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Abstract—We propose and evaluate RIDA, a novel robust information-driven data compression architecture for distributed
wireless sensor networks, allowing it to conserve energy and bandwidth. The key idea is to determine the data correlation among
a group of sensors based on the values of the data itself to significantly improve compression performance. Hence, this approach
moves beyond traditional data compression schemes that rely on spatial data correlation. A logical mapping approach assigns
virtual indices to nodes based on the data content, which enables simple implementation of data transformation on resource-
constrained nodes without any other information. The logical mapping approach also adapts particularly well to irregular sensor
network topologies. We evaluate our architecture with both Discrete Cosine Transform (DCT) and Discrete Wavelet Transform
(DWT) on publicly available real-world data sets. Our experiments on both simulation and real data show that 30% of energy
and 80-95% of the bandwidth can be saved for typical multi-hop data networks. Moreover, the original data can be retrieved
after decompression with a low error of about 3%. In particular, for one state-of-the-art distributed data compression algorithm
for sensor networks [1], we show that the compression ratio is doubled by using logical mapping while maintaining comparable
mean square error. Furthermore, we also propose a mechanism to detect and classify missing or faulty nodes, showing accuracy

and recall of 95% when half of the nodes in the network are missing or faulty.

Index Terms—Distributed cosine transform, wavelet transform, logical mapping, robust compression architecture

1 INTRODUCTION

With the continued evolution of sensor networking
hardware, the ability to deploy large numbers of
sensors is becoming possible [2]. Typically, sensor
networks are deployed to gather environmental in-
formation with the sensors cooperating to forward
data to a data sink. One of the main challenges with
such sensor networks is the need to minimize wireless
transmissions to conserve energy at sensors [3].

There are several basic ways to minimize the net-
work traffic — in-network storage, data aggregation,
and data compression. With in-network storage, sensors
store data locally and only transmit data in response
to a query [4], [5], [6], [7]. The network discards
old data to store newer data. With data aggregation,
different sensors aggregate their data (sum, average,
etc.) and only transmit the result to the sink [8],
[9], [10], [11], [12]. Some applications may need raw
data. For example, scientists might want to collect raw
temperature data in an area to model and forecast the
weather, as well as for archival. For such applications,
data compression is preferred [7], [13], [14], [15], [16],
[17].

Compression can be applied to the data stream
from a single sensor [17]. Good compression perfor-
mance can be obtained this way as a sensor typically
generates similar data over time. However, if the
compressed data from a single sensor is lost, either
during transmission, or due to the sensor node failing

thereafter, then all the data collected by that sensor
is lost. Moreover, high latency is incurred because
sensors must collect data for a reasonable time period
for effective compression. An alternative approach,
that is more resilient to transmission errors and has
a low latency, is to compress data across multiple
sensors in a cluster one snapshot at a time. At the
same time, all data needs to be transmitted at least
once to be collected. In this paper, we propose a dis-
tributed compression method based on this approach,
but featuring several improvements.

We propose a cluster-based and information-driven
architecture (RIDA)! for a wide range of compression
algorithms in real-time for scalar sensor data for a
popular class of network of sensors. The inspiration
behind RIDA is that a sensor network can be logically
viewed as an image wherein each sensor is a pixel,
and sensor readings are color amplitude values. With
this in mind, techniques from image compression can
be applied to distributed sensor networks. This is
challenging because data does not originate from a
single source but from multiple sensors. Moreover,
sensors may not be neatly placed in a grid layout
and location information may not be available. Finally,
wireless sensor networks experience high packet loss

1. This work is a significant extension of [18]. We present new
results comparing RIDA to a state-of-the-art distributed data com-
pression algorithm, Wagner-DWT[1]. We also present evaluations
on a new data set, and study energy consumption and its asymp-
totic bounds.



and failures, and the network topologies can become
quite dynamic. RIDA addresses all these issues. RIDA
makes two assumptions: the sensor network has a
cluster topology, and the variation in the sensed data
is relatively slow. These assumptions are typical in
most existing sensor network deployments [19], [20].
We explore the nature of data correlation in sensor
networks, moving beyond the notion of spatial cor-
relation. The key idea here is that the correlation
between two sensor data streams is based on the
value of the data itself rather than other factors, that
are irrelevant in some cases. By rearranging the data
from sensors within a cluster, we can exploit more
correlation in the data than by only using spatial
correlation. The key contributions of this paper are:

o We propose an information-driven architecture
(RIDA) with a logical mapping framework for
various compression and analysis algorithms. In
this approach, data reported by sensors is ob-
served over a short period of time. After that, the
data pattern can be used to assign sensors with
virtual indices such that the correlation of data is
utilized. Depending on the underlying compres-
sion algorithm, an appropriate logical assignment
can be used.

o We provide a resiliency mechanism in RIDA to
address the practical problem of missing nodes
in wireless sensor networks.

o We design, implement, and evaluate different
compression algorithms (1D and 2D, Discrete
Cosine Transform (DCT) and Wavelets) on pub-
licly available real world sensor data [19], [20].
RIDA can achieve compression ratios of 10:1 and
eliminate 80% of the energy consumption com-
pared to networks not using RIDA. In particular,
we evaluate one state-of-the-art distributed data
compression algorithm for sensor networks [1],
with and without the logical mapping framework
of RIDA, and show that the compression ratio is
doubled by using logical mapping while main-
taining comparable mean square error.

In the next section, we will review related work.
Section 2 and 3 present a brief overview of data
compression in general and related work in compres-
sion in wireless sensor networks respectively. Section
4 highlights key observations about correlation of
sensor readings that drive the design of our archi-
tecture. Sections 5 and 6 will describe the proposed
information-driven architecture for compression algo-
rithms for sensor networking, including our proposed
resiliency mechanism. Section 7 will describe the
experiments conducted in order to demonstrate the
benefits of our approach. We discuss the limitations
of our approach and future work in Section 8, and
conclude in Section 9.

2 DATA COMPRESSION OVERVIEW

Data compression is a process that reduces data vol-
ume while preserving the information content with
some acceptable fidelity [21]. We often measure the
information content using entropy [22], which repre-
sents the minimum number of bits needed to encode
the data. Figure 1 shows the main data compression
approaches — lossless and lossy compression. Lossless
compression requires decompressed data to contain
exactly the same information as the original data.
Lossy compression requires that the decompressed data
contain information of the original data with only
some small error.

2.1 Lossless compression principles

The popular lossless compression methods are
entropy-based and dictionary-based compression. In
entropy-based compression, the compressor generates
a statistical model of the data and maps the data to
bit strings based on the generated model. An exam-
ple of entropy-based compression is Huffman coding
[22]. In dictionary-based compression, the compres-
sor maintains a dictionary of encountered data and
substitutes a reference to a dictionary location if the
new data is already in the dictionary. An example
of dictionary-based compression is the Lempel-Ziv-
Welch algorithm (LZW) [22].

2.2 Lossy compression principles

In lossy compression, the compressor often transforms
the data into a new domain using appropriate basis
functions. For example, the data can be transformed
into the frequency domain using Fourier basis func-
tions. In the new domain, the information content is
concentrated in a small number of coefficients that
contain the data values projected using the basis func-
tions. Therefore, the compressor can reduce the data
size by selecting only those coefficients. There are two
popular lossy compression methods: Fourier-based
and wavelet-based compression. Two corresponding
examples of transforms are discrete cosine transform
(DCT) [21] and discrete wavelet transform (DWT) [23].
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Fig. 1. Main data compression methods

The above methods such as JPEG compression are
widely used for image compression [23]. In general,



we can view the network’s sensor data as an image
(like a visualization of temperature) or a sequence of
sensor readings and apply data compression meth-
ods to compress the data. However, wireless sen-
sor networks have distinct features such as limited
computation and distributed processing, motivating
new compression methods that accommodate these
features. We review these methods next.

3 DATA COMPRESSION IN WIRELESS SEN-
SOR NETWORKS

Several approaches [24], [25], [17], [26], [27], [14], [15],
[16], [1] have addressed data compression in wireless
sensor networks. Figure 2 shows representative work
in different categories. The approaches described in
[16], [25], [1] are extensions of Discrete Wavelet Trans-
form. We call approaches in [16] and [1] Ciancio-DWT
and Wagner-DWT respectively. Other work such as
Sensor LZW (SLZW) [17] is an extension of LZW for
sensor networks. DISCUS [15] is a new framework
for distributed compression, which is suitable for a
wireless sensor network. None of these approaches
explicitly address the robustness of the algorithm in
the presence of missing data.

SLZW [17] extends the Lempel-Ziv-Welch (LZW)
algorithm, which encodes new data based on previ-
ously encountered data. SLZW processes small blocks
of data to accommodate the memory constraints of
a sensor. SLZW improves the compression of sensor
data by using the Burrow-Wheeler transform, which
reorganizes sensor data in a way that results in better
compression. SLZW is a lossless compression algo-
rithm and exploits only temporal correlation between
readings produced by an individual sensor. SLZW
compresses data block by block, in blocks of 512
Bytes, with each block equivalent to 512 measure-
ments. If the sensors take measurements once during
every epoch of 30 seconds, the sink can only get the
compressed data after at least 4 hours. Although it
is possible to apply SLZW across sensors to exploit
spatial correlation, the approach will be inefficient.
SLZW builds a dictionary of repeated patterns and
then uses the terms in the dictionary to reduce the
coding size. In order to have SLZW work effectively,
we must have long sequences of data (more than 512
values) to first build the dictionary and then utilize it.
However, the number of nodes in a cluster is usually
less than 100, which means SLZW will not com-
press well?>. We can collect several snapshots to have

2. There is no strict restriction on the SLZW block size. However
in SLZW, the data must be observed long enough to build a
dictionary of repeated patterns in the data. These repeated patterns
are encoded using a shorter code word to reduce the size of the
compressed data. If the block size is too short, the delay will be
short, but few samples will be observed, and the compression
performance will degrade severely. In contrast, distributed com-
pression frameworks which correlate data from multiple sensors,
can provide good compression ratio even when the delay is very
small.

enough measurements for compression. Nevertheless,
this will cause delay in data delivery. Our approach
is orthogonal to SLZW in that we explore correlation
between readings of different sensors and ensure low-
latency data collection. RIDA instead compresses the
data after every epoch. Hence, the sink can get the
compressed data within 30 seconds. We also address
the important problem of detecting missing data in
sensor networks.

Approaches in [16], [25], [24] transform sensor data
on a routing path in the routing tree. Ciancio-DWT
[16] and [25] use distributed wavelet transform while
[24] uses Karhunen-Loeve Transform. A sensor in
the routing path partially calculates the transformed
coefficients and forwards the coefficients to the next
sensor in the routing path. The sensor at the end of
the routing path will receive all the coefficients of
the DWT of sensors along the routing path. Ciancio’s
algorithm performs a wavelet transform on the raw
data along a path. But the paper does not explore
methods to improve the compression radio obtained
with wavelet transform on the same set of data.
The algorithm does not explicitly exploit temporal
and spatial correlation between sensor data since it
depends on the routing tree. Wagner-DWT [1] is a dis-
tributed framework for data compression and analysis
using wavelet lifting. Wagner-DWT also considers
spatial information such as locations to decide which
scale a sensor should be. Wagner-DWT exploits spatial
correlation in the data based on sensor locations.

DISCUS [15] is a theoretical approach for compres-
sion. Sensors do not need to know their correlation at
compression time. However, the sink needs the corre-
lation information to decompress the data. DISCUS
uses the known correlation information to classify
sensor data into different sets (called coset). DISCUS
indexes sensor data within a coset with fewer bits
than it takes to index the sensor data without cosets.
The values of sensor data in each coset have unique
properties with the correlation information. Therefore,
DISCUS compresses sensor data by sending only the
index within a coset. At the decompressor, DISCUS
uses the correlation information to search for the best
sensor data value in the coset to recover the original
sensor data. For example, we need 8 bits to index
a temperature level of range from 0 to 225. If we
classify the temperature levels into two cosets; one
coset contains the temperature levels of range from 0
to 127, and the other contains the temperature levels
of range 128 to 255. Within each coset, we need only
7 bits to index a temperature level. For example,
temperature level 129 can has the index value as 1 in
the second coset. If the decompressor receives 1 and it
knows that the temperature level is larger than 127, it
searches for the index value 1 in the second coset and
gets 129. Hence, we can reduce the number of bits to
index sensor data if we know some information about
the sensor data in advance. In practice, it is difficult to
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Fig. 2. Data compression methods for wireless sensor networks. Highlighted methods are extended for sensor networks.

determine the correlation information because there is
no historical data available for many applications.

Compressed sensing [28], [29] allows the original data
to be reconstructed exactly with high probability from
only a subset of random measurements. Distributed
compressed sensing [30] is an extension of com-
pressed sensing for distributed sources such as sensor
networks, which allows collection of distributed data.
DCS and its related applications [31], [32], [33], [34],
[35] are proven to be very robust to packet losses
and node failures and able to capture high frequency
signals. In order for DCS to work, prior knowledge
about the sparsity and compressibility of the sensor
data is needed. DCS does not require information ex-
change between sensors in a cluster, thus scaling well
with the cluster size. However, it does not guarantee
optimal energy savings because the total number of
measurements collected are empirically at least four
times the compressed data.

3.1 Lossy versus Lossless Compression in a
Wireless Sensor Network

We argue that lossy compression is useful in a wireless
sensor network although it might introduce some
error. Wireless sensor networks already need mech-
anisms to handle sensor data errors (for example,
Kalman filtering) due to the imperfect behavior of
electronic circuits and analog to digital converters.
Applications can compensate for error at the back-
end servers, which often have large memory and high
computation power. Computation at the back-end
server is therefore much cheaper than at the sensors.
Lossy compression often achieves higher compression
ratios, and thus greater energy savings, compared
to lossless compression. Finally, lossy compression
techniques such as JPEG and JPEG-2000 [21] do well
on natural data such as natural images or temperature
data of an environment. JPEG and JPEG-2000 how-
ever can only be applied to temperature data that is
sampled in a regular 2D lattice.

In comparison to previous work, our proposed
architecture, RIDA, is a lossy data compression ar-
chitecture that relies on only the sensor data. RIDA
assumes that a sensor network is organized into
physical groups (clusters) using an existing clustering

protocol such as LEACH[36]. RIDA does not assume
that the nodes in a sensor network are located in a
regular grid, and does not use any further information
such as sensor location within a cluster or routing
path for compression. RIDA uses a logical mapping
to improve existing compression methods. In the next

section, we present the key observations based upon
which we developed RIDA.

4 UNDERSTANDING THE CORRELATION

BETWEEN SENSOR DATA

The key challenge in data compression is to exploit
correlation between data in time, space, or frequency
domains. In practice, it is difficult to predict the cor-
relation between two data series collected over time.
Therefore, we often use heuristics to approximate the
correlation between sensor data. Existing approaches
(such as the work in [14]) assume that sensors that
are close together report similar data. However, we
observe that sensors that are not physically close together
may report more correlated data. It is not impossible to
learn certain information such as correlation in the
sensor data [37], [38]. However, the learning algo-
rithms might require a lot of historical information
or incur overheads. We chose to make RIDA simple
by observing only a few values and proceed with
compression.
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Fig. 3. Mapping of light sensor data in Intel research lab at
Berkeley. Brighter color corresponds to higher light intensity.
Sensors under light bulbs can report similar high light levels.

Figure 3 shows light readings for one sensor cluster
in the Intel Research Lab at Berkeley. We observe
that sensors that are not close together but in simi-
lar environmental conditions report similar data. For



example, light sensors that are under light bulbs can
report similar high light levels.

We also observe that, sensors may report similar
data regardless of external environmental conditions.
For example, sensors report the voltage of their batter-
ies. The voltage of the batteries is independent of ex-
ternal factors such as sensor location and environment
temperature. Sensors with similar voltage readings
should report similar data over time provided they
consume similar amounts of energy.

From these observations, we believe that we should
consider the sensor data itself to find the correlation
between the sensor data streams in a cluster, rather
than other heuristics such as the sensor location in a
cluster. When we find the correlation between sensor
data, we can assign sensors with appropriate indices,
which improve the compression performance of an
algorithm. For example, DCT-based and DWT-based
compression algorithms perform very well on smooth
or piecewise smooth signals, which frequently arise
when we sort the sensor data by their values. We de-
scribe next the information-driven data compression
architecture for irregular wireless sensor networks.

5 ROBUST INFORMATION-DRIVEN DATA
COMPRESSION ARCHITECTURE

RIDA assumes that nodes have been organized into
clusters, using any existing network clustering proto-
col such as LEACH[36]. Within each cluster, there is
a cluster head that is responsible for maintaining the
cluster information.

The key idea in RIDA is to reorganize sensor data
before doing compression in order to improve the
compression performance. Existing compression algo-
rithms such as DCT and DWT compress well when
adjacent data have similar values. Hence, we use a
logical mapping to group sensor data of similar values
together and compress the data.

The architecture has three main components (Figure
4) — logical mapping, compression algorithms, and a
resiliency mechanism. In logical mapping, we observe
the sensor data for a period of time and use a logical
mapping scheme to assign each sensor a virtual index
in a way that results in a good compression ratio when
using a specific compression algorithm. The compres-
sion algorithms component contains data transform
methods that we extend for sensor networks. We
have adapted the discrete cosine transform and the
discrete wavelet transform for sensor networks. As a
resiliency mechanism, we propose a simple classifica-
tion method to enhance the robustness of the network
to missing data.

There are two main phases at a cluster; mapping
and compression. In the mapping phase, the cluster
head assigns virtual indices to sensors and sends
the logical map to the sink for remapping later. In
the compression phase, sensors exchange data within

their cluster. Each sensor transforms the received data
using a technique such as DCT or DWT to calcu-
late the corresponding coefficient. The transformed
data are coefficients, which contain different amounts
of information about the sensor data. Each sensor
weighs its coefficient using a quantization matrix.
The coefficients after quantization are rounded to the
nearest integer values. Each sensor uses a threshold
(usually zero) to decide which coefficients to keep and
send to the sink. At the sink, after collecting all the
compressed data, the sink decompresses the data and
uses the logical map to remap the sensor data to the
true sensor indices.
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Fig. 4. RIDA detailed architecture

5.1 Logical Mapping
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Fig. 5. Logical mapping of light readings. The brighter the
color is, the higher the light intensity is. Sensor data values
are sorted and the sensors are assigns virtual indices se-
quentially based on the sorted order. The result is a smoother
map of light readings compared to Figure 3

Logical mapping rearranges sensors logically
by assigning each sensor a virtual index. The
purpose of the rearrangement is to group sensors
with correlated data together to achieve higher
compression performance. Sensors wuse virtual
indices, which are independent from sensor locations
within a cluster. Hence, we can compress sensor
data well regardless of the network topology. By
carefully assigning indices to the sensors for a
particular compression scheme, we can compress the
data better (or at least not worse than) compression
without logical mapping. We formalize the mapping
as follows:



Mt(ds(t)a D(t)> =1

where s denotes the sensor ID. d,(t) denotes the
sensor data value of sensor s at time ¢. D(t) is a vector
of size n of data values of sensors in the cluster at
time ¢. M; denotes the mapping from a sensor data
value d(t) to a virtual index ! such as (z,y) in two
dimensional mapping. M; uses only the value of the
sensor data ds(¢) and values of other sensors in the
cluster D(t) to determine . Figure 5 shows an example
of logical mapping of light readings. The mapping can
be application and algorithm specific. As a first step,
we simply sort the data and index the sensors in a
sequence based on the order of the sorted data. For
example, Figure 6 shows data values from 9 sensors.
We can assign each sensor a virtual index sequentially
after sorting the data values. In 1D mapping, sensor
9 has virtual index 1, sensor 8 has virtual index 2
and so on. In 2D mapping, we can stack the sensors
row by row or column by column and give them
virtual indices. In Figure 6, the 1D virtual index of 3 is
mapped to a 2D virtual index of (1, 3) corresponding
to its position in a 2D matrix, and the 1D virtual index
of 5 is mapped to the 2D virtual index of (2, 2).
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Fig. 6. Logical Mapping lllustration

Because the correlation relationship between sen-
sors may change over time, the cluster may need
to perform remapping. The frequency of remapping
depends on the application requirement and the char-
acteristic of the environment. When a cluster needs
to remap, the cluster head broadcasts a begin-mapping
message. A sensor, upon receiving the begin-mapping
message, sends its data to the cluster head. The cluster
head collects data from each sensor for a short period
of time. The cluster head computes the average data
value for each sensor and sorts the averaged values.
The cluster head assigns each sensor an index and

broadcasts the new map to the cluster and to the sink.
The cluster head waits for all acknowledgments and
may rebroadcast the map if necessary. After receiving
all acknowledgments, the cluster head broadcasts an
end-mapping message. The cluster resumes to normal
sensing mode.

Figure 7(b) and Figure 7(c) show the distribution of
the coefficients and the error versus compression ratio
using DWT with and without logical mapping from a
real data set collected from the LUCE Deployment in
SensorScope [20] (Figure 7(a)). Most of the coefficients
in DWT Logical Mapping are near zero. Hence, DWT-
Logical Mapping has a lower error compared to DWT
without logical mapping.

5.2 Compression Algorithms
5.2.1 Data Transformation

We have adapted DCT and DWT for sensor networks.
Within a cluster, sensors use the wireless broadcast
capability to exchange data with each other. After
receiving all data, each sensor calculates only its
coefficient, which corresponds to its virtual index.
Figure 8 shows the pseudo-code for the distributed
DCT. From lines 8 to 12, a sensor calculates the
coefficient that corresponds to its virtual index. If all
the sensor coefficients were calculated centrally, the
computational complexity would be O(Nlog(N)) [21],
where N is the number of sensors in the cluster. In our
distributed DCT implementation, each sensor calcu-
lates only its own coefficient. The complexity for each
sensor is O(N). The total complexity for the whole
cluster is O(N?). Fortunately, the computation cost is
very small compared to sensing and communication
cost. The coefficient of the corresponding virtual index
k is calculated using the following formula for one
dimensional transform.

coef f(k) = w(k) Zﬁf:l data(n) cos %, (1)
k=1,.,N 2)

where

w(k):ﬁiszland

wik) = /2 if2< k<N

In the matrix form, it can be viewed as the dot prod-
uct of the corresponding row in the DCT matrix B and
the vector of sensor data. Hence, the computational
complexity is O(N) per sensor.

5.2.2 Quantization

Quantization weighs the coefficients using a quantiza-
tion matrix. Important coefficients should be non-zero
while unimportant coefficients can be quantized to be
zero. Sensors transmit only non-zero coefficients to the
sink. In this work, when we map sensor data in one
dimension, we use a threshold to drop coefficients.
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//Broadcast local reading to
//the cluster
1 broadcast (reading)

//Collect neighbors’
//specified interval

reading in

2 while not timeout
3 do
4 data([packet.virtualIndex]

packet.reading

//Compression with DCT-transform
//Calculate only row k of Bxdata.

//k is the virtual index of this node.
5 for i <= 1 to cluster_dim

[ coeff <- coeff + B[k][i]*datal[i]

//Quantization
7 coeff round (coeff/Q[k])

//0Only transmit a non-zero coefficient

8 if coeff !'= 0
9 send (coeff)
Fig. 8. Pseudo-code for 1-Dimensional DCT transform.

From lines 5 to 6, a sensor calculates only the coefficient
that corresponds to the sensor virtual index k.

The sorted data is often much smoother than the orig-
inal data. This property is similar to the property of
most natural images, which observations have shown
are smooth. Therefore, when we map sensor data in
two dimensions, we use the JPEG quantization matrix,
which is primarily intended for natural images. The
choice of a quantization matrix may directly affect the
compression performance. We discuss quantization in
detail in Section 8.3.

5.3 Energy Balancing

An algorithm should ensure approximately equal en-
ergy consumption among nodes to increase the total
network lifetime. The data after transformation and
quantization often results in a few non-zero coef-
ficients, concentrated in some specific indices. For
example, the 2-D DCT coefficients often concentrate
at the top left of the transformed data. Nodes with
those corresponding indices may have to transmit the
coefficients more frequently and deplete energy more
quickly than others. To avoid this situation, the logical
mapping can alternate different mapping schemes so
that sensor nodes have an approximately equal chance
to transmit coefficients. A simple method is to alter-
nate the sorting between ascending and descending
order for each remapping. Alternatively, nodes can
maintain a random map where indices are assigned
randomly to assign which coefficient a node should
calculate. The random map can be regenerated in each
remapping phase.

5.4 Error Detection and Classification
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Fig. 9. Reading history over a one hour period from a real
sensor network at Intel Research Lab at Berkeley [Madden
2006]. A dot indicates that a reading has been received.

Reliability of data is of paramount importance be-
cause network nodes fail frequently. Even when nodes
have not failed, their operation is typically unstable.
Figure 9 shows the reading history of 54 sensors in



a controlled environment [19]. As observed, 53 out
of 54 nodes are working. However, the number of
nodes reporting data is always around 50% within
each epoch. Better design of routing protocols could
help increase this rate, but we still have to address
the problem of faulty and missing nodes. When these
nodes do not report data within an epoch, we call
the expected data from those nodes as missing data.
In such a case, a node will not have enough data
to perform compression using the logical map. To do
compression, the node must fill the missing data with
some values. This situation motivates us to design
a simple mechanism to distinguish between missing
data and real data at the sink after decompression.

All the nonzero data will be projected to an inter-
val (for example [128,255]). Different types of data
have different ranges. Although the data value is
obtained from the same 10-bit analog-to-digital con-
verter (ADC), the data ranges are different. Therefore
the projection will unify the way we drop coefficients
through quantization or thresholding. We choose the
interval [128, 255] for projection so that we can use the
same quantization scheme as JPEG. The pixels in JPEG
have values from 0 to 255. Missing data will be set to
zero. We have a set of data from the interval [128,255]
for normal data and 0 for missing data of all different
scalar sensor types like temperature, humidity, light
and voltage. These zero values would result in low
values in the reconstructed data. The use of only
half of the range [0,255] is to allow enough gap be-
tween missing data and real data after decompression.
Hence, we can use a threshold to classify them. The
threshold we used is 64 which has been shown to
classify correctly most of the time. We can extend the
projection range [128,255] and use a smaller threshold
to classify missing data. However, there is an inherent
trade-off in the ability to detect missing readings and
the decompression error. In addition, the choice of the
projection range also depends on the level of noise in
the sensor readings.

6 RIDA OPERATION DETAILS

Having described the overall RIDA architecture,
we now describe its operation in detail. There are
three different classes of nodes with slightly different
operations — the sink, the cluster head, and the child
node.

The Cluster Head Upon receiving a query for sensor
data from the sink, the cluster head performs the
following actions. These actions can be repeated after
a remapping-period, which is sent from the sink or the
default value.

 Send a begin-mapping, which queries for data for s
epochs from all nodes in its cluster and performs
the following actions.

o Calculate the mean data values of each sen-
sor and sort the means, alternating between a
descending order and an ascending order each
round, to ensure load balancing among nodes.

 Assign virtual indices to the sensors and create
a logical map. The map is a set of tuples <
id, vindex > where id is the node ID and vindex
is the virtual index of the corresponding node.

o Broadcast the logical map to all nodes in its
cluster.

o Send the logical map to the sink.

o Wait for all acknowledgments.

o Send an end-mapping message to all nodes in its
cluster.

The Child Node: Upon receiving a begin-mapping mes-
sage from the cluster head, a child node returns its
measurements. Upon receiving the logical map, the
child node sends an acknowledgment. It must calcu-
late the coefficient corresponding to its virtual index
on the logical map. Upon receiving an end-mapping
message, it must perform the following actions for
each epoch.

o Take a measurement, broadcast it to the cluster.

« Listen to all readings from other sensors, calculate
its coefficient using the procedures described in
Figures 8 and 10.

o If the coefficient is non-zero, send the coefficient
to the sink.

o If there are no more tasks, go back to sleep or idle
mode.

The Sink: Upon receiving a map, the sink saves it for
decompression. For each epoch, the sink collects all
the coefficients from the network nodes and performs
the following actions.

o Decompress data for each cluster.

o Use the received logical map to match data values
and sensor nodes.

o Classify missing data using the procedures de-
scribed in Figure 10.

o Combine data from all clusters to obtain network-
wide measurements.

7 EXPERIMENTAL DESIGN AND ANALYSIS

This section describes the experiments conducted to
evaluate the architecture, and analyzes the results
obtained.

7.1 Goals and Metrics

We investigate five main questions:

1) Can existing compression methods be adapted
for RIDA?

2) Does logical mapping improve compression per-
formance, particularly for state-of-the-art dis-
tributed compression algorithms?

3) How sensitive is RIDA performance to network
parameters, such as network density and num-
ber of hops between the cluster and the sink?
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4) How sensitive is RIDA performance to the map-
ping period (the time duration between two re-
mappings)?

5) How robust is RIDA when there is missing
sensor data?

To answer the first question, we show that we can
adapt three main compression methods, DCT, DWT
and Wagner-DWT, for RIDA. In addition, RIDA needs
to change only the logical mapping to suit the com-
pression algorithms.

To answer the second question, we evaluate RIDA
over a real-world data set. We compare DCT and
DWT compression with RIDA’s logical mapping to
DCT and DWT without logical mapping. In particu-
lar, we evaluate one state-of-the-art distributed data
compression algorithm for sensor networks [1], with
and without the logical mapping framework of RIDA.
We study metrics such as the normalized mean square
error (NMSE) with respect to the original data and the
compression ratio.

To answer the third and the fourth questions, we
study the reduction in energy consumption as a func-
tion of network density, number of hops between the
cluster and the sink, and mapping period. We study
the compression performance as a function of the
cluster size from real sensor data. We measure sen-
sor energy consumption using PowerTOSSIM [39], a
power simulator for wireless sensor network. We im-
plemented the compression algorithms for the MicaZ
platform and simulated the system in PowerTOSSIM.
We measure energy consumed by CPU operations and
RF transmission. We analyze how sensitive the results
are to the number of hops between the cluster and the
sink and the mapping period over a time period.

Finally, to answer the last question, we emulate
missing data in the data set by randomly setting some
sensor readings to zero. We analyze the classification
accuracy, classification recall and the compression ra-
tio in relation to the normalized mean square error.

The following notations are used in the formulas.

e ¢ is the energy used to transmit all raw data back
to the sink.

o ¢ is the energy used to transmit data back to the
sink using RIDA.

o n is the average number of sensors in a cluster
(cluster size). We assume that within a clus-
ter, sensors can communicate directly with each
other. We further assume that the energy required
for communication is the same across all sensor
pairs in a cluster.

o h is the average number of hops from a cluster
to a sink.

o €y, €, are the average transmission and reception
energy for one message.

e ¢, is the energy used for sensing. We ignore the
energy required for computing the logical map
because it is much smaller than the energy used
for transmission and sensing when the mapping
period is large compared to the sampling period.

o 1’ is the number of non-zero coefficients.

o T is the total time period in minutes under con-
sideration.

e m is the number of times sensors collect data
during the mapping phase.

o k is the mapping period, which is the time be-
tween two mappings in minutes. Hence, T is the
number of remappings in time T. %n(eS +e; +
er)m is the total energy consumed by remapping
in time T.

s is the sampling period, which is the time be-
tween two samples in minutes. Hence, T is the
number of times sensors collect data in time T.

« n} is the average number of non-zero coefficients

in the " mapping.
k Zl%:l (es + ez + e )n + h(ey + e, )n} is the total
energy consumed by collecting, compressing, and
transmitting data from sensors to the sink in time
T.

The total energy consumption when the network
does not compress the data is

ep = %n(es + (ex + e,)h) 3)



The total energy consumption using compression is

€Cc = %n(es + e, + er)m (4)
T

+EY R (es +ex +er)n+ h(ex +e)n)  (5)

+ZLh(es +er) (6)

where the individual components are
(i) energy consumed in remapping

T

En(es +ex+e)m (7)
(ii)energy consumed in transmitting the map back

to the sink -

7h(€w + 67') (8)

k
(iii) energy consumed in sensing, exchanging data

within the cluster and transmitting the compressed

data to the sink.

w |
ngls

(€s + €z + er)n + hes + e.)n,, 9)

=1

The normalized reduction in energy consumption
is
€p — €¢

Th = (10)

ep

rp, basically tells us how much energy a sensor can
save relatively to the amount of energy consumed
without using RIDA.

7.2 Methodology

We evaluate RIDA on two real world data sets from
(i) an indoor deployment at the Intel Research Berke-
ley [19], and (ii) an outdoor deployment from Sen-
sorScope project [20] at Ecole Polytechnique Federale
de Lausanne (EPFL). (i) uses TinyDB, discussed pre-
viously, to collect raw data such as temperature, hu-
midity, and voltage from 02/01/2004 to 04/01/2004.
TinyDB collects data every epoch (a fixed time inter-
val). We chose these data sets because they are pub-
licly available, and used by other researchers working
on compression. First, we would like to evaluate how
RIDA performs in the ideal case where all sensors
report data. However, the data set has many missing
values. Therefore, we interpolate the missing data. We
interpolate the missing data in time for two reasons.
First, we assume the physical phenomena changes
slowly in time. Second, time interpolation should
have minimal effect when evaluating compression
algorithms that exploit spatial correlation. We later
emulate missing data. We emulate 50% missing data,
which is the worst case we observe in this testbed.
The latter sensor network is deployed in an outdoor
environment. The network collects meteorological as
well as monitoring data every 30 seconds from around
11/01/2006 to 05/09/2007.
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In addition, we implement RIDA with DCT trans-
form on the Mica2 embedded devices [40] and simu-
late the network using PowerTOSSIM [39] in Tinyos-
1.x [41]. We measure the energy consumed by radio
for receiving and transmitting packets (e, +¢,) and the
energy consumed by CPU for sensing and performing
calculation (eg). It turns out that (e, + e,) is about
2.5 e;. We then use this ratio in our calculations for
Figures 20-22.

7.3 Results

We now analyze the results obtained from our exper-
iments.

7.3.1 Compression Performance: Mapping versus No
Mapping

We assign indices to sensors based on the order of
sensor data values. In the mapping phase, we collect
and sort the sensor data. Then we assign indices to
sensors sequentially based on the sorted data values.
We evaluate a one dimensional (1D) mapping, in
which we arrange sensors logically into a vector, and a
two dimensional (2D) mapping, in which we arrange
sensors into a matrix by stacking the sorted data
values column-wise. We compare how RIDA performs
when using logical mapping relative to no logical
mapping, and 1D mapping relative to 2D mapping.
In no logical mapping case, the indices are assigned
based on the node ID. In the physical map of the
testbed, two nodes with close IDs have their locations
close together. Hence, the mapping in some senses
take account into spatial correlation based on sensor
locations.

We also compare a state-of-the-art compression
method using distributed wavelet transform (Wagner-
DWT) [1] with and without logical mapping. In the
former case, we apply logical mapping to assign sen-
sor nodes virtual indices before the compression and
use the same transformation algorithm in Wagner-
DWT. The logical indices are assigned based on the
data values (not the sensor locations). We use the
same 2D logical mapping as described in Figure 6.
We sort the sensor data values and assign each sensor
a virtual index sequentially based on the sorted data
value. In the latter case, Wagner-DWT has an algo-
rithm that assigns indices to sensors based on their
locations. We chose Wagner-DWT for comparative
evaluation since it is a transform based approach, and
the main contribution of RIDA is the logical mapping
that is added on existing compression systems that
use transformation. The logical mapping makes the
transformation result in a sparser set of coefficients.
In contrast, the DISCUS theoretical framework [15]
does not fall in this category - transform compression.
Hence, RIDA does not apply for DISCUS and DISCUS
was not chosen for comparative evaluation.
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Fig. 11. (a) Compression performance of temperature (Indoor — Berkeley data set): mapping versus no mapping. Logical
mapping improves the compression performance by approximately 200% relative to no mapping. Compression ratio using 1D
mapping is twice as large as that using 2D mapping. (b) Compression performance of temperature (Outdoor — SensorScope
data set): mapping versus no mapping. Logical mapping improves the compression. Compression ratio using 1D mapping
is twice as large as that using 2D mapping. Wagner-DWT with logical mapping outperforms all other techniques. (c)
Compression ratio versus network density: Denser sensor networks typically achieve better compression of sensor data.

In the indoor case, Figure 11(a) shows the com-
pression ratio versus compression error of three com-
pression techniques 1D-DCT, 2D-DCT and Wagner-
DWT with and without logical mapping®. In general,
with the same compression error, using a logical
mapping improves the compression performance by
approximately 200% relative to not using a logical
mapping. In addition, the 1D mapping compresses
twice as well as the 2D mapping. The reason 1D-DCT
is better than 2D-DCT can be explained by the fact
that given the same number of data values, the 1D
signal is actually longer than that of the 2D signal.
For example, an 8x8 2D signal can be considered as
8 short signals, each of length 8. If we arrange all
these signals into 1D, we have a signal of length
64. Longer signals can contain more information of
high frequencies compared to short signals. Therefore,
the coefficients of high frequency components can be
retained during quantization. This avoids information
loss during compression. Wagner-DWT with logical
mapping outperforms the others. However, it gets
worse than 1D-DCT with logical mapping when the
compression ratio is greater than 15.

In the outdoor case, Figure 11(b) shows similar
results from the SensorScope data set [20] to the
indoor Berkeley data set. In general, with the same
compression error, using a logical mapping improves
the compression performance of existing techniques.
Wagner-DWT with logical mapping is slightly better
than Wagner-DWT without logical mapping and sig-
nificantly better than other techniques.

RIDA achieves similar results for humidity and
voltage data. However, RIDA performs poorly on
light sensor data. The compression ratio for light sen-
sor data is only 1.5 with a compression error of 30%.
In our opinion, the reason for the poor performance
is that the light sensor data has a large range from 2

3. Note that we do not include 2D-DWT LM as it is the same as
Wagner-DWT LM in terms of compression ratio

to 900 lux. Projecting a wide light range [2, 900] to [0,
255] also incurs significant information loss. This loss
can be minimized by using a wider range (eg. [0, 512]
to project the data on. However, the quantization and
error classification also need adapt to that range.

7.3.2 Compression Ratio versus Network Density

RIDA assumes the sensor network is dense — there
are many sensors in a cluster — and sensors in a
cluster communicate directly and with equal power
consumption. In this experiment, we analyze how
RIDA performs as we vary the number of sensors. We
use the DCT compression algorithm with 1D logical
mapping. We vary the number of sensors in a cluster
from 16 to 49 and observe the compression ratio for
compression errors ranging from 1% to 5%.

Figure 11(c) shows that for the same compression
error, the compression ratio increases with the number
of sensors. The compression ratio of a cluster with
49 sensors is twice the compression ratio of a cluster
with 16 sensors. Figure 11(c) shows a reasonable result
because data transformation often performs better
for long sequences of data than short ones. Thus,
denser sensor networks will typically achieve better
compression of sensor data.

7.3.3 Reduction in Energy Consumption versus Num-
ber of Hops

We evaluate energy consumption in RIDA by varying
the average number of hops from the sources to the
sink. In this experiment, we keep the cluster size fixed
and simulate the average number of hops from the
sources to the sink. The reason we can only simulate
this parameter is because there are only 54 sensors
in the Berkeley data set we used. We increase the
average number of hops from the sources to the sink
by increasing the number of clusters in the network.
We vary the average number of hops from a cluster
to a sink from 1 to 20 and calculate the energy
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Fig. 12. (a) Energy consumption reduction versus average number of hops. c is the compression ratio. The higher the
number of hops from a cluster to a sink, the greater the reduction in energy consumption. If the average number of hops is
small, the reduction in energy consumption is negative, showing that transmitting raw data directly to the sink is more energy
efficient than compression. (b) Compression performance of different mapping periods. Each line indicates the compression
ratio versus the normalized MSE. For a fixed error level, the shorter the mapping period is, the higher the compression ratio.

(c) Energy consumption reduction for different mapping period.

consumption reduction with compression ratios equal
to 2, 5, and 10. As we expected, Figure 12(a) shows
that the higher the number of hops from a cluster
to a sink, the greater the reduction in energy con-
sumption. Even when the compression ratio is 2, we
can still reduce energy consumption by 20% when the
average number of hops from a cluster to a sink is 6.
However, if the average number of hops is small, the
reduction in energy consumption is negative, meaning
compression is less energy efficient than transmitting
raw data directly to the sink. We observed similar
behavior when studying the impact of compression
ratio (for a fixed hop count) on the reduction in energy
consumption. The energy reduction increases loga-
rithmically with the compression ratio. However, if
the compression ratio is too low, the energy reduction
is actually negative.

7.3.4 Impact of Mapping Period

Figure 12(b) shows how the compression ratio de-
creases with the mapping period. The intuition is that
the shorter the mapping period (the more frequently
RIDA remaps the sensors), the more up to date the
correlation information between sensor data. The log-
ical mapping assigns virtual indices for sensors more
precisely. Therefore, RIDA compresses data better.
However, the more frequently RIDA remaps the sen-
sors, the more energy RIDA consumes. Hence, there is
a trade-off between energy consumed by remapping
and the compression ratio.

Figure 12(c) shows the reduction in energy con-
sumption of different mapping periods in minutes for
compression errors ranging from 1% to 5%. We plot
the mapping period on a logarithmic scale for better
visualization. The figure shows that RIDA does not re-
duce energy consumption significantly if the mapping
period is too short or too long. The good mapping
periods are from 40 minutes to 2 hours. However, this
result can vary depending on the environment being
observed.

7.3.5 Missing Data Classification

In this section, we show how RIDA resiliency mech-
anisms detect and classify missing data after decom-
pression. Missing data is randomly injected into the
data set before compression. The non-zero data is
scaled to [128,255] interval and we use a threshold
of 64 to classify faulty data in both cases.

Figure 13(a) and Figure 13(b) show that when the
number of faulty nodes increases from 1 to 30, the
normalized mean square error in both DCT-based and
DWT-based transforms is less than 2%. The normal-
ized mean square error is calculated based on only the
real sensor data because it is meaningless to calculate
the error of the missing sensor data. The compression
ratio also decreases gradually from 10:1 to 3:1. This
is reasonable because nature of DCT-based transform
is suitable for a smooth signal and Wavelet-based
transform is more suitable for piecewise constant data.
Whereas there are spikes in the sensor data caused by
filling zeros for missing data.

To our surprise, Figure 13(c) and Figure 14(a) show
that both DCT and Wavelet have very high accuracy
and recall rates even when more than half the network
is faulty. Haar wavelets can maintain a performance
of up to 97% for both accuracy and recall. DCT
performance is slightly lower but, still above 90%
for accuracy and 97% for recall. Both of these values
decrease gradually as the number of faulty nodes in
the network increases. Similar results can be seen for
other types of data such as humidity and voltage.

8 DiscusSION

In this section, we discuss discuss the asymptotic
performance of RIDA with different parameters such
as the number of nodes in a cluster, the number
of hops in the network, and the mapping period.
We also discuss several factors that can affect RIDA
performance in practice such as optimal logical map-
ping, quantization, packet loss, and some potential
extensions.
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8.1

From Equation 10, considering the reduction in energy
consumption within one mapping period, we have

Asymptotic Performance

conditions change slowly. When the environmental
conditions change quickly, single-source compression
scheme such as SLZW is more suitable because SLZW
does not consider the correlation between sensor data
at two locations. However, SLZW needs to collect and
store enough sensor data to compress. Hence, SLZW

ep—e
Th = beb g
—1_ n(es+ertez)mth(er+es)+£[(es+ertez)nth(ertes)n;
- %n(es+(eT+eT)h)
1_sm_ s _1_1
kh kn h c

where c is the compression ratio.

We can see that the reduction of energy consump-
tion depends on many factors; the number of readings
required for remapping m, the ratio between the sens-
ing period s and the mapping period k, the number
of hops in the network h, and the compression ratio
c. The larger the mapping period is compared to
the sensing period, the larger the amount of saved
energy is. The more number of nodes in a cluster,
the more energy is saved. If the number of hops in
the network is very large, the reduction in energy
consumption is asymptotically equal to 1 — ;£ — 1.
From Fig. 12(b), we see that if the environmental
conditions change quickly, the correlation between
sensor data changes quickly. Under these conditions,
RIDA does not compress sensor data well and can
not reduce much energy consumption. Hence, RIDA
is suitable for applications where the environmental

delays the delivery of sensor data.

8.2 Optimal Mapping

The logical mapping is basically a permutation func-
tion that rearranges the data values. In matrix form,
the permutation is the product of a permutation ma-
trix P and the data vector d. If d has length n, P has
dimension n xn and P has exactly only one element of
1 in each row and each column. All the other elements
are 0. For example, a 2 X 2 permutation matrix is

01
(1)
which will reverse the order of a two-element vector.
Given a basis ¥ and a vector d, we try to permute
the vector d in a way that maximizes compressibility.
Unfortunately, considering all possible permutation

matrices P will take non polynomial (NP) time. We
have however used exhaustive search for determining



the optimal P and compared the compression per-
formance with our logical mapping sorting scheme,
which is to simply sort the data values and assign in-
dices sequentially. Surprisingly, compression with our
sorting scheme is very close to the optimal scheme.
Figure 14(b) shows the DCT coefficients on a random
set of 8 samples using a logical map created by sorting
the samples and an optimal logical map, which we
find using exhaustive search. At this stage, we can
not prove for an optimal bound for logical mapping
using sorting. However, from the empirical results, we
believe that compression with logical mapping using
sorting will perform reasonably well in practice. In
many cases, we found that the optimal logical map is
exactly the same as the logical map generated from
the sorted samples.

8.3 Quantization

One key part in data compression is quantization,
which decides how to drop coefficients that contain
the least information about sensor data. The quantiza-
tion step weights the transformed data using a quan-
tization matrix or a quantization vector. A compres-
sion algorithm with a good quantization scheme can
compress data well with a small error. However, there
is not a systematic method to find the quantization
matrix or quantization vector. We often construct a
quantization matrix or a quantization vector based on
empirical study. For example, the JPEG quantization
matrix is based on the smoothness and continuities
of natural objects in images. Sensor data is different
from images of natural objects. Therefore, we should
develop a new quantization scheme for sensor data
compression. However, we need to study empirically
a large number of sensor data sources to make sure
the quantization scheme is representative of sensor
data. We would like to investigate a quantization
scheme for sensor data compression in the future.

8.4

In our experiments, we do not consider packet loss,
and its impact on decompression error and energy
consumption. A simple method assumes sensors re-
transmit compressed data if there is an error. Using
this method, packet loss does not affect decompres-
sion error because we transmit all compressed data
to the sink. However, this method increases retrans-
missions and requires acknowledgment mechanisms
in routing protocols. We have not yet analyzed the
effect of packet loss on energy consumption due to
insufficient knowledge about routing protocols.

Impact of Packet Loss

8.5 Possible Extensions

RIDA has been designed in a completely distributed
manner. The only assumption about the network is
that it has a cluster topology. Currently, RIDA allows
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each node to calculate its own coefficient. The total
computation complexity is O(N?). However, if nodes
within the cluster can periodically elect a cluster head
to perform all the transformation and transmission of
the coefficients, the total computation complexity is
only O(Nlog(N)). RIDA can still be applied within
the cluster head. This approach requires the cluster to
have a protocol to periodically elect the cluster head.
Furthermore, if the network is hierarchical where the
cluster heads have more computational power than
sensor nodes, we can simply apply RIDA at the clus-
ters to minimize the communication cost. Finally, one
drawback of organizing sensors into clusters is that
RIDA cannot benefit from long-range correlations,
where nodes from different clusters might report cor-
related data. Extending RIDA to exploit long-range
correlation is a possible direction for future work.

9 CONCLUSION

We have designed and evaluated the robust
information-driven data compression architecture
for energy conservation in irregular wireless sensor
networks (RIDA). It uses a logical mapping to
rearrange sensor data to improve compression
performance. We have successfully adapted two
popular data compression methods, DCT and DWT,
for our architecture. RIDA is suitable for sensor
networks that are dense, have a cluster topology,
and have slowly changing environmental conditions.
Our experiments show that using RIDA can double
the compression performance of a state-of-the-art
distributed data compression method, Wagner-DWT,
and eliminate 80% of the energy consumption
compared to a sensor network not using RIDA. In
addition, RIDA can perform well even when half the
sensor data is missing.
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