate query types that 
deliver confidence values in addition to data readings.

Corroborative Aggregation Protocol (CAP): This 
paper’s approach to resilient event detection is inspired 
by Byzantine fault tolerance. The Corroborative 
Aggregation Protocol[5] explores similar ideas. When an 
event occurs in a sensor network, it is likely that more 
than one node will detect its occurrence. If several reports 
generated from the same event are collected, they should 
reinforce or repudiate the reliability of the report. In [5], 
the authors describe CAP, in which they “simply quantify 
credibility of the aggregated report by the number of 
corroborative individual sensor reports that are fused in 
the aggregated report”.

However, their results were achieved using the ns-2 
simulator [18], which does not fully encompass the 
limitations of real wireless sensor devices. CAP requires
more mathematical capability than typical motes have. 
(eg., floating-point capability, large memory). Moreover, 
the simplified event model used in [5] assumes that a 
node only generates a report that represents whether or 
not an event occurs. Our TinyDB based implementation 
requires a more complex event model. 

In TinyDB, the query results are usually one 
integer value per epoch, which represents the state of all 
or part of the network. We attempt to expand the ideas 
from [5] to provide reliable query results with a 
quantified confidence value, in TinyDB. Our work is a 
valuable extension of both [5] and [6], wherein the ideas 
behind CAP are altered to fit into an existing piece of 
usable software, TinyDB.

3.  ResTAG Design
3.1 Event and data models
The ResTAG event model is consistent with TinyDB. 
Sensor data is gathered upon user request, and is repeated 
every epoch. The epoch length is also user specified. This 
differs from the event model used in [5], where nodes 
generate a data report in response to an event occurrence, 
not upon user request. The data model used is also 
inherited from TinyDB. For each aggregate query we 
implemented, the result is the same data type as it would 
be for the original version of the query, with an additional 
confidence index. We implemented a resilient MAX, 
ResMAX, which returns the same maximum as MAX, but 
with a representative confidence value. The resilient 
AVG, ResAVG, uses confidences computed in-network to 
weight the sum as it is fused at the parent nodes. The 
result of ResAVG is not necessarily the same as AVG, as 
more weight is assigned to partial results with higher 
confidences. A final confidence index is also produced.

3.2 ResTAG
ResTAG is the fruition of the ideas in [5], combined 
with the usability and optimizations of TinyDB and 
TinyAGgregation. It operates in the following 

sequence of events. At the request of the user, a resilient 
query is injected in the network. As TinyDB dictates, the 
query is pushed down to the bottom of the aggregation 
tree, the leaf nodes. When a leaf receives data from its 
own sensor board, it sends the data to its parent. The 
parent node collects its own data and data from each of 
its children, in a dynamically allocated array structure. It 
may do some calculations at each merge, depending on 
the query type. Before the node sends its data upstream, it 
calculates disputes and eliminates redundant data. It 
sends reduced data up to its parent, repeating up the tree.

Disputes are generated in a probabilistic fashion, 
similar to [5]. Since TinyDB offers no built-in 
localization, motes are programmed with their x and y 
coordinates.  If the sensing area overlaps, then it is 
determined whether the node agrees with the node in 
question. If the node agrees, the value of the first node is 
reinforced with a p-packet. If not, an n-packet may 
be generated.

The calculation of p is discussed in section 4.1. 
Once p is computed, an n-packet is generated with 
probability p. The number of p-packets and n-
packets are accumulated, and the data value is 
aggregated depending on query type. In ResMAX, the 
maximum sensor reading is retained regardless of number 
of p- or n-packets, and number of packets 
generated in dispute of that maximum is accumulated as 
it travels up the routing tree. In the ResAVG query, p-
and n-packets are used to weight the sum that is sent 
up the tree with the count and packet counts.

Once the final calculation of disputes has occurred 
at the sink, data is sent to the Java reader class associated 
with the aggregate query type. The average is computed 
from the sum and count. The p- and n-packet
counts of the ResMAX aggregate are converted into a 
percentage value using the formula:
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This value is reported to the user along with the data 
value. At each aggregation point, the same formula is 
used to compute the confidence of each node value in 
ResAVG. The mean of the confidences of the values is 
reported to the user.

4.  ResTAG Implementation
4.1 Implementation Details
The embedded portion of the ResTAG implementation 
is based on the process for adding new aggregate query 
types that was built into TinyDB by its authors. The 
first step in this process is to write the module file for the 
aggregate, which implements or provides the Aggregate
interface, defined in Aggregate.nc. The provider of the 
Aggregate interface must implement these commands: 
init, update, merge, stateSize, 
hasData, finalize and getProperties.

The init command is called at the beginning of 
each epoch. In our implementation, init initializes the 
counts to zero. If it is the first time, it attempts to allocate 
memory for the first few child nodes. Memory allocation 
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is accomplished using TinyAlloc, which uses split-
phase implementations of both allocate and realloc.
When update is called, a node simply replaces its own 
data with the new sensor data. In the ResMAX query, the 
parent always keeps track of which child is the 
maximum, or if it is the maximum. The merge
command is called when a node receives a data packet 
from one of its child nodes. If there is not enough 
memory allocated, the child is ignored for this epoch. 
This is unlikely to occur after the first few epochs, 
because the routing tree is mostly static. 

Before a node sends data to its parent node, 
stateSize and hasData are called. The 
stateSize command returns the size of the data 
structure sent upstream. The hasData command 
returns a true if the node has data from itself or a child, 
false otherwise. However, before hasData is finished, it 
calls the helper function doPackets, which does the 
majority of the computation in both aggregates. The 
computePackets function is responsible for 
computing all relevant packets for each of the children of 
this node. The helper function doPackets computes a 
dispute or reinforcement for one node by a second node, 
which are passed as parameters.

   The actual p value is computed by
computeProbability, which utilizes fixed-point 
decimal techniques that we have implemented in the 
header file ResFP.h. ResFP.h contains functions for 
multiplication and division, as well as a square root 
function based on the algorithm described in [19]. This 
algorithm uses a technique similar to long division to 
generate the square root of a fixed-point number bit-by-
bit. The procedure is explained in detail in [19].

Figure 2a: Area of a circular segment

     Figure 2b: Overlapping sensing area 
Computing arcos through either a lookup table or a Taylor 
series approximation was too precise for our needs. Instead 
we use this approximation for the area of a circular 
segment:
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This is accurate to within 0.1% for  1500  , and 
0.8% for  180150   [20], where h is the height of 
the circular segment above the chord, and c is the length 

of the chord partitioning the circular segment (see fig. 
2a). The total overlap area then is SB 2 . The chord 
length is:

 hRhc  22

where R is the radius of the circle, or sensing area. 

The height of the segment, where d is the distance 
between two nodes (see fig. 2b) is:
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The variables h, d, and c are computed in 32-bit fixed-
point format, with 16 bits each for the fraction and whole 
parts. The final result is converted into an integer 
percentage value between 0 and 100.

Finally, the TinyDB where clause has been 
modified to allow its use with resilient aggregates. The 
TinyDB approach to where is to evaluate the condition 
at each node, and if it is not met, to immediately discard 
it. If the condition is not met at a child node, the parent 
does not receive data from that child. Consequently a 
node whose data does not meet the where condition will 
not generate disputes for any nodes who do send reports. 
An example of a query that might create this problem: 
SELECT ResMAX (light) FROM sensors 
WHERE temp > 50. As this work is limited to 
resilience on the request of only one sort of measurement, 
the where condition will only be on this measurement. 
The modification makes each node send its measured 
value regardless of the where condition. This value is 
checked at the parent, used to compute reinforcement or 
disputes, and eventually thrown (managed at aggregation 
time and has to be implemented in new aggregates).

4.2 Limitations
The use of dynamic memory allocation (inherent to 
TinyOS programs) introduces the possibility that a node 
could miss child data while allocating memory to store it. 
This is a drawback to using split-phase memory 
allocation routines. TinyDB itself allows the user to 
specify a wide range of epoch lengths, although the 
shorter periods often bring with them more data loss.  In 
our experiences with TinyDB in the TOSSIM simulator, 
we do not receive data from every node every epoch. 
Depending on network size and epoch length, anywhere 
from 30% to 95% of nodes send data in a given epoch.  

5.  Results and Analysis 
5.1 Goals, Metrics and Methodology
The purpose of these experiments is to determine the 
effectiveness and reliability of ResTAG.  For different 
failure modalities, what percentage of the network can be 
faulty without generating false reports with a high 
confidence index? What other factors affect the 
performance of ResTAG? Our experiments attempt to 
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answer these questions and illustrate typical results when 
using ResTAG in a network with faulty nodes. 

We explore the following metrics for the results of 
ResMAX and ResAVG queries as a function of the 
percentage of faulty nodes in the network:

1. Percent results with high confidence: Any 
result having a confidence greater than 50%.
2.  Percent false results with high confidence: A high-
confidence result where the reported value, is not equal
to the actual data value within a given threshold. In our 
experiments we set the threshold to be 8% for ResMAX
and the data used.
3. Percent true results with low confidence: A result 
within a given threshold of the actual maximum or 
average, but has confidence less than or equal to 50%.

Three different failure modalities were studied: 
(1) Correlated Low Failures: The faulty nodes generated 
the same low value, which was 0. 
(2) Correlated High Failures: The faulty nodes generated 
the same high value, which was 50. 
(3) Uncorrelated Failures: Each faulty node was 
randomly assigned a failure value between the low and 
high failure values (0 and 50), inclusive. 

For all experiments, we used the TOSSIM
simulator [16], which can run TinyDB code over a 
simulated network of sensors. It does not model power 
consumption, but it does accurately represent the 
processor and memory limitations of mica motes. 
TOSSIM emulates the mica network stack at a low level, 
and allows the user to specify a lossy radio model using a 
text file that represents a directed graph. In our 
experiments, we did not introduce bit error due to a loss 
prone network. Instead we used the directed graph file to 
define a radio range, in which a node can hear perfectly 
up to twelve of its neighbors (see Fig. 3). Using 
TOSSIM, we simulated 101 nodes including the sink. 
The node layout is displayed in Fig. 3. The sink is 
directly on top of node 21 and does not generate data.  
The locations of the nodes were calculated using the 
nodeids, and were based on Fig. 3.

Each experimental run followed these steps: 
(i) The query was injected into the network: 
SELECT ResMAX(TEST) FROM sensors 
epoch duration 4096 
SELECT ResAVG(TEST) FROM sensors 
epoch duration 4096
(ii) In increments of 10%, from 0% to 50%, a list of 
faulty nodes was randomly generated. (iii) The data file 
containing the simulated sensor data. (iv) Repeat step iii
using the correlated high failure value, and uncorrelated 
failure values.   
5.2 Results
5.2.1 Total High Confidence Results
Figure 5 plots the percent results received that had a 
confidence greater than 50% vs. percent faulty nodes.  
The pattern is very different for the three failure 
modalities, but this is intuitively sensible.
ResMAX: When the failure nodes report a low value, it 
decreases the confidence of the “honest” nearby reports. 
In Fig. 5a there is a steady decrease in high confidence 
reports, which is likely due to this phenomenon.  When

failure nodes report a high value, the value reported as 
the maximum may be disputed by the surrounding

Figure 3: Node layout 
with radio range shown in 
pink, for node 35.

Figure 4: Node layout 
with sensing range. The 
overlapping sensing 
ranges of nodes 44 
(green) and 55 (red) are 
shown.
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       (c) uncorrelated failure values
uncompromised nodes.  In Fig.5b, the percentage of high-
confidence reports decreases until the percentage of 
faulty nodes reaches 30%. This is likely because of the 
high level of data loss per epoch, which means that the 
smaller percentage of nodes reporting 50 will be reported 
more frequently, with low confidence, until that point. 
After 30% faulty nodes, the percentage of high-
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confidence results increases, because faulty nodes 
corroborate each other, and uncompromised nodes are 
less likely to dispute. For random (uncorrelated) failure 
values, there is a similar inflection point at 30%, shown 
in Fig. 5c. Because faulty nodes may not corroborate 
each other, and uncompromised nodes are likely to be 
disputed, the percentage of high-confidence reports 
decreases as the percentage of faulty nodes increases.
ResAVG: Contrary to ResMAX, Fig. 5 shows that the 

number of high confidence results decreases when the 

number of faulty nodes increases, regardless of the 
correlation between faulty values. A higher decrease is
noticed after there are 30% faulty nodes, which is the 
theoretical limit after which the number of disputes 
should logically decrease significantly the confidence. 
However, there is still a significant percentage of high 
confidence results. This is because each result is 
generated by an average of 40% of nodes, which lowers 
number of disputes.                                                                                                  
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faulty nodes with 

(a) CFV = 0
(b) CFV = 50
(c) uncorrelated failure 
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5.2.2 Further Results
The second two metrics, which are shown in figures 6 and 
7, represent the ability of ResTAG to detect faulty nodes in 
a network of nodes which all detect the same event.  We 
would like those numbers to remain reasonably low 
beneath some threshold of percentage of faulty nodes. 

For the second metric studied, percentage of false 
reports with high confidence, the situation of most concern 
is when faulty nodes are corroborated (only at a high value 
for ResMAX), such as in Fig. 7a. In this “worst-case” 
scenario, the percent of false reports with high confidence 
remains reasonably low, below one-third, for up to 20% 
faulty nodes. With uncorrelated failures, similar results 
were achieved at a threshold of 30% faulty nodes.

In the last three figures, we can see the second type 
of failure in ResTAG: true reports with a low confidence. 
In this scenario, we are concerned about the presence of 
low reported failures reducing the confidence of the true 
report. Except for ResAVG with uncorrelated failures, we 
observe that this value remains below 5% for up to 50% 
faulty nodes, for all three failure modalities. 

Although Figs, 6b and 7a for ResMAX and Figs. 6b 
and 6c for ResAVG show the extreme pathological cases of 
corroborated faulty nodes reducing the confidence of the 
true report. In our experiment using uncorrelated failure 
values, false results were detected for a higher percentage 
of faulty nodes than with a correlated failure value, and 
true reports were reported with high confidence for a higher 
percentage of faulty nodes than with a correlated failure 
value. These results suggest that ResTAG is more resistant 
when values of faulty nodes are not corroborated.

6. Conclusions and Future Work
We discussed the motivation, design, implementation and 
evaluation of ResTAG, which provides fault-tolerant 
aggregate queries in the popular, user-friendly TinyDB
middleware.  These new query types return not only data 
values, but a quantified measure of confidence in those 
values. If a sensor becomes mis-calibrated or physically 
compromised, the fault-tolerant queries use the redundancy 
in the network to reduce the confidence in any report from 
that sensor. Varying properties such as the network density 
and epoch length of queries may have a significant impact 
on the results. Further research could investigate utilizing 
data reports over time to generate confidence in particular 
nodes. In conclusion, ResTAG shows promise as a 
method for providing confidence in the results of TinyDB. 
We intend to implement several additional varieties of 
resilient aggregate queries and explore its use and 
effectiveness in real sensing applications.
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