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Abstract—We propose a light weight algorithm to classify cane-
toads, a non-native invasive amphibian species in Australia as
well as other native frog species, based on their vocalizations
using sharply resource-constrained acoustic sensors. The goal
is to enable fast in-network frog classification at the resource-
constrained sensors so as to minimize energy consumption of
the sensor network by reducing the amount of data transmitted
to a central server. Each sensorrandomly and independently
samples a signal at a sub-Nyquist rate. The vocalization envelopes
are extracted and matched with the original signal envelopes
to find the best match. The computational complexity of the
algorithm is O(n). It also requires less than 2KB of data memory.
Our experiments on frog vocalizations show that our approach
performs well, providing an accuracy of 90% and a miss rate of
less than 5%.

I. I NTRODUCTION

A wireless sensor network consists of small embedded
sensing devices with extremely limited energy, processing
and memory relative to a personal computer. A typical
sensing device is the MicaZ mote from Crossbow, which
has an Atmega128 7.4MHz processor, 128KB program
memory and 512KB serial flash memory, and run on 2 AA
batteries. These sharp resource constraints are necessitated
by deployment requirements of low power consumption for
unattended, untethered operation and small form factor design
for unobtrusive monitoring because sensor networks are
often deployed in remote environments to monitor a physical
environment, detect, or classify some events.

In this paper, we consider the problem of using resource-
constrained embedded acoustic sensors to detect and classify
some amphibian species based on their vocalizations. The
practical application motivating our work is the detectionof
cane-toads in northern Australia. The cane-toad, a non-native
species was originally introduced in Australia during the
1930s to control sugar-cane pests. In the absence of natural
predators, they have colonized most of northeastern Australia
and raised concerns about their impact on the environment
and other native species [1]. Scientists are interested in
detecting the cane-toads from their call patterns as well as
studying their impact on native frog species over a period of
time.

A major challenge for such outdoor sensor network
applications is energy conservation. Sensors are typically
battery operated and the energy can be depleted very quickly.
Communication consumes a dominant amount of energy, in
fact, about 60% of the total energy according to one study[2].
Our goal is to develop a lightweight acoustic classification
algorithm for implementation at the resource-constrained
motes that minimizes the classification time while preserving
the sensor energy to prolong the sensor network lifetime.

The state-of-the-art approach for acoustic classificationof
cane-toads [1] requires sensors to sample the signal at the
Nyquist rate and transfer the samples to higher-capability
devices for classification using machine learning algorithms.
Unfortunately, this approach is energy and bandwidth
intensive because the sensors must sample the signal at a
high rate (10 KHz) and expend a lot of energy and bandwidth
in transferring the samples. This approach is also not very
scalable due to the large amounts of data collected with each
sensor sampling at 10 KHz.

Recent results incompressive sensing theory [3] show that
a small number of random samples can embed the signal
structures well, provided that the signal is sparse in some
domain. Building on this result, two proposed approaches [4],
[5] perform detection and classification on randomly sampled
data. Boyleet al. [4] show that we can classify signals from
the histogram of the signal random samples. Unfortunately,
the histograms are difficult to recover under noise. Davenport
et al. [5] propose a smashed filter, a variant of the matched
filter to classify signals using random samples. However,
it is computationally infeasible to use the smashed filter in
resource-constrained devices for a large number of samples.

To overcome the limitations of previous approaches, we
have designed a light-weight classification algorithm thatcan
be executed at the resource-constrained sensors, such as the
MicaZ mote class devices. The main intuition for this approach
is that animal vocalizations in general, and cane-toad vocaliza-
tions in particular, have simple repeated patterns withoutthe
variation prevalent in human speech. This implies that simple
feature extraction should work for animal classification. Our



Fig. 1. Lightweight acoustic classification

approach is to estimate the signal envelope from randomly-
sampled data at a much lower sampling rate than the signal
Nyquist rate and match this envelope with the candidate signal
envelope.1 Our approach differs from using a low pass filter
or a uniform sampling rate in that randomly-sampled data can
capture more information than uniform sampled data. This
approach has the following key advantages.

• It requires a low sampling rate which enables resource-
constrained sensors to classify high frequency signals.

• It is computationally feasible at the resource-constrained
sensor level.

• It does not require precise timing, which is difficult on
resource-constrained sensor devices.

• It requires only a small memory storage.

II. ALGORITHM

Our proposed classification algorithm has three main steps
— random sampling, envelope extraction, and matched filter-
ing (Figure 1).

A. Random Sampling

Recent results in compressive sensing show that a small
number of random samples of a signal can actually embed the
signal structure well, provided the signal is sparse in some
domain. Random sampling is also suitable for sensor devices
because timing control is difficult. The random samples may
happen to be close together in time, requiring the sensor to
sample at a high frequency for a short period. To overcome
this, we generate random indexes in a short time period
and scale them to a large time scale. The scale factor is the
shortest time period between two samples.

The sampling time is determined by the following equation:

sampleT ime = M × randsample(n/M,m)

+s × round(randn(m, 1))
(1)

1Note that our proposed approach cannot be implemented if the resource-
constrained motes were sampling at the Nyquist rate of 10 KHz, instead
of performing compressed random sampling. As shown in [1], Nyquist rate
sampling at 10 KHz requires the mote to suspend other tasks.

n is the signal length,M is the down sampling factor,m is
the total number of measurements, ands is the scaling factor
that controls how large the jitter (discussed shortly) is.M
controls the minimum time interval between each sample.
Function randsample(a, b) picks b arbitrary numbers with
an independent and identical distribution (i.i.d) from1 to a.
Functionrandn(a, b) generates ana × b matrix with random
entries, chosen from a normal distribution with zero mean
and variance one.

It is possible that a sensor must collect two random samples
that are extremely close in time. In this case, for a short
time period, the sensor must to be able to sample at Nyquist
rate. We overcome this limitation by choosing the sampling
time randomly in a short time periodτ and dilate it to the
full time scaleΓ. The sampling time sequence is determined
by M × randsample(n/M,m). We selectm sample times
randomly from the time scaleτ , [1,n/M ] and dilate the
sample time to the time scaleΓ, [1, n] by multiplying the
sampling time byM . The sampling times are now random
from 1 to n and are at leastM time units apart. This ensures
that we not only collect a smaller number of samples but
also sample at a rateM times lower than the Nyquist rate.
To increase the sampling time randomness, we introduce the
time jitter, which has a normal distribution at the sampling
time. We generate jitter usings × round(randn(m, 1)).

B. Envelope Extraction

Roughly speaking, the envelope of a signalx(t) is the
boundary within which the signal is contained. The signal
envelope can be estimated by applying a low-pass filter or
smoothing the signal. We simplify the computation by just
windowing the signal and taking the maximum absolute value
of the samples in each non-overlap window.

We subdivide the recorded samplesx(n), 0 ≤ n ≤ N − 1
into K non-overlapping smaller segments as follows:

xi(n) = x(iD + n)w(n)0 ≤ n ≤ L − 1, 0 ≤ i ≤ K − 1 (2)

wherew(n) is basically a rectangular window of durationL
andD is an offset distance.

The envelope is then estimated as:

y(i) =
K−1

max
i=0

xi(n) (3)

Sensors can compute the envelope very efficiently because
they only need to examine the maximum value of the incoming
samples in each window. Therefore, sensors can compute the
envelope as they sample the signal. In general, a frog often
makes several calls continuously. Hence, we use a thresholdǫ
to separate each call. Each envelope is normalized to have unit
energy. The set of envelopes of frog calls is denoted asym(i)
wherem is the index of the call. Figure 2 shows an example
of frog calls and the envelopes. Using the same techniques, we
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Fig. 2. Example frog call and three extracted envelopes

also extract the benchmark envelopes of all the frog species
using the training signals. We denote this set of envelopes as
Y m

k
(i) wherek is the index of the frog.

C. Matched Filtering

After the set of frog call envelopesym(i) are recorded, we
the apply the matched filter ofym(i) with Y m

k
(i) to detect the

frog species. The matched filter is used extensively in signal
processing and communication to detect a signal. It can be
performed efficiently by convolution. The classified frogk is
defined as

k = argk max

m∑

1

ym(i) ∗ Y m

k
(−i) (4)

where∗ denotes the convolution operator, which is defined as

(f ∗ g)(n) =
∞∑

m=−∞

f(m)g(n − m) (5)

where f and g are two signals.k can be interpreted as the
frog type whose calls have the maximum correlation with the
benchmark calls.

III. EXPERIMENTAL RESULTS

We have conducted several experiments to study the effec-
tiveness of our algorithm. Depending on the frog type, we
used between 5 to 20 coefficients to represent a frog call
envelope. The total number of benchmark envelopes is less
than 2 KBytes. We recorded the different cane toad songs
randomly. Then, we perform random sampling, extract the
recorded signal envelopes and run the matched filter. For each
signal, we iterate 50 times by generating 50 random sample
sets. We vary the down sampling factor from 5 to 200 in steps
of 5. We also vary the down sampling factor at a larger scale
from 100 to 1000 in steps of 100. We observed the following
metrics:

• true positive rate,i.e., the percentage of times that the
frogs are correctly classified

• false negative rate, the percentage of times that the frogs
are present but could not be detected, and
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Fig. 3. Envelopes of cane toad calls

• false positive rate, the percentage of times that the frogs
are not present but are detected

In general, we wish to have a high true positive rate and a
low false negative rate. The low false negative rate is critical
because we do not want to miss a frog. Ideally, the false
positive rate should also be low. However, it is less critical if
this rate is high because sensors can trigger a more capable
server to verify the result. It is preferable to detect a frog
incorrectly rather than miss a frog.

In the first set of results, we can see that even with a down
sampling factor of more than 100, the true positive rates
are above 90%. The true positive rates for Bufo Marinus
(scientific name of the cane-toad) and Notaden Melanoscaphus
are always 100% (Figure 4). These rates degrade slowly as
the down sampling factor approaches 200. In Figure 5, the
false negative rates start at about 5% and increase gradually
to 20% as the down sampling factor increases from 5 to
200. Notably, the false positive rates are pretty high, about
50% for Bufo Marinus and Cyclorama Cryptotis (Figure 6).
However, as we mentioned before, a high false positive rate
is less critical than a high false negative rate as we would
not want to miss a frog. However, a false detection of a frog
can be verified by triggering a higher computation backend
server to check the result.

As we increase the down sampling factor to 1000, the
classification degrades very quickly. However, the true positive
rate for Notaden Melanoscaphus is still very high and its
false negative is also low. However, its false positive ratealso
increases to 80%. As the down sampling factor approaches
1000, the false positive rates for Bufo Marinus and Cyclorama
go to 0%. However, the true positive rates and the false
negative rates go to 0% and 100% respectively.
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Fig. 4. True positive classification rate when down sampling factor varies
from 5 to 200
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Fig. 5. False negative classification rate when down samplingfactor varies
from 5 to 200
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Fig. 6. False positive classification rate when down samplingfactor varies
from 5 to 200
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Fig. 7. True positive classification rate when down sampling factor varies
from 100 to 1000
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Fig. 8. False negative classification rate when down samplingfactor varies
from 100 to 1000
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Fig. 9. False positive classification rate when down samplingfactor varies
from 100 to 1000



IV. CONCLUSION

We presented a lightweight algorithm to classify cane toads
based on their call patterns. It builds on compressive sensing
theory which shows that a small number of random samples
can embed the signal structures well. In contrast to prior work,
the algorithm can be readily implemented on sharply resource-
constrained sensors such as the MicaZ motes, without any
specialized hardware (eg. DSP chips). It requires only about
2 KBytes of memory for classification and allows sensors
to sample an acoustic signal at a rate 100 times lower, i.e.,
1% of the original 20 KHz Nyquist rate of the signal. Our
experimental results on real world cane-toad vocalizations
show that we can classify cane toads with more than 90%
accuracy and less than 5% miss rate. This algorithm clearly
is not the optimal algorithm for detection and classification
in general. However, this algorithm can significantly extend
sensor network lifetime and minimize classification time.
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