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Abstract. In this paper, we propose and evaluate RIDA, a novel information-
driven architecture for distributed data compression in a sensor network,
allowing it to conserve energy and bandwidth and potentially enabling
high-rate data sampling. The key idea is to determine the data corre-
lation among a group of sensors based on the value of the data itself
to significantly improve compression. Hence, this approach moves be-
yond traditional data compression schemes which rely only on spatial
and temporal data correlation. A logical mapping, which assigns indices
to nodes based on the data content, enables simple implementation, on
nodes, of data transformation without any other information. The logical
mapping approach also adapts particularly well to irregular sensor net-
work topologies. We evaluate our architecture with both Discrete Cosine
Transform (DCT) and Discrete Wavelet Transform (DWT) on publicly
available real-world data sets. Our experiments on both simulation and
real data show that 30% of energy and 80-95% of the bandwidth can be
saved for typical multi-hop data networks. Moreover, the original data
can be retrieved after decompression with a low error of about 3%. Fur-
thermore, we also propose a mechanism to detect and classify missing or
faulty nodes, showing accuracy and recall of 95% when half of the nodes
in the network are missing or faulty.

Key words: Distributed data compression, Error detection, Wavelet
analysis, DCT analysis, Sensor networks, Irregular network

1 Introduction

With the continued development of sensor networking hardware, the ability to
deploy large numbers of sensors is becoming possible. Typically, the sensor net-
works are deployed to gather environmental information over a period of time
with the sensors working together to forward data to a central data sink. One
of the main challenges with such sensor networking technologies is the need to
minimize wireless packet transmissions in order to save power.
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There are several basic ways to minimize the amount of traffic generated
by the sensor network. Aggregation techniques such as TinyDB [1]and TAG [2]
process and consume the collected data within the sensor network, forwarding
only a small subset of the data to the sink. Query-based techniques such as
directed diffusion aim to filter the data within the network to only what the
application requires. Low-level networking techniques have been proposed in
order to help route data within the sensor network with the hope of minimizing
duplicated packets and minimizing the number of hops needed to deliver the
data. Finally, data compression techniques are emerging for such sensor networks
(3] [4] [5] [6] [7] [8].

Compression can be applied to a single data stream being generated by a
single sensor [9]. The advantage of this approach is that the sensor will typically
be generating similar data over time. The drawback, however, is that if the data
from a single sensor is lost, then a significant amount of data may be lost. An
alternative approach is to cluster the sensors together and compress the data
across the sensors one snapshot at a time. The main advantage of this approach
is that it is more resilient to transmission errors. At the same time, however, all
the data needs to be transmitted at least once in order to be collected.

Correlation of data among sensors is determined not only by spatio-temporal
proximity, but other factors as well. Building on this observation, we propose a
cluster-based and information-driven architecture for a wide range of compres-
sion algorithms for scalar sensor data for a popular class of network of sensors.
The key contributions of this paper are as follows.

— The exploration beyond spatial and temporal correlation of data in sensor
networks. The key idea here is that correlation of the data is based on the
value of the data itself rather than other factors, which we will show later
are irrelevant in some cases.

— The information-driven architecture (RIDA) with a logical mapping frame-
work for various compression and analysis algorithms which builds on the
above observation. In this approach, data reported by sensors is observed
over a short period of time. After that, the pattern of the data can be used
to logically assign sensors with indices such that the correlation of data is uti-
lized. Depending on the underlying compression algorithm, an appropriate
logical assignment can be used.

— The design, implementation, and evaluation of different compression algo-
rithms (1D and 2D, DCT-based and wavelet-based) on real sensor data.

— A resiliency mechanism in RIDA for missing and faulty nodes in sensor
networks. We address a real practical problem in wireless sensor networks
where nodes are frequently missing or faulty.

In the next section, we will review related work. Section 3 will point out some
key observations about correlation of sensor readings that drive the design of our
architecture. Section 4 will describe the proposed information-driven architec-
ture for compression algorithms for sensor networking, including our proposed
resiliency mechanism. Section 5 will describe the experiments that we conducted
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in order to show the efficiency of our approach. We discuss the limitation of our
approach and future work, and conclude in section 6.

2 Related Work

In this section, we review related work on data compression with emphasis on
data compression in sensor networks.

2.1 Data Compression

There are two main categories of data compression — lossless and lossy data com-
pression. Lossless compression algorithms usually generate a statistical model
of the data and map the data to bit strings based on the generated model.
Meanwhile in lossy compression, data is often transformed into a new space
using appropriate basis functions. In the new space, the data information or
signal energy is usually concentrated in a few coefficients. Hence, compression
can be achieved after quantization and entropy coding. For example, discrete
fourier transform (DFT), discrete cosine transform (DCT), and discrete wavelet
transform (DWT) are used extensively in most image compression applications
(e.g. JPEG,JPEG2000). Audio and video compression also use predictive codecs,
where previously decoded data is used to predict the current data and only the
difference between the predicted and real data is encoded.

For sensor networks, the sensed data of the environment can also be mod-
eled as an image of a temperature, humidity or light map and a standard image
compression technique may be subsequently applied. However, sensor networks
have some distinct features such as limited computation, distributed processing,
degree of correlation and faulty readings, motivating new compression archi-
tectures and techniques tailored to meet their requirements. We briefly review
recent work in the next section.

2.2 Data Compression in Wireless Sensor Networks

In Distributed Source Coding Using Syndromes (DISCUS), Pradhan et al [6]
proposed a framework for distributed compression using joint source and chan-
nel coding. This approach minimizes the amount of inter-node communication
for compression using both a quantized source and correlated side information
within each individual node. While it shows an interesting theoretical approach,
the choice of the correlated side information is essential to the performance of
the algorithm and normally not well known in practice. Unlike this work, we
have clearly verified our approach using real data report from sensors at Intel
Research Lab at Berkeley.

Based on the recent result of Candes and Tao on near optimal signal re-
covery from random projections [10], Rabat et al. [7][8] propose a distributed
matched source-channel communication architecture and reconstruction method
from noisy random projections. A similar approach can be found in [8] which
uses a gossip communication scheme. Although it is claimed to be universal,
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there is a trade-off between power-distortion-latency. In addition, they do not
consider the correlation of the data itself.

Several methods have been proposed to use wavelets and their variants in
analyzing and compressing the sensed data [11] [12][13][14]. Ganesan’s DIMEN-
SIONS [11] was one of the first systems addressing multi-resolution data ac-
cess and spatio-temporal pattern mining in a sensor network. In DIMENSIONS,
nodes are partitioned into different clusters and organized in a multi-level hier-
archy. Within each cluster, the cluster head performs a two dimensional wavelet
transform and stores the coefficient locally. These coefficients are in turn passed
to the next level in the hierarchy for wavelet transform at a coarser resolution.
While DIMENSIONS shows interesting results, it makes two main assumptions
that we do not: (i) nodes are distributed in a regular grid and (ii) cluster heads
can always communicate with their parents. Wagner[13][14] proposed an archi-
tecture for distributed wavelet analysis that removes the assumption about the
regularity of the grid. In addition, an algorithm for performing the wavelet trans-
form by tracing through the path in the minimum spanning tree and performing
the wavelet filter along the path is proposed in [12]. It minimizes inter-node
communication by transmitting partial coefficients forward and updating future
sensors until the full coefficients are computed. It implicitly assumes that the
path will be long enough in order to apply wavelet analysis effectively. Further-
more, it is not clear how to choose an optimal path for compression and the
spatial correlation is not fully explored.

Few other works in distributed audio and video compression in wireless sen-
sor networks can be found at [15][16][5]. Other approaches [17][18] try to solve
multiple goals such as routing, aggregation, indexing and storage, and energy
balancing with compression.

Our approach relies only on the sensing data itself. Therefore it does not
make any assumptions about regularity of the network [11] or use any further
information such as geographical location [13][14] or routing path [12]. In addi-
tion, it guarantees the optimal performance of compression algorithms instead
of being universal [10][7][8]. We have also implemented and evaluated our ar-
chitecture using real sensor data to verify that it works within typical sensor
environments. Finally we proposed a resiliency mechanism to ensure a robust
compression architecture in sensor networks.

3 Understanding Data Correlation

One of the main challenges of transformed data compression is to explore the cor-
relation of data in time, space, or frequency domains. Most existing approaches
try to organize sensors into groups based on spatial relationships in order to ob-
tain some correlation of the readings. However, when we observed the readings
over time of 54 sensors deployed at Intel Lab at Berkeley, we found out that
(i) Sensors in similar environmental conditions that are not necessarily spatially
correlated can report correlated data, (ii) Correlation of data may be indepen-
dent from external factors such as sensor location and environmental conditions.
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To illustrate these points, consider the spatial graph of the light sensor readings
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Fig. 1. Nodes nearby open windows and under light bulbs reporting similar reading

at night over time as shown in Fig. 1. As you can see, dark areas indicate high
light intensity. Hence, sensors nearby opened windows report high readings due
to the external light. These readings should be similar to those sensors nearby
light sources inside the building. Hence, correlation exists due to the similarity
of environmental factors as well as the sources. Spatial correlation can be seen
as one specific case of this because nearby nodes can have similar condition. The
converse, however, is not always true. In addition, Fig. 2 plots voltage readings
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Fig. 2. Correlation of voltage readings is independent of external factors

of sensors. Intuitively, nodes with similar power level should be similar over time
regardless of external environmental and spatial factors.

From these findings, we believe that in order to explore the correlation of
data, we should look at the information contained in the data itself rather than
considering only attribute meta-data such as location and time. Once the under-
lying pattern of the data is found, we can assign nodes with appropriate logical
indices to ensure the best performance of compression algorithms. The following
section describes the information-driven architecture in detail.
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4 RIDA: Robust Information-Driven Architecture

4.1 Key Assumptions

We are aware that our approach is only suitable for some types of sensor net-
works, which are characterized by the following assumptions. The network is
fixed and can be partitioned into clusters. We also assume that the communi-
cation between any two nodes in a cluster takes one hop. This assumption can
be relaxed in a hierarchical network topology. Furthermore, significant changes
in the environment do not occur at high frequency eg. several times a day is
reasonable. In addition, we only consider compression for scalar data. Finally,
we assume the existence of cluster formation and synchronization protocols.

4.2 Overview

The system architecture consists of three main components; information-driven
logical mapping, resiliency mechanism, and compression algorithms. In information-
driven logical mapping, nodes within a cluster exchange their readings over a
short period of time. During this period, each node learns the pattern of data
of the whole cluster. A information-based logical mapping is designed allowing
nodes to choose logical indices for themselves. The intuition is that nodes with
correlated data should have logical indices near each other. Several mapping
schemes will be discussed in more detail later.

The resiliency component involves detecting, isolating, and classifying faulty and
missing nodes during the compression and decompression steps. The detail of
this mechanism will be discussed in section 4.5. After the mapping is done, the
data can be processed using logical indices. The compression algorithms block
includes different compression techniques, which can be easily adapted to the
architecture. Section 4.4 outlines the integration of two most popular data com-
pression algorithms to the architecture. In general, nodes first broadcast their
readings to the cluster so that each node has a snapshot of the data within each
epoch. Individual node performs the data transformation and quantization it-
self. The coefficient the node has is the one having the corresponding index as
the logical index. The node only sends its coefficient back to the server if it is
non zero. At the sink or back-end server, original data can be reconstructed by
decompression from the nonzero coefficients, classification of the missing data,
and remapping to physical map of nodes.

4.3 Information-Driven Logical Mapping

The logical mapping gives nodes indices that can be used for data manipulation.

This powerful idea keeps the architecture independent from other information

such as nodes’ locations while still preserving the advantages, such as data cor-

relation, of having that information. The mapping can be formalized as follows.
M:(N,N") — L



Robust Information-Driven Data Compression 7

SERVER SIDE PROCESSING IN NETWORK PROCESSING

INFORMATION-BASED|
LOGICAL MAPPING

INFORMATION-
DRIVEN
LOGICAL
ASSIGNMENT

RESILIENCY
MECHANISM FILTER FAULTY
NODES
ONLY. ;;Ng NON- QUANTIZATION / DCT / WAVELET
COEFFICIENTS oL F

Fig. 3. Detailed System Architecture

M(d(s),D) =1
Where: L is the logical index space. N is the natural set representing the value
of sensor data. M notates the mapping from a sensor s to a logical index [ such
as (z,y) in 2D mapping. It uses only the value of the sensor data d(s) and values
of other sensors in the cluster D to determine [. The mapping can be application
and algorithm specific. As a first step, we simply sort the data and index the
nodes in sequence based on the order of the sorted data.

More specifically, the mapping within a cluster has the following steps. The
cluster head broadcasts a begin_mapping message. Nodes within the cluster send
their sensing data to the cluster head. The cluster head receives data from sensors
for a short period of time. It then analyses the pattern of the data values and does
the mapping accordingly. For example, in 1D sorted mapping, the cluster head
sorts all the data values and sensor ids in ascending order and starts assigning
indices sequentially. Once this step is done, the cluster head broadcasts the map
and waits for all acknowledgements before sending end_mapping, which turns
sensors into normal sensing mode.

4.4 Data Transformation

Various algorithms can be easily integrated with the architecture. We have
adapted the discrete cosine transform, as well as the first and second generations
(lifting scheme) of wavelet transform. Again, depending on the underlying com-
pression algorithm, the logical mapping assigns indices to nodes appropriately.
This ensures the flexibility of the architecture for a wide range of applications.
In addition, since each node only needs to calculate the coefficient corresponding
to its index, it does only the necessary operations. For example, in 2D-DCT, a
node only multiplies the corresponding row and column in the block instead of
doing a matrix calculation for the whole block. Likewise, in DWT, a node with
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Fig. 4. Pseudo-Code For 2D-DCT

detail coefficient only needs to run the low pass filter with readings of logically
nearby neighbors. Fig. 4 shows an example of distributed DCT.

4.5 Error Detection and Classification

Reliability of data is of paramount importance because network nodes fail fre-
quently. Even when nodes have not failed, their operations are typically unstable.
Fig. 5 shows the reading history of 54 sensors in a controlled environment. As ob-
served, 53 out of 54 nodes are working. However, the number of nodes reporting
data is always around 50% within each epoch. Better design of routing protocols
could help increase this rate, but we still have to address the problem of actual
faulty and missing nodes. This motivates us to design a simple mechanism to
distinguish between missing data and real data at the sink.

All the nonzero data will be projected to an interval (for example [128,255]).
The data of different types have different ranges. Although the data value is ob-
tained from the same 10-bit ADC, the ranges of the data are different. Therefore
the projection will unify the way we drop coefficients through quantization or
thresholding. Missing readings will be set to zero. Hence, we have a set of data
from [128,255] for normal data and 0 for missing data of all different scalar types
like temperature, humidity, light and voltage. These zero values would result in
low values in the reconstructed data. Hence, we can use a threshold to classify
them. The threshold we used is 64 which has been shown to classify correctly
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most of the time. Obviously, there is an inherent trade-off in the ability to detect
missing readings and the decompression error.

5 Experimental Design and Analysis

This section describes how the experiments are setup to evaluate the architecture
and discusses the results.

5.1 Goals and Metrics
The goals of the experiments in this section are four-fold.

— To understand how flexibly the information-driven architecture can adapt
to different underlying algorithms, specifically compression algorithms.

— To understand how different compression algorithms perform on real sensor
data with different logical mapping schemes.

— To understand how robust the architecture is to missing sensor data and
failures using our proposed resiliency mechanism.

— To understand how much energy and bandwidth is saved in a typical multi
hop network using our approach.

To evaluate the first goal, we will show that different compression algorithms
such as DCT and DWT can be made distributed and integrated with the archi-
tecture. The system only needs to change the logical mapping scheme to apply
the underlying algorithms.

The second goal is analyzed by observing the tradeoff between compression
ratio and normalized mean squared error (MSE) of the compression algorithms
using different mapping schemes. We used two main compression algorithms,
DCT and DWT, and two simple mapping schemes, one dimensional ordered
and two dimensional ordered mappings. Ideally, we aim for a configuration that
results in high compression ratios with low normalized MSE.

To evaluate the third goal, we consider the accuracy and recall of the classi-
fication step against the number of faulty nodes. They can be calculated as:

— TP4+TN
accuracy = totalnumbero fnodes

recall =
where:

totalnumberofhealthynodes

— TP-True Positive : Number of correctly classified healthy nodes
— TN-True Negative : Number of correctly classified faulty nodes

Therefore accuracy indicates how well the system can correctly classify healthy
and faulty nodes, while recall represents the portion of correctly classified nodes
in the set of nodes classified as healthy. Ideally, we wish to see the values of both
accuracy and recall as close to 100% as possible.

Finally, we evaluated the energy consumption using PowerTOSSIM. The
compression algorithm is implemented for the MicaZ platform and simulated
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in PowerTOSSIM. The energy consumption can be observed separately by mea-
suring CPU operations and RF transmission. In order to understand how much
energy is saved by doing compression in multihop networks, we use the following
bench mark.

cp = nlty +tr)h

ce=n(ty +t.+d)+n'h(t, +tz)
Where
¢p 1s the cost to transmit raw data back to the server.
¢. is the cost to transmit data back to the server using compression.
n is the cluster size. In the case of missing sensors, n is the number of healthy
nodes.
h is the average hop count.
t,t, are transmitting and receiving power for one package.
d is the cost to compress the data.
n' is the number of non-zero coefficients. n/n’ is aproximately 20:1 for jpeg.

The energy saving is:

cp—C  n(ty +t)h—n(ty +t- +d) — n'h(t, +t,)

h= w n(ty +t.)h (1)

In the above equations, we do not consider the cost for mapping. However, as
we have assumed previously that the frequency of changes in the environment is
low, the mapping cost overall is negligible in comparison to the cost of collecting
data. In addition, we only consider energy saving for one cluster because the
percentage of energy saving in a fixed diameter network is independent of the
number of clusters and determined by the hop count. Finally, we also assume
there is no transmission loss for compressed data. However, one can expect that
because less data is transmitted in the network, the transmission loss is smaller.
Hence, in real world applications, we expect to see slightly higher error when
loss in transmitting compressed data occurs.

5.2 Experimental Design

The experiments are designed based on the data collected from 54 sensors be-
tween February 28th and April 5th, 2004, which has been made available by Intel
Berkeley Research Lab [19]. As discussed in the previous section, the number of
sensors reporting data within each epoch is only around 50%. Hence, we decided
to design two sets of experiments with two sets of data respectively.

The purpose of the first experiment set is to evaluate how different com-
pression algorithms such as DCT and DWT perform on the real data. It also
analyzes different to the mapping schemes such as 1D versus 2D and how robust
the system is to the number of missing nodes. The raw data set has its missing
values filled in via interpolation to create a complete data set. Thus, it creates
an ideal sensor network data set, where every node reports readings within each
epoch. In order to evaluate how robust the system is against node failures, we
randomly insert faulty readings as zero values and perform the classification
during the reconstruction phase.
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The second set of experiments is to evaluate our approach on the real raw
data without any interpolation. This set of data, as you can see from Fig. 5, has
about 50% of its readings missing within each epoch. However, our experiments
show that the system still achieves a reasonable compression ratio with low error
and high detection rate.

5.3 Results and Analysis

Logical Mapping Schemes This section discusses several findings on different
logical mapping schemes. Basically, there are two logical mapping schemes, 1D
content-based and 2D content based mappings, where the data is sorted and
indices are assigned based on the order of the data values reported by the sen-
sors. These two mappings are evaluated against two location-based mappings
where indices are assigned based on geographical relationships. Nodes which
are close together have nearby indices in the block. As we can see in Fig. 7,

1D vs 2D DCT-based Compression (Voltage) 1D vs 2D DCT-based Compression (Temperature)
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Fig. 7. Location-based mapping versus Content-based mapping and 1D versus 2D
Transform

DCT compression using information-based mappings outperforms those using
location-based mappings. With the same compression ratio of 20:1, DCT com-
pression using information-based mappings has a normalized MSE 50% less than
location-based mappings. In addition, the 1D transform also gives lower errors
in comparison to 2D transform. The normalized MSE is reduced by 30% if we
use information-based mappings for voltage. The graph for temperature shows
a transition when the compression ratio reaches 25. This is reasonable, because
the data set has 49 nodes, so ideally a compression of lower than 25:1 should be
considered. Compression ratios of over 25 mean that only one coefficient is left.
Therefore, it would be pointless to compare those. This result is even clearer
with wavelet transform. One limitation of the 2D transform is that the number
of nodes within a cluster must be a square number. Clustering formation is a
complex research area and so far no prior work has attempted to constrain the
number of nodes in a cluster. In addition, due to the limit on number of nodes
within a cluster, we would recommend compression should use 1D mappings.
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DCT-based and Wavelet-based Compression The wavelet-based compres-
sion in general shows much lower error that DCT-based compression. While the
DCT-based approach shows an error of around 9%, the Wavelet-based approach
has an error of only 3%, which is 67% less. However, due to the limit on the length
of the data, wavelets with a high number of coefficients can start to diverge much
sooner although they have a lower error with the same small compression ratio.
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Fig. 8. DCT-based vs Wavelet-based Compression

Error Detection and Classification By the term faulty node, we mean to
describe a node that sends odd data or no data at all. This is similar to a
missing node, where the node is missing and does not send any data. Hence, we
use the term faulty for both. Faulty data is randomly inserted into the data set
before compression. The non-zero data is scaled to the [128,255] interval and we
use a threshold of 64 to classify faulty data in both cases. When the number

Compression Ratio vs Number of Faulty Nodes (Temperature) Normalized MSE vs number of faulty nodes (Temperature)
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Fig. 9. Compression Performance on Temperature Readings

of faulty nodes increases from 1 to 30, DCT-based compression error increased
dramatically from 6% to 45%. But it becomes stable around 45% when the
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number of faulty nodes reaches above 10. Likewise, the error in wavelet-based
approach only slightly increases from 2% to 4%. The compression ratio also
decreases gradually from 10:1 to 3:1. This is reasonable because the nature of
DCT-based transform is suitable for a smooth signal whereas Wavelet-based
transform is more suitable with piecewise constant data. To our surprise, both
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Fig. 10. Classification Accuracy and Recall on Temperature Readings

DCT and Wavelet have very high accuracy and recall rates even when more than
half the network is faulty. Haar wavelets can maintain a performance of up to
97% for both accuracy and recall. DCT is slightly lower but, still above 90%
for accuracy and 97% for recall. Both of these values decrease gradually as the
number of faulty nodes in the network increases. Similar results can be seen for
other types of data such as humidity and voltage.
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Fig.11. Compression Performance on Raw Humidity Readings

Performance on Raw Data The data was collected using TinyDB, which
queries data among sensors at the same time. However, collected data has a
latency and dropping rate. One way to improve it is to design better routing
and data aggregation protocols. However, these are still in development. Hence,
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we applied our system to this real set of data. Surprisingly, we still get the desired
results. A compression ratio of 3:1 can be achieved for both DCT and Wavelet
with an error less than 5% as shown in Fig. 11. Moreover, around 90% of nodes
are still correctly classified and the recall rate is as high as 98%. In both cases,
wavelet performs 3% better than DCT as shown in Fig. 12.
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Fig. 12. Classification Accuracy and Recall on Raw Humidity Readings

Energy Consumption As mentioned at the beginning of the paper, one main
purpose of data compression is to conserve energy and bandwidth. We have
shown how our system can enable various compression algorithms and save a
large amount of bandwidth by logically processing the data and sending only a
few non-zero coeflicients. We also state that the CPU operations consume much
less energy than RF transmission. Indeed, Fig. 13 shows that the total energy
consumed by the CPU operations including all normal activities and DCT trans-
form is still only 2.5 times less than that of one RF transmission within each
epoch. Hence, for multihop networks where the number of RF retransmissions
is several times higher, our approach can be expected to save not only a large
amount of bandwidth but also a significant amount of energy. Applying Eq. 1, we
can know how much energy is saved for multihop networks as shown in Fig. 13.
We have seen that different compression algorithms can be easily adapted to
our architecture. Moreover, with the introduction of logical mapping, optimal
performance can be simply tuned for different applications. In general, due to
the limit on the number of nodes within a cluster, 1D mapping and transforma-
tion normally gives better performance than 2D mapping and transformation. In
addition, Wavelet-based compression gives a lower error bound than DCT-based
compression. It is surprising that the wavelet lifting scheme did not perform as
well as expected. One of the reasons may once again be the limited length of the
signal or the number of nodes within a cluster, correspondingly. Another surprise
was that with our resiliency mechanism, the compression system becomes very
robust even when half of the cluster is missing. Finally, although DCT transform
and wavelet transform require an average amount of work load for Micaz class
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Fig. 13. Energy consumption of RF vs CPU

sensors, we still see that the energy saved by reducing the number of RF trans-
missions to CPU operations is 2.5. For an average 3-hop network, the energy can
be saved by 30%. This ratio will be much higher in multihop networks where
the number of RF retransmissions is proportional to the number of hops.

6 Conclusion and Future Work

In conclusion, we have presented RIDA, a novel distributed information-driven
architecture for data compression for irregular sensor networks. The key idea is
to assign the sensor nodes with logical indices based on the content of the data
they report in order to optimally explore the correlation of the sensor data. This
approach moves beyond conventional approaches, which have explored how to
improve data compression by only exploiting spatial and temporal correlation.
We have implemented and evaluated various popular data compression tech-
niques such as DCT-based, Wavelet-based to the architecture. In addition, we
also presented a simple method for detecting and classifying faulty nodes. The
experimental results on real data show that our architecture can enable high
compression ratios, low error and high robustness to faults.

Our current approach is limited to scalar data for environmental monitoring
with low changing frequency. We also rely on the clustering structure and assume
that the network is fixed. In the future, we would like to investigate further how
this approach can be extended to meet the requirements for high rate data
compression such as audio and images. Moreover, we would like to consider how
it can be adapted to a network of mobile sensors. In addition, we would like to
further study several factors that affect compression algorithms such as cluster
size, quantization schemes, projection ranges and energy balancing as well as the
tradeoff between compression and fault tolerance in sensor networks.
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