
Transport Layer 3-1

Chapter 3
Transport Layer

Computer Networking:
A Top Down Approach
Featuring the Internet,
3rd edition.
Jim Kurose, Keith Ross
Addison-Wesley, July
2004.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:
q If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)
q If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2005
J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-2

Chapter 3: Transport Layer

Our goals:
r understand principles behind transport

layer services
r learn about transport layer protocols in the

Internet

Transport Layer 3-3

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-4

Transport services and protocols
r provide logical communication

between app processes
running on different hosts

r transport protocols run in
end systems
m send side: breaks app

messages into segments,
passes to network layer

m rcv side: reassembles
segments into messages,
passes to app layer

r more than one transport
protocol available to apps

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end
-end transport

Transport Layer 3-5

Transport vs. network layer

r network layer: logical communication
between hosts

r transport layer: logical communication
between processes
m relies on, enhances, network layer services

Transport Layer 3-6

Common Transport Layer
Functions
r Demux to upper layer

m Delivering data to correct
application process

r Quality of service
m Providing service

guarantees in processing
(buffers, process
scheduling)

r Security
m Authenticity, Privacy,

Integrity for connection
r Connection setup

m Providing a connection
abstraction over a
connectionless substrate

r Delivery semantics
m Reliable or unreliable
m Ordered or unordered
m Unicast, multicast,

anycast
r Flow control

m Prevent overflow of
receiver buffers

r Congestion control
m Prevent overflow of

network buffers
m Avoid packet loss and

packet delay

Transport Layer 3-7

UDP and Transport Layer
Functions
r Demux to upper layer

m UDP port field
r Quality of service

m none
r Security

m None
r Connection setup

m none
r Delivery semantics

m Unordered, unicast or multicast
m Unreliable, but data integrity provided by checksum

r Flow control
m none

r Congestion control
m none

Transport Layer 3-8

TCP and Transport Layer
Functions
r Demux to upper layer

m TCP port field
r Quality of service

m none
r Security

m None, rely on TLS (SSL)
r Connection setup

m 3-way handshake
r Delivery semantics

m In-order, unicast
m Data integrity provided via 32-bit checksum

r Flow control
m Receiver advertised window

r Congestion control
m Window-based

Transport Layer 3-9

SCTP and Transport Layer
Functions
r Demux to upper layer

m SCTP port field
r Quality of service

m none
r Security

m Limited DoS protection via signed state cookie (SYN cookies)
m Rely on TLS (SSL)

r Connection setup
m 4-way handshake

r Delivery semantics
m Optional ordering, unicast
m Optional reliability, but data integrity provided via 32-bit CRC

r Flow control
m Receiver advertised window

r Congestion control
m Window-based

Transport Layer 3-10

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-11

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

Transport Layer 3-12

How demultiplexing works
r host receives IP datagrams

m each datagram has source IP
address, destination IP
address

m each datagram carries 1
transport-layer segment

m each segment has source,
destination port number

r host uses IP addresses & port
numbers to direct segment to
appropriate socket
m source, dest port #s in each segment
m recall: well-known port numbers for

specific applications
m Servers wait on well known ports

(/etc/services)

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Transport Layer 3-13

Connectionless demultiplexing

r Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);

r UDP socket identified by
two-tuple:

(dest IP address, dest port number)

r When host receives UDP
segment:
m checks destination port

number in segment
m directs UDP segment to

socket with that port
number

r IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-14

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Transport Layer 3-15

Connection-oriented demux

r TCP socket identified
by 4-tuple:
m source IP address
m source port number
m dest IP address
m dest port number

r recv host uses all four
values to direct
segment to appropriate
socket

r Server host may support
many simultaneous TCP
sockets:
m each socket identified by

its own 4-tuple
r Web servers have

different sockets for
each connecting client
m non-persistent HTTP will

have different socket for
each request

Transport Layer 3-16

Connection-oriented demux
(cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Transport Layer 3-17

Connection-oriented demux:
Threaded Web Server

Client
IP:B

P1

client
IP: A

P1P2

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P4 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Transport Layer 3-18

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-19

UDP: User Datagram Protocol [RFC 768]

r “no frills,” “bare bones”
Internet transport
protocol

r “best effort” service, UDP
segments may be:
m lost
m delivered out of order

to app
r connectionless:

m no handshaking between
UDP sender, receiver

m each UDP segment
handled independently
of others

Why is there a UDP?
r no connection

establishment (which can
add delay)

r simple: no connection state
at sender, receiver

r small segment header
r no congestion control: UDP

can blast away as fast as
desired

Transport Layer 3-20

UDP: more

r often used for streaming
multimedia apps
m loss tolerant
m rate sensitive

r other UDP uses
m DNS
m SNMP

r reliable transfer over UDP
m add reliability at

application layer
m application-specific error

recovery!
m Many applications re-

implement reliability over
UDP to bypass TCP

m New transport protocols?

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 3-21

UDP checksum

Sender:
r treat segment contents

as sequence of 16-bit
integers

r checksum: addition (1’s
complement sum) of
segment contents

r sender puts checksum
value into UDP checksum
field

Receiver:
r compute checksum of

received segment
r check if computed checksum

equals checksum field value:
m NO - error detected
m YES - no error detected.

But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 3-22

Internet Checksum Example
r Note
mWhen adding numbers, a carryout from the

most significant bit needs to be added to the
result

m 1s complement => convert 0 to 1 and 1 to 0
r Example: checksum for two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Transport Layer 3-23

Internet Checksum Example
r Verification at receiver

m Add all 16-bit words and checksum together
m If no errors, sum will be all 1s

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Transport Layer 3-24

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-25

Principles of Reliable data transfer
r important in app., transport, link layers
r top-10 list of important networking topics!

r characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-26

Principles of Reliable data transfer
r important in app., transport, link layers
r top-10 list of important networking topics!

r characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-27

Principles of Reliable data transfer
r important in app., transport, link layers
r top-10 list of important networking topics!

r characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-28

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Transport Layer 3-29

Reliable data transfer basics

r Error detection, correction
r Retransmission
m For lost or corrupted packets

rDuplicate detection
m Spurious retransmissions identified

r Connection integrity
m Bogus packets not included

Transport Layer 3-30

rdt3.0 state machine

r See textbook and extra slides for issues in
developing protocols and state machines for
reliable data transfer

r Highlights
m Sequence numbers (duplicate detection)
m Acknowledgments (error and loss detection)

• Positive or negative acks
• Cumulative or selective acks
• Rdt3.0: Cumulative positive acknowledgements

m Checksum (error detection)
m Retransmission via timer (loss recovery)
m Problem: Stop-and-wait operation

• Send one packet
• Wait for ACK before sending next packet

Transport Layer 3-31

Performance of Stop-and-Wait

r example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:
r Assume no errors or loss

Ttransmit= 8kb/pkt
10**9 b/sec = 8 microsec

m U sender: utilization – fraction of time sender busy sending

U
sender =

.008
30.008

= 0.00027
microsec

L / R
RTT + L / R

=

L (packet length in bits)
R (transmission rate, bps) =

m 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
m network protocol limits use of physical resources!

Transport Layer 3-32

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
m range of sequence numbers must be increased
m buffering at sender and/or receiver

r Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-33

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008
microsecon

3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

Transport Layer 3-34

Go-Back-N
Sender:
r k-bit seq # in pkt header
r “window” of up to N, consecutive unack’ed pkts allowed

r Receiver sends cumulative ACK
m i.e. Highest in-order sequence number received
m may receive duplicate ACKs on loss or out-of-order

delivery(see receiver)
r timer for each in-flight pkt

m timeout(n): if no ACK received for n within timeout, retransmit pkt n
and all higher seq # pkts in window

Transport Layer 3-35

GBN: receiver

r Receiver simple
rACK-only: always send ACK for correctly-

received pkt with highest in-order seq #
mmay generate duplicate ACKs
m need only remember expectedseqnum

rOut-of-order pkt:
m discard (don’t buffer) -> no receiver buffering!
m Re-ACK pkt with highest in-order seq #

Transport Layer 3-36

GBN in
action

Transport Layer 3-37

Selective Repeat

r receiver individually acknowledges all correctly
received pkts
m buffers pkts, as needed, for eventual in-order delivery

to upper layer
r sender only resends pkts for which ACK not

received
m sender timer for each unACKed pkt

r sender window
m N consecutive seq #’s
m again limits seq #s of sent, unACKed pkts

Transport Layer 3-38

Selective repeat: sender, receiver windows

Transport Layer 3-39

Selective repeat

data from above :
r if next available seq # in

window, send pkt
timeout(n):
r resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

r mark pkt n as received
r if n smallest unACKed pkt,

advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

r send ACK(n)
r out-of-order: buffer
r in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

r ACK(n)
m ACK for pkt was lost,

rexmit

otherwise: ignore

receiver

Transport Layer 3-40

Selective repeat in action

Transport Layer 3-41

Selective repeat:
dilemma

Example:
r seq #’s: 0, 1, 2, 3
r window size=3

r receiver sees no
difference in two
scenarios!

r incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

Transport Layer 3-42

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-43

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

r full duplex data:
m bi-directional data flow

in same connection
m MSS: maximum segment

size
r connection-oriented:

m handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

r flow controlled:
m sender will not

overwhelm receiver

r point-to-point:
m one sender, one receiver

r reliable, in-order byte
steam:
m no “message boundaries”

r pipelined:
m TCP congestion and flow

control set window size
r send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

Transport Layer 3-44

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window

Urg data pnterchecksum
FSRPAUhead

len
not

used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-45

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-46

TCP reliable data transfer

r TCP creates rdt service on
top of IP’s unreliable
service

r Segment integrity via
checksum

r Cumulative acks
m Receiver sends back the

byte number it expects to
receive next

m Out of order packets
generate duplicate
acknowledgements

• Receive 1, Ack 2
• Receive 4, Ack 2
• Receive 3, Ack 2
• Receive 2, Ack 5

r Triggered retransmissions
m Via timeout events

• TCP uses single
retransmission timer

• Sender sends segment
and sets a timer

• Waits for an
acknowledgement
indicating segment was
received

– Send 1
– Wait for Ack 2
– No Ack 2 and timer

expires
– Send 1 again

m Via duplicate acks
r Pipelined, congestion-

controlled segments

Transport Layer 3-47

TCP segment integrity

r Checksum included in header
r Is it sufficient to just checksum the

packet contents?
rNo, need to ensure correct

source/destination
m Pseudoheader – portion of IP hdr that are

critical
m Checksum covers Pseudoheader, transport hdr,

and packet body
m Layer violation, redundant with parts of IP

checksum

Transport Layer 3-48

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Transport Layer 3-49

TCP delayed acknowledgements
r Problem:

m In request/response programs, you send separate ACK and
Data packets for each transaction

• Delay ACK in order to send ACK back along with data
r Solution:

m Don’t ACK data immediately
• Wait 200ms (must be less than 500ms – why?)
• Must ACK every other packet
• Must not delay duplicate ACKs

m Without delayed ACK: 40 byte ack + data packet
m With delayed ACK: data packet includes ACK
m See web trace example
m Extensions for asymmetric links

• See later part of lecture

Transport Layer 3-50

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 200ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediately send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-51

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

r longer than RTT
m but RTT varies

r too short: premature
timeout
m unnecessary

retransmissions
r too long: slow reaction

to segment loss

Q: how to estimate RTT?
r SampleRTT: measured time from

segment transmission until ACK
receipt
m ignore retransmissions

r SampleRTT will vary, want
estimated RTT “smoother”
m average several recent

measurements, not just
current SampleRTT

Transport Layer 3-52

TCP Round Trip Time Estimator and
Timeout
EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

r Exponential weighted moving average
r influence of past sample decreases exponentially fast
r typical value: α = 0.125
r Initial retransmit timer set to β RTT, where β=2

currently
m Not good at preventing spurious timeouts

Transport Layer 3-53

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

Transport Layer 3-54

TCP Round Trip Time and Timeout
(Jacobson)
Setting the timeout
r first estimator produced spurious timeouts as RTT grew
r New estimator (Van Jacobson)

m Observation: at high-loads RTT variance is high
m Need larger safety margin with larger variations in RTT

• EstimtedRTT plus “safety margin”
• large variation in EstimatedRTT -> larger safety margin

m first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT + β*|SampleRTT-EstimatedRTT|
(typically, β = 0.25)

Then set timeout interval:

Transport Layer 3-55

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

scenario

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Se
q=

92
 t

im
eo

ut
SendBase

= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

Transport Layer 3-56

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

Transport Layer 3-57

TCP retransmission ambiguity

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X

Transport Layer 3-58

Karn’s algorithm

rAccounts for retransmission ambiguity
r If a segment has been retransmitted:
m Don’t count RTT sample on ACKs for this

segment
m Keep backed off time-out for next packet
m Reuse RTT estimate only after one successful

transmission

Transport Layer 3-59

TCP retransmission miscelleny

r Backing off TCP’s retransmission timeout
mWhat if successive TCP retransmissions

timeout?
• Every time timer expires for same segment, RTO is doubled
• Exponential back-off similar to Ethernet until successful

retransmission

Transport Layer 3-60

TCP retransmission miscellany

rTCP timer granularity
mMany TCP implementations set RTO in multiples

of 200,500,1000ms
mWhy?

• Avoid spurious timeouts – RTTs can vary quickly due
to cross traffic

• Make timers interrupts efficient

Transport Layer 3-61

Fast retrasmit
Recall TCP ACK generation….

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment startsat lower end of gap

Transport Layer 3-62

Fast Retransmit

r Time-out period often
relatively long:
m long delay before

resending lost packet
r Detect lost segments

via duplicate ACKs.
m Sender often sends

many segments back-to-
back

m If segment is lost,
there will likely be many
duplicate ACKs.

r If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
m fast retransmit: resend

segment before timer
expires

Transport Layer 3-63

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer 3-64

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-65

TCP Flow Control

rTCP is a sliding window protocol
m For window size n, can send up to n bytes

without receiving an acknowledgement
mWhen the data is acknowledged then the

window slides forward
r Each packet advertises a window size
m Indicates number of bytes the receiver has

space for
rOriginal TCP always sent entire window
m Congestion control now limits this

Transport Layer 3-66

TCP Flow Control

r receive side of TCP
connection has a
receive buffer:

r speed-matching
service: matching the
send rate to the
receiving app’s drain
rate

r app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

Transport Layer 3-67

TCP Flow control: how it works

(Suppose TCP receiver
discards out-of-order
segments)

r spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

r Rcvr advertises spare
room by including value
of RcvWindow in
segments

r Sender limits unACKed
data to RcvWindow
m guarantees receive

buffer doesn’t overflow

Transport Layer 3-68

TCP Flow control

rWhat happens if window is 0?
m Receiver updates window when application reads

data
mWhat if this update is lost?

• Deadlock

rTCP Persist timer
m Sender periodically sends window probe packets
m Receiver responds with ACK and up-to-date

window advertisement

Transport Layer 3-69

TCP flow control enhancements

r Problem: (Clark, 1982)
m If receiver advertises small increases in the

receive window then the sender may waste time
sending lots of small packets

rWhat happens if window is small?
m Small packet problem known as “Silly window

syndrome”
• Receiver advertises one byte window
• Sender sends one byte packet (1 byte data, 40 byte

header = 4000% overhead)

Transport Layer 3-70

TCP flow control enhancements

r Solutions to silly window syndrome
m Clark (1982)

• receiver avoidance
• prevent receiver from advertising small windows
• increase advertised receiver window by min(MSS,

RecvBuffer/2)

Transport Layer 3-71

TCP flow control enhancements

r Solutions to silly window syndrome
m Nagle’s algorithm (1984)

• sender avoidance
• prevent sender from unnecessarily sending small packets
• http://www.rfc-editor.org/rfc/rfc896.txt

– Allow only one outstanding small (not full sized) segment that
has not yet been acknowledged

– Works for idle connections (no deadlock)
– Works for telnet (send one-byte packets immediately)
– Works for bulk data transfer (delay sending)

Transport Layer 3-72

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-73

TCP Connection Management
Recall: TCP sender, receiver

establish “connection”
before exchanging data
segments

r initialize TCP variables:
m seq. #s
m buffers, flow control

info (e.g. RcvWindow)
m Window scaling

r client: connection initiator
Socket clientSocket = new
Socket("hostname","port
number");

r server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:
Step 1: client host sends TCP

SYN segment to server
m specifies initial seq #
m no data, should be random

r Step 2: server host receives
SYN, replies with SYNACK
segment
m server allocates buffers
m specifies server initial

seq. # and adv. window
Step 3: client receives SYNACK,

replies with ACK segment,
which may contain data

Transport Layer 3-74

TCP Connection Establishment

r 3-way handshake with initial sequence
number selection

A B

SYN + Seq A

SYN+ACK-A + Seq B

ACK-B

Transport Layer 3-75

TCP Sequence Number Selection

rWhy not simply chose 0?
rMust avoid overlap with earlier incarnation
r Client machine seq #0, initiates connection

to server with seq #0.
m Client sends one byte and machine crashes
m Client reboots and initiates connection again
m Server thinks new incarnation is the same as old

connection

Transport Layer 3-76

TCP Sequence Number Selection

r Why is selecting a random ISN Important?
r Suppose machine X selects ISN based on

predictable sequence
r Fred has .rhosts to allow login to X from Y
r Evil Ed attacks

m Disables host Y – denial of service attack
m Determines ISN pattern at X

• Make a bunch of connections to host X
• Determine ISN pattern a guess next ISN

m Blindly masquerade as Y using guessed ISN of X
• Ed never sees real ISN of X since it is sent to Y

m Attack popularized by K. Mitnick

Transport Layer 3-77

TCP ISN selection and spoofing
attacks

Ed

Y

X

.rhosts
Y

1. Flood continuously

3. TCP SYNACK
Send X ISN

PACKET DROPPED!

2. Spoof TCP SYN from Y
6. Real acks
dropped so Y
does not reset
connection4. Send ACK with guess of X’s ISN

as if you received TCP SYNACK

5. Send pre-canned rlogin/rsh messages
rsh echo “Ed” >> .rhosts
spoof acknowledgements

Ed7. Door now open, rlogin to X from Ed directly

Transport Layer 3-78

TCP connections
Data transfer for established

connections using sequence
numbers and sliding windows
with cumulative ACKs

Seq. #’s:
m byte stream “number” of

first byte in segment’s data
ACKs:

m seq # of next byte
expected from other side

m cumulative ACK
m duplicate acks sent when

out-of-order packet
received

See web trace
Java API

connectionSocket.receive();
clientSocket.send();

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Seq=42, ACK=79, data = ‘C’

Transport Layer 3-79

TCP Connection Management (cont.)

Closing a connection:
Client-initiated close (reverse

for server-initiated close):
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

Transport Layer 3-80

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

m Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

ti
m

ed
 w

ai
t

closed

Transport Layer 3-81

Time Wait Issues

r Cannot close connection immediately after
receiving FIN
m What if a new connection restarts and uses same

sequence number?
r Web servers not clients close connection first

m Established -> Fin-Wait -> Time-Wait -> Closed
m Why would this be a problem?

r Time-Wait state lasts for 2 * MSL
m MSL is should be 120 seconds (is often 60s)
m Servers often have order of magnitude more connections

in Time-Wait

Transport Layer 3-82

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

Transport Layer 3-83

TCP Half-Close

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

Transport Layer 3-84

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-85

Principles of Congestion Control

Congestion:
r informally: “too many sources sending too much

data too fast for network to handle”
r different from flow control!
r manifestations:
m lost packets (buffer overflow at routers)
m long delays (queueing in router buffers)

r a top-10 problem!

Transport Layer 3-86

Causes/costs of congestion: scenario 1

r two senders, two
receivers

r one router,
infinite buffers

r no retransmission

r large delays
when congested

r maximum
achievable
throughput

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

Transport Layer 3-87

Causes/costs of congestion: scenario 2

r one router, finite buffers
r sender retransmission of lost packet

finite shared output
link buffers

Host A λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Transport Layer 3-88

Causes/costs of congestion: scenario 2
r always: (goodput)
r “perfect” retransmission only when loss:

r retransmission of delayed (not lost) packet makes larger
(than perfect case) for same

λ
in

λout
=

λ
in

λout
>

λ
in

λout

“costs” of congestion:
r more work (retrans) for given “goodput”
r unneeded retransmissions: link carries multiple copies of pkt

R/2

R/2
λin

λ o
ut

b.

R/2

R/2
λin

λ o
ut

a.

R/2

R/2
λin

λ o
ut

c.

R/4

R/3

Transport Layer 3-89

Causes/costs of congestion: scenario 3
r four senders
r multihop paths
r timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Transport Layer 3-90

Causes/costs of congestion: scenario 3

Another “cost” of congestion:
r when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B

λ
o
u

t

Transport Layer 3-91

Congestion Collapse
r Increase in network load results in decrease of useful work done

m Spurious retransmissions of packets still in flight
• Classical congestion collapse
• Solution: better timers and congestion control

m Undelivered packets
• Packets consume resources and are dropped elsewhere in network
• Solution: congestion control for ALL traffic

m Fragments
• Mismatch of transmission and retransmission units
• Solutions:

– Make network drop all fragments of a packet (early packet discard in ATM)
– Do path MTU discovery

m Control traffic
• Large percentage of traffic is for control
• Headers, routing messages, DNS, etc.

m Stale or unwanted packets
• Packets that are delayed on long queues
• Solution: better congestion control and active queue management

Transport Layer 3-92

Goals for congestion control

r Use network resources efficiently
m 100% link utilization, 0% packet loss, Low delay
m Maximize network power: (throughputα/delay)
m Efficiency/goodput: Xknee = Σxi(t)

r Preserve fair network resource allocation
m Fairness: (Σxi)2/n(Σxi2)
m Max-min fair sharing

• Small flows get all of the bandwidth they require
• Large flows evenly share leftover

m Example: 100Mbs link
• S1 and S2 are 1Mbs streams, S3 and S4 are greedy streams
• S1 and S2 each get 1Mbs, S3 and S4 each get 49Mbs

r Convergence and stability
r Distributed operation
r Simple router and end-host behavior

Transport Layer 3-93

Congestion Control vs.
Avoidance
rAvoidance keeps the system performing at

the knee/cliff
r Control kicks in once the system has

reached a congested state

Load

Throughput

Load

Delay

Transport Layer 3-94

Congestion control approaches

r End-host vs. network controlled
m Trust hosts to do the right thing

• Hosts adjust rate based on detected congestion (TCP)
m Don’t trust hosts and enforce within network

• Network adjusts rates at congestion points
– Scheduling
– Queue management

• Hard to prevent global collapse conditions locally
r Implicit vs. explicit network feedback

m Implicit: infer congestion from packet loss or delay
• Increase rate in absence of loss, decrease on loss (TCP

Tahoe/Reno)
• Increase rate based on RTT behavior (TCP Vegas, Packet pair)

m Explicit: signalled from network
• Congestion notification (IBM SNA, DECbit, ECN)
• Rate signaling (ATM ABR)

Transport Layer 3-95

Case study: ATM ABR congestion control

ABR: available bit rate:
r “elastic service”
r if sender’s path

“underloaded”:
m sender should use

available bandwidth
r if sender’s path

congested:
m sender throttled to

minimum guaranteed
rate

RM (resource management)
cells:

r sent by sender, interspersed
with data cells

r bits in RM cell set by switches
(“network-assisted”)
m NI bit: no increase in rate

(mild congestion)
m CI bit: congestion

indication
r RM cells returned to sender by

receiver, with bits intact

Transport Layer 3-96

Case study: ATM ABR congestion control

r two-byte ER (explicit rate) field in RM cell
m congested switch may lower ER value in cell
m sender’ send rate thus minimum supportable rate on path

r EFCI bit in data cells: set to 1 in congested switch
m if data cell preceding RM cell has EFCI set, sender sets CI

bit in returned RM cell

Transport Layer 3-97

Chapter 3 outline

r 3.1 Transport-layer
services

r 3.2 Multiplexing and
demultiplexing

r 3.3 Connectionless
transport: UDP

r 3.4 Principles of
reliable data transfer

r 3.5 Connection-oriented
transport: TCP
m segment structure
m reliable data transfer
m flow control
m connection management

r 3.6 Principles of
congestion control

r 3.7 TCP congestion
control

Transport Layer 3-98

TCP Congestion Control

r Motivated by ARPANET congestion collapse
m Flow control, but no congestion control
m Sender sends as much as the receiver resources allows
m Go-back-N on loss, burst out advertised window

r Congestion control
m Extending control to network resources
m Underlying design principle: packet conservation

• At equilibrium, inject packet into network only when one is removed
• Basis for stability of physical systems (fluid model)

r Why was this not working before?
m No equilibrium

• Solved by self-clocking
m Spurious retransmissions

• Solved by accurate RTO estimation (see earlier discussion)
m Network resource limitations not considered

• Solved by congestion window and congestion avoidance algorithms

Transport Layer 3-99

TCP Congestion Control

rOf all ways to do congestion, the Internet
(TCP) chooses….
mMainly end-host, window-based congestion

control
• Only place to really prevent collapse is at end-host
• Reduce sender window when congestion is perceived
• Increase sender window otherwise (probe for

bandwidth)
m Congestion signaling and detection

• Mark/drop packets when queues fill, overflow
• Will cover this separately in later lecture

Transport Layer 3-100

TCP congestion control basics

r Keep a congestion window, (snd_cwnd)
m Book calls this “Congwin”, also called just

“cwnd”
m Denotes how much network is able to absorb

r Receiver’s advertised window (rcv_wnd)
m Sent back in TCP header

rSender’s maximum window:
mmin (rcv_wnd, snd_cwnd)

r In operation, sender’s actual window:
mmin(rcv_wnd, snd_cwnd) - unacknowledged

segments

Transport Layer 3-101

TCP Congestion Control

r end-end control (no network assistance)
r transmission rate limited by congestion window size, cwnd

over segments:

• For fixed window of w segments of MSS bytes length

throughput = w * MSS
RTT Bytes/sec

cwnd

Transport Layer 3-102

TCP Congestion Control: details

r sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

r Roughly,

r CongWin is dynamic, function
of perceived network
congestion

How does sender
perceive congestion?

r loss event = timeout or
3 duplicate acks

r TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
m AIMD
m slow start
m Exponential backoff on

RTO

rate = CongWin
RTT Bytes/sec

Transport Layer 3-103

TCP congestion control

r two “phases” (TCP
Tahoe)
m slow start
m congestion avoidance

r important variables:
– cwnd
– ssthresh: defines

threshold between two
slow start phase,
congestion avoidance
phase (Book calls this
threshold)

r useful reference
m http://www.aciri.org/flo

yd/papers/sacks.ps.Z

r “probing” for usable
bandwidth:
m ideally: transmit as fast

as possible (cwnd as
large as possible)
without loss

m increase cwnd until loss
(congestion)

m loss: decrease cwnd,
then begin probing
(increasing) again

Transport Layer 3-104

TCP Slow Start

r When connection begins,
CongWin = 1 MSS
m Example: MSS = 500

bytes & RTT = 200 msec
m initial rate = 20 kbps

r available bandwidth may
be >> MSS/RTT
m desirable to quickly ramp

up to respectable rate

r When connection begins,
increase rate
exponentially fast until
first loss event

Transport Layer 3-105

TCP slow start

r exponential increase (per
RTT) in window size
m Start with cwnd=1, increase

cwnd by 1 with every ACK
m Window doubled every RTT
m Increases to W in RTT *

log2(W)
m Can overshoot window and

cause packet loss

initialize: cwnd = 1
for (each segment ACKed)

cwnd++
until (loss event OR

cwnd > ssthresh)

Slowstart algorithm
Host A

one segment

RT
T

Host B

time

two segments

four segments

Transport Layer 3-106

TCP slow start example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

Transport Layer 3-107

TCP slow start sequence plot

Time

Sequence No

.

.

.

Transport Layer 3-108

Refinement (TCP congestion
avoidance)
Q: When should the exponential increase switch to linear?
A: When CongWin gets to 1/2 of its value before timeout

Keep ssthresh and set to ½ CongWin at loss event

/* slowstart is over */
/* cwnd > ssthresh */
Until (loss event) {
every w segments ACKed:

cwnd++
}

ssthresh = cwnd/2
If (Tahoe) cwnd=1;
If (Reno) cwnd=ssthresh;

Congestion avoidance

TCP Reno halves cwnd and skips slowstart after three duplicate ACKs
“Fast Recovery” mechanism => more later

Transport Layer 3-109

TCP congestion avoidance

r Loss implies congestion – why?
mNot necessarily true on all link types

r If loss occurs when cwnd = W
mNetwork can handle 0.5W ~ W segments
m Set ssthresh to 0.5W and slow-start from

cwnd=1
rUpon receiving ACK with cwnd > ssthresh
m Increase cwnd by 1/cwnd
m Results in additive increase

Transport Layer 3-110

TCP congestion avoidance plot

Time

Sequence No

Transport Layer 3-111

TCP fast retransmit
rTimeouts (see previous)
rDuplicate acknowledgements (dupacks)
m Repeated acks for the same sequence number
mWhen can duplicate acks occur?

• Loss
• Packet re-ordering
• Window update – advertisement of new flow control window

r Fast retransmit
m Assume re-ordering is infrequent and not of large

magnitude
m Use receipt of 3 or more duplicate acks as

indication of loss
m Don’t wait for timeout to retransmit packet

Transport Layer 3-112

TCP fast retransmit

Time

Sequence No
Duplicate Acks

Retransmission
X

Transport Layer 3-113

TCP fast recovery
r Skip slow start
r After 3 dup ACKs:

m CongWin is cut in half
m window then grows linearly

r But after timeout event:
m CongWin instead set to 1

MSS;
m window then grows

exponentially
m to a threshold, then grows

linearly

q 3 dup ACKs indicates
network capable of
delivering some segments
q timeout indicates a
“more alarming”
congestion scenario

Philosophy:

Transport Layer 3-114

TCP fast retransmit & recovery (Reno)

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

r Combining congestion avoidance, fast
retrasmit, and fast recovery gives….
m additive increase: increase CongWin by 1 MSS

every RTT until loss detected
mmultiplicative decrease: cut CongWin in half after

loss

co
ng

es
tio

n
w

in
do

w
 s

iz
e

Saw tooth
behavior: probing

for bandwidth

Transport Layer 3-115

Interaction of flow and
congestion control
r Sender’s max window

m min (advertised window, congestion window)
m Question:

• Can flow control mechanisms interact poorly with congestion
control mechanisms?

m Answer:
• Yes…..Delayed acknowledgements and congestion windows

r Delayed Acknowledgements
m TCP congestion control triggered by acks

• If receive half as many acks -> window grows half as fast
m Slow start with window = 1

• Will trigger delayed ack timer
• First exchange will take at least 200ms
• Start with > 1 initial window

– Bug in BSD, now a “feature”/standard

Transport Layer 3-116

Summary: TCP Congestion Control

r When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

r When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

r When a triple duplicate ACK occurs,
retransmission occurs (fast retransmit)

m Threshold set to CongWin/2 and CongWin set to
Threshold. (fast recovery)

r When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

Transport Layer 3-117

TCP sender congestion control

SS or CA

SS or CA

SS or CA

Congestion
Avoidance
(CA)

Slow Start
(SS)

State

CongWin and Threshold not
changed

Increment duplicate ACK count
for segment being acked

Duplicate
ACK

Enter slow startThreshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Timeout

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Loss event
detected by
triple
duplicate
ACK

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

CongWin = CongWin+MSS *
(MSS/CongWin)

ACK receipt
for previously
unacked
data

Resulting in a doubling of
CongWin every RTT

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

ACK receipt
for previously
unacked
data

CommentaryTCP Sender Action Event

Transport Layer 3-118

TCP throughput

rWhat’s the average throughout of TCP as a
function of window size and RTT?
m Ignore slow start

r Let 2W be the window size when loss
occurs.

rWhen window is 2W, throughput is
2W/RTT

r Just after loss, window drops to W,
throughput to W/RTT.

rAverage throughout: 1.5W/RTT

Transport Layer 3-119

TCP throughput

1
2

4

RTTRTT RTT

W
W+1

2W

Congestion avoidance

Fast Retransmit/Recovery
Slow-start

Transport Layer 3-120

TCP Futures

r Example: 1500 byte segments, 100ms RTT,
want 10 Gbps throughput
m BW*Delay = 10Gbs * 0.1s = 1Gbit

• In bytes, 1Gbit/8 = 125MB
• In packets 1Gbit/(8*1500) = 83,333 segments

– W = 83,333 in-flight segments

m Advertised window => 16 bits given in bytes!
• Maximum of 64KB !!

Transport Layer 3-121

TCP Futures

rThroughput
m Sawtooth length = W*RTT
m Packets xferred in sawtooth

• W + (W+1) + (W+2) …. + 2W = (3W/2) * (W+1) =
1.5W(W+1)

• For W=83,333
– Packets xferred in sawtooth between losses = 10.4 billion

r Loss rate
m 1 packet loss per sawtooth

• ? L = 10-10 Wow
rNew versions of TCP for high-speed

needed!

Transport Layer 3-122

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

Transport Layer 3-123

Basic Control Model
rDoes TCP’s congestion control algorithm

promote fairness between flows?

Transport Layer 3-124

Linear Control

rMany different possibilities for reaction to
congestion and probing
m Examine simple linear controls
mWindow(t + 1) = a + b Window(t)
m Different ai/bi for increase and ad/bd for

decrease
rSupports various reaction to signals
m Increase/decrease additively
m Increase/decrease multiplicatively
mWhich of the four combinations is optimal?

Transport Layer 3-125

Phase plots

rSimple way to visualize behavior of
competing connections over time

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

Transport Layer 3-126

Phase plots

rWhat are desirable properties?
rWhat if flows are not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2
Optimal point

Overload

Underutilization

Transport Layer 3-127

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

r Both X1 and X2 increase/decrease by the same
amount over time
m Additive increase improves fairness and additive

decrease reduces fairness

Transport Layer 3-128

Multiplicative
Increase/Decrease
r Both X1 and X2 increase by the same factor

over time
m Extension from origin – constant fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

Transport Layer 3-129

Convergence to Efficiency &
Fairness
r From any point, want to converge quickly to

intersection of fairness and efficiency
lines

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

Transport Layer 3-130

What is the Right Choice?

r Constraints limit us to AIMD
m AIMD moves towards optimal point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

Transport Layer 3-131

Why is TCP fair?
Two competing sessions:
r Additive increase gives slope of 1, as throughout increases
r multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-132

Fairness (more)
Fairness and UDP
r Multimedia apps often

do not use TCP
m do not want rate

throttled by congestion
control

r Instead use UDP:
m pump audio/video at

constant rate, tolerate
packet loss

r Research area: TCP
friendly

Fairness and parallel TCP
connections

r nothing prevents app from
opening parallel
connections between 2
hosts.

r Web browsers do this
r Example: link of rate R

supporting 9 cnctions;
m new app asks for 1 TCP, gets

rate R/10
m new app asks for 11 TCPs,

gets R/2 !

Transport Layer 3-133

Advanced transport topics

r Ambiguous acknowledgements
m TCP SACK (Selective acknowledgements)

r Redundant header fields
m Many header fields fixed or change slightly

• TCP header compression
• Compress header to save bandwidth

r RTT ambiguity for retransmitted packets
m TCP timestamp option
m Sender puts timestamp in packet that receiver echoes

r Sequence number wraparound
m 32-bit sequence/ack # wraps around
m 10Mbs: 57 min., 100Mbs: 6 min., 622Mbs: 55 sec. < MSL!
m Use timestamp option to disambiguate
m TCP sequence number wraparound (TCP PAWS)

Transport Layer 3-134

Advanced transport topics

r Long, fat pipes
m 16-bit advertised window can’t support large

bandwidth*delay networks
m For 100ms network, need 122KB for 10Mbs (16-bit

window = 64KB)
m 1.2MB for 100Mbs, 7.4MB for 622Mbs
m TCP window scaling option

• Scaling factor on advertised window specifies # of bits to
shift to the left

• Scaling factor exchanged during connection setup

r Non-responsive, aggressive applications
m Applications written to take advantage of network

resources (multiple TCP connections)
m Network-level enforcement, end-host enforcement of

fairness

Transport Layer 3-135

Advanced transport topics
r Asymmetric pipes

m TCP over highly asymmetric links is limited by ACK
throughput (40 byte ack for every MTU-sized segment)

m Coalesce multiple acknowledgements into single one
r Wireless networks

m TCP infers loss on wireless links as congestion and backs
off

m Add link-layer retransmission and explicit loss
notification (to squelch RTO)

r Short transfers slow
m Flows timeout on loss if cwnd < 3

• Change dupack threshold for small cwnd
m 3-4 packet flows (most HTTP transfers) need 2-3 round-

trips to complete
• Use larger initial cwnd (IETF approved initial cwnd = 3 or 4)

Transport Layer 3-136

Advanced transport topics
r Congestion information sharing

m Individual connections each probe for bandwidth (to set
ssthresh)

m Share information between connections on same machine
or nearby machines (SPAND, Congestion Manager)

r Non-TCP traffic
m Multimedia applications do not work well over TCP’s

sawtooth
m TCP-friendly rate control
m Derive smooth, stable equilibrium rate via equations

based on loss rate
r Better congestion control algorithms

m TCP Vegas
• TCP increases rate until loss
• Avoid losses by backing off sending rate when delays

increase

Transport Layer 3-137

Advanced transport topics

r ATM
m TCP uses implicit information to fix sender’s rate
m Explicitly signal rate from network elements

r ECN
m TCP uses packet loss as means for congestion control
m Add bit in IP header to signal congestion (hybrid between

TCP approach and ATM approach)
r Active queue management

m Congestion signal the result of congestion not a signal of
imminent congestion

m Actively detect and signal congestion beforehand

Transport Layer 3-138

Advanced transport topics

r Security
m Layer underneath application layer and above transport

layer (See Chapter 8)
m SSL, TLS
m Provides TCP/IP connection the following….

• Data encryption
• Server authentication
• Message integrity
• Optional client authentication

m Original implementation: Secure Sockets Layer (SSL)
• Netscape (circa 1994)
• http://www.openssl.org/ for more information
• Submitted to W3 and IETF

m New version: Transport Layer Security (TLS)
• http://www.ietf.org/html.charters/tls-charter.html

Transport Layer 3-139

Chapter 3: Summary
r principles behind transport

layer services:
mmultiplexing,

demultiplexing
m reliable data transfer
m flow control
m congestion control

r instantiation and
implementation in the
Internet
m UDP
m TCP

Next:
r leaving the network

“edge” (application,
transport layers)

r into the network
“core”

Transport Layer 3-140

Extra slides

Transport Layer 3-141

Internet transport-layer protocols

r reliable, in-order
delivery (TCP)
m congestion control
m flow control
m connection setup

r unreliable, unordered
delivery: UDP
m no-frills extension of

“best-effort” IP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end
-end transport

Transport Layer 3-142

Reliable data transfer: getting started
We’ll:
r incrementally develop sender, receiver sides of

reliable data transfer protocol (rdt)
r consider only unidirectional data transfer

m but control info will flow on both directions!
r use finite state machines (FSM) to specify

sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Transport Layer 3-143

Rdt1.0: reliable transfer over a reliable channel

r underlying channel perfectly reliable
m no bit errors
m no loss of packets

r separate FSMs for sender, receiver:
m sender sends data into underlying channel
m receiver read data from underlying channel

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-144

Rdt2.0: channel with bit errors

r underlying channel may flip bits in packet
m checksum to detect bit errors

r the question: how to recover from errors:
m acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
m negative acknowledgements (NAKs): receiver explicitly

tells sender that pkt had errors
m sender retransmits pkt on receipt of NAK

r new mechanisms in rdt2.0 (beyond rdt1.0):
m error detection
m receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-145

rdt2.0: FSM specification

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

belowsender

receiver
rdt_send(data)

Λ

Transport Layer 3-146

rdt2.0: operation with no errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

Transport Layer 3-147

rdt2.0: error scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ

Transport Layer 3-148

rdt2.0 has a fatal flaw!

What happens if
ACK/NAK corrupted?

r sender doesn’t know what
happened at receiver!

r can’t just retransmit:
possible duplicate

Handling duplicates:
r sender retransmits current

pkt if ACK/NAK garbled
r sender adds sequence

number to each pkt
r receiver discards (doesn’t

deliver up) duplicate pkt

Sender sends one packet,
then waits for receiver
response

stop and wait

Transport Layer 3-149

rdt2.1: sender, handles garbled ACK/NAKs

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

Wait for
ACK or
NAK 1

Λ
Λ

Transport Layer 3-150

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

Transport Layer 3-151

rdt2.1: discussion

Sender:
r seq # added to pkt
r two seq. #’s (0,1) will

suffice. Why?
r must check if received

ACK/NAK corrupted
r twice as many states

m state must “remember”
whether “current” pkt
has 0 or 1 seq. #

Receiver:
r must check if received

packet is duplicate
m state indicates whether

0 or 1 is expected pkt
seq #

r note: receiver can not
know if its last
ACK/NAK received OK
at sender

Transport Layer 3-152

rdt2.2: a NAK-free protocol

r same functionality as rdt2.1, using ACKs only
r instead of NAK, receiver sends ACK for last pkt

received OK
m receiver must explicitly include seq # of pkt being ACKed

r duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-153

rdt2.2: sender, receiver fragments

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||

has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

Λ

Transport Layer 3-154

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)
m checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK

r retransmits if no ACK
received in this time

r if pkt (or ACK) just delayed
(not lost):
m retransmission will be

duplicate, but use of seq.
#’s already handles this

m receiver must specify seq
of pkt being ACKed

r requires countdown timer

Transport Layer 3-155

rdt3.0 sender
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

Λ
rdt_rcv(rcvpkt)

Λ
Λ

Λ

Transport Layer 3-156

rdt3.0 in action

Transport Layer 3-157

rdt3.0 in action

Transport Layer 3-158

Performance of rdt3.0

r rdt3.0 works, but performance stinks
r example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit= 8kb/pkt
10**9 b/sec = 8 microsec

m U sender: utilization – fraction of time sender busy sending

U
sender =

.008
30.008

= 0.00027
microsec

L / R
RTT + L / R

=

L (packet length in bits)
R (transmission rate, bps) =

m 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
m network protocol limits use of physical resources!

Transport Layer 3-159

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send
ACK

ACK arrives, send next
packet, t = RTT + L / R

U
sender =

.008
30.008

= 0.00027
microsec

L / R
RTT + L / R

=

Transport Layer 3-160

GBN: sender extended FSM

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else
start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

Transport Layer 3-161

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
m may generate duplicate ACKs
m need only remember expectedseqnum

r out-of-order pkt:
m discard (don’t buffer) -> no receiver buffering!
m Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

Λ

Transport Layer 3-162

TCP sender events:
data rcvd from app:
r Create segment with

seq #
r seq # is byte-stream

number of first data
byte in segment

r start timer if not
already running (think
of timer as for oldest
unacked segment)

r expiration interval:
TimeOutInterval

timeout:
r retransmit segment

that caused timeout
r restart timer
Ack rcvd:
r If acknowledges

previously unacked
segments
m update what is known to

be acked
m start timer if there are

outstanding segments

Transport Layer 3-163

Approaches towards congestion control

End-end congestion
control:

r no explicit feedback from
network

r congestion inferred from
end-system observed loss,
delay

r approach taken by TCP

Network-assisted
congestion control:

r routers provide feedback
to end systems
m single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

m explicit rate sender
should send at

Two broad approaches towards congestion control:

Transport Layer 3-164

TCP connection setup
CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN

create TCB

passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
APP SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK

Rcv SYN, ACK

rcv SYN
snd ACK

Transport Layer 3-165

TCP Connection Tear-down

CLOSING

CLOSE WAITFIN WAIT-1

snd FIN
CLOSE

send FIN
CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

rcv ACK of FIN

snd ACK
rcv FIN+ACK

rcv ACK

ESTAB

TIME WAIT

Transport Layer 3-166

TL: TCP slow start (Tahoe)
rStart the self-clocking behavior of TCP
m Use acks to clock sending new data
m Do not send entire advertised window in one shot

PrPb

Ar

Ab

ReceiverSender

As

Transport Layer 3-167

TCP Slow Start (more)

r When connection
begins, increase rate
exponentially until
first loss event:
m double CongWin every

RTT
m done by incrementing
CongWin for every ACK
received

r Summary: initial rate
is slow but ramps up
exponentially fast

Host A

one segment

RT
T

Host B

time

two segments

four segments

Transport Layer 3-168

TL: TCP Reno
r All mechanisms in Tahoe
r Add delayed acks (see flow control section)
r Header prediction

m Implementation designed to improve performance
m Has common case code inlined

r Add “fast recovery” to Tahoe’s fast retransmit
m Do not revert to slow-start on fast retransmit
m Upon detection of 3 duplicate acknowledgments

• Trigger retransmission (fast retransmission)
• Set cwnd to 0.5W (multiplicative decrease) and set threshold to

0.5W (skip slow-start)
• Go directly into congestion avoidance

m If loss causes timeout (i.e. self-clocking lost), revert to TCP
Tahoe

Transport Layer 3-169

TL: TCP Reno congestion
avoidance

/* slowstart is over */
/* cwnd > ssthresh */
Until (loss detected) {

every w segments ACKed:
cwnd++

}
/* fast retrasmit */
if (3 duplicate ACKs) {

ssthresh = cwnd/2
cwnd = cwnd/2
skip slow start
go to fast recovery

}

Congestion avoidance

1

Transport Layer 3-170

TL: Is TCP Reno fair?

Fairness goal: if N TCP
sessions share same
bottleneck link, each
should get 1/N of link
capacity

TCP congestion avoidance:
r AIMD: additive

increase, multiplicative
decrease
m increase window by 1 per

RTT
m decrease window by

factor of 2 on loss eventTCP connection 1

bottleneck
router

capacity R

TCP
connection 2

Transport Layer 3-171

TL: Why is TCP Reno fair?
Recall phase plot discussion with two competing sessions:
r Additive increase gives slope of 1, as throughout increases
r multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-172

TL: TCP Reno fast recovery
mechanism
r Tahoe

m Loses self-clocking
r Issues in recovering from loss

m Cumulative acknowledgments freeze window after fast
retransmit

• On a single loss, get almost a window’s worth of duplicate
acknowledgements

m Dividing cwnd abruptly in half further reduces sender’s ability
to transmit

r Reno
m Use fast recovery to transition smoothly into congestion

avoidance
m Each duplicate ack notifies sender that single packet has

cleared network
m Inflate window temporarily while recovering lost segment
m Allow new packets out with each subsequent duplicate

acknowledgement to maintain self-clocking
m Deflate window to cwnd/2 after lost packet is recovered

Transport Layer 3-173

TL: Reno fast recovery example
16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd=8

S D

16 17 18 1915 20 21 22 23

Ack16
(15)

23 22 21 1620 19 18 17

24

base

Transport Layer 3-174

TL: Reno fast recovery example
16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd=8

S D

16 17 18 1915 20 21 22 23

23 22 21 1620 19 18 17

24

base

X

Transport Layer 3-175

TL: Reno fast recovery example
16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd=8

S D

16 17 18 1915 20 21 22 23

Ack16
(17)

23 22 21 20 19 18

24

base

S D

16 17 18 1915 20 21 22 23 24

16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd=8
base

Ack16
(22)

Ack16
(23)

Ack16
(21)

Ack16
(18)

Ack16
(19)

Ack16
(20)

Ack16
(17)

Transport Layer 3-176

TL: Reno fast recovery example
16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd=8
base

Ack16
(22)

Ack16
(23)

Ack16
(21)

Ack16
(18)

Ack16
(19)

Ack16
(20)

S D

Ack16
(17)

16 17 18 1915 20 21 22 23 24

3rd Dup. Ack 13

16

Ack16
(22)

Ack16
(23)

Ack16
(21)

Ack16
(19)

Ack16
(20)

S D

16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd_to_use_after_recovery=4
inflated_cwnd=4+3=7

base

16 17 18 1915 20 21 22 23 24

Transport Layer 3-177

TL: Reno fast recovery example

16

Ack16
(22)

Ack16
(23)

Ack16
(21)

Ack16
(20)

S D

16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd_to_use_after_recovery=4
inflated_cwnd=8

base

16 17 18 1915 20 21 22 23 24

16

Ack16
(22)

Ack16
(23)

Ack16
(21)

S D

24

16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd_to_use_after_recovery=4
inflated_cwnd=9

base

Transport Layer 3-178

TL: Reno fast recovery example

Ack24
(16)

16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd_to_use_after_recovery=4
inflated_cwnd=12

base

16 17 18 1915 20 21 22 23 24

S D

27

16 17 18 1915 20 21 22 23 24 25 26 27 28 29

cwnd=4

base

26 25 24

S D

27 26 25 24

16 17 18 1915 20 21 22 23 24

Transport Layer 3-179

TL: TCP Reno fast recovery
behavior
r Behavior

m Sender idle after halving window
m Sender continues to get dupacks

• Waiting for ½ cwnd worth of dupacks
• Window inflation puts “inflated cwnd” at original cwnd after ½

cwnd worth of dupacks
• Additional dupacks push “inflated cwnd” beyond original cwnd

allowing for additional data to be pushed out during recovery
m After pausing for ½ cwnd worth of dupacks

• Transmits at original rate after wait
• Ack clocking rate is same as before loss

m Results in ½ RTT time idle, ½ RTT time at old rate
m Upon recovery of lost segment, cwnd deflated to cwnd/2

Transport Layer 3-180

TL: Reno fast recovery example

rWhat if the retransmission is lost?
mWindow inflation to support sending at halved

rate until eventual RTO
r Reference
m http://www.rfc-editor.org/rfc/rfc2001

Transport Layer 3-181

TL: TCP Reno fast recovery
plot

Time

Sequence No
Sent for each dupack after

W/2 dupacks arrive

Transport Layer 3-182

TCP Reno and multiple losses
rMultiple losses cause timeout in TCP Reno
m Sender pulls out of fast recovery after first

retransmission

Time

Retransmission
timeout

Sequence No
Duplicate AcksX

X

XX Now what?

Transport Layer 3-183

TL: TCP NewReno changes

rMore intelligent slow-start
m Estimate ssthresh based while in slow-start

rGradual adaptation to new window
m Send a new packet out for each pair of dupacks
m Do not wait for ½ cwnd worth of duplicate acks

to clear
rAddress multiple losses in window

Transport Layer 3-184

TL: TCP NewReno gradual fast
recovery plot

Time

Sequence No
Sent after every

other dupack

Transport Layer 3-185

TL: TCP NewReno and multiple
losses
r Partial acknowledgements

m Window is advanced, but only to the next lost segment
m Stay in fast recovery for this case, keep inflating window on

subsequent duplicate acknowledgements
m Remain in fast recovery until all segments in window at the

time loss occurred have been acknowledged
m Do not halve congestion window again until recovery is

completed
r When does NewReno timeout?

m When there are fewer than three dupacks for first loss
m When partial ack is lost

r How quickly does NewReno recover multiple losses?
m At a rate of one loss per RTT

Transport Layer 3-186

TL: TCP NewReno multiple loss
plot

Time

Sequence No
X

X

XX

Now what? – partial ack
recovery

Transport Layer 3-187

TL: TCP Flavors

rTahoe, Reno, NewReno Vegas
rTCP Tahoe (distributed with 4.3BSD Unix)
mOriginal implementation of Van Jacobson’s

mechanisms
m Includes slow start, congestion avoidance, fast

retransmit
rTCP Reno
m Fast recovery

rTCP NewReno, SACK, FACK
m Improved slow start, fast retransmit, and fast

recovery

Transport Layer 3-188

TL: Evolution of TCP

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagle’s algorithm
to reduce overhead

of small packets;
predicts congestion

collapse

1987
Karn’s algorithm
to better estimate

round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

Transport Layer 3-189

TL: TCP Through the 1990s

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
real congestion

avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

Improving TCP
startup

1996
FACK TCP
(Mathis et al)

extension to SACK

Transport Layer 3-190

TCP with SACK

r Basic problem is that cumulative acks only
provide little information
m Add selective acknowledgements

• ACK for exact packets received
• Not used extensively (yet)
• Carry information as bitmask of packets received

m Allows multiple loss recovery per RTT via
bitmask

rHow to deal with reordering?

Transport Layer 3-191

TCP with SACK plot

Time

Sequence No
X

X

XX

Now what? – send
retransmissions as soon
as detected

Transport Layer 3-192

Overview

rTCP Vegas
rTCP Modeling
rTFRC and Other Congestion Control
r Changing Workloads
rHeader Compression

Transport Layer 3-193

TCP Modeling

r Given the congestion behavior of TCP can we
predict what type of performance we should get?

r What are the important factors
m Loss rate

• Affects how often window is reduced
m RTT

• Affects increase rate and relates BW to window
m RTO

• Affects performance during loss recovery
m MSS

• Affects increase rate

Transport Layer 3-194

Overall TCP Behavior

Time

Window

• Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

Transport Layer 3-195

Simple TCP Model

rSome additional assumptions
m Fixed RTT
mNo delayed ACKs

r In steady state, TCP losses packet each
time window reaches W packets
mWindow drops to W/2 packets
m Each RTT window increases by 1 packetàW/2 *

RTT before next loss
m BW = MSS * avg window/RTT = MSS * (W +

W/2)/(2 * RTT) = .75 * MSS * W / RTT

Transport Layer 3-196

Simple Loss Model

rWhat was the loss rate?
m Packets transferred = (.75 W/RTT) * (W/2 *

RTT) = 3W2/8
m 1 packet lost à loss rate = p = 8/3W2

mW = sqrt(8 / (3 * loss rate))
r BW = .75 * MSS * W / RTT
m BW = MSS / (RTT * sqrt (2/3p))

Transport Layer 3-197

TCP Friendliness

rWhat does it mean to be TCP friendly?
m TCP is not going away
m Any new congestion control must compete with

TCP flows
• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair

share, or it will never become popular

rHow is this quantified/shown?
mHas evolved into evaluating loss/throughput

behavior
m If it shows 1/sqrt(p) behavior it is ok
m But is this really true?

Transport Layer 3-198

Overview

rTCP Vegas
rTCP Modeling
rTFRC and Other Congestion Control
r Changing Workloads
rHeader Compression

Transport Layer 3-199

TCP Friendly Rate Control
(TFRC)
r Equation 1 – real TCP response
m 1st term corresponds to simple derivation
m 2nd term corresponds to more complicated

timeout behavior
• Is critical in situations with > 5% loss rates à where

timeouts occur frequently

r Key parameters
m RTO
m RTT
m Loss rate

Transport Layer 3-200

RTO Estimation

r Not used to actually determine retransmissions
m Used to model TCP’s extremely slow transmission rate in

this mode
m Only important when loss rate is high
m Accuracy is not as critical

r Different TCP’s have different RTO calculation
m Clock granularity critical à500ms typical, 100ms, 200ms,

1s also common
m RTO = 4 * RTT is close enough for reasonable operation

Transport Layer 3-201

RTT Estimation

r EWMA (RTTn+1 = (1-α)RTTn + αRTTSAMP)
r α = ?
m Small (.1) à long oscillations due to

overshooting link rate
m Large (.5) à short oscillations due to delay in

feedback (1 RTT) and strong dependence on
RTT

m Solution: use large α in T rate calculation but
use ratio of RTTSAMP .5/RTT.5 for inter-packet
spacing

Transport Layer 3-202

Loss Estimation

r Loss event rate vs. loss rate
r Characteristics

m Should work well in steady loss rate
m Should weight recent samples more
m Should increase only with a new loss
m Should decrease only with long period without loss

r Possible choices
m Dynamic window – loss rate over last X packets
m EWMA of interval between losses
m Weighted average of last n intervals

• Last n/2 have equal weight

Transport Layer 3-203

Loss Estimation

rDynamic windows has many flaws
rDifficult to chose weight for EWMA
rSolution WMA
m Choose simple linear decrease in weight for last

n/2 samples in weighted average
mWhat about the last interval?
m Include it when it actually increases WMA value
mWhat if there is a long period of no losses?
m Special case (history discounting) when current

interval > 2 * avg

Transport Layer 3-204

Slow Start

rUsed in TCP to get rough estimate of
network and establish ack clock
m Don’t need it for ack clock
m TCP ensures that overshoot is not > 2x
m Rate based protocols have no such limitation –

why?
rTFRC slow start
mNew rate set to min(2 * sent, 2 * recvd)
m Ends with first loss report à rate set to ½

current rate

Transport Layer 3-205

Congestion Avoidance

r Loss interval increases in order to increase
rate
m Primarily due to the transmission of new

packets in current interval
mHistory discounting increases interval by

removing old intervals
m .14 packets per RTT without history discounting
m .22 packets per RTT with discounting

rMuch slower increase than TCP
rDecrease is also slower
m 4 – 8 RTTs to halve speed

Transport Layer 3-206

Overall TCP Behavior

Time

Window

Transport Layer 3-207

Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending
a request?

Ignoring congestion, delay is
influenced by:

r TCP connection establishment
r data transmission delay
r slow start

Notation, assumptions:
r Assume one link between

client and server of rate R
r S: MSS (bits)
r O: object size (bits)
r no retransmissions (no loss,

no corruption)
Window size:
r First assume: fixed

congestion window, W
segments

r Then dynamic window,
modeling slow start

Transport Layer 3-208

Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for

first segment in window
returns before window’s
worth of data sent

delay = 2RTT + O/R

Transport Layer 3-209

Fixed congestion window (2)

Second case:
r WS/R < RTT + S/R: wait

for ACK after sending
window’s worth of data
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

Transport Layer 3-210

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

R
S

R
S

RTTP
R
O

RTTLatency P)12(2 −−

 +++=

where P is the number of times TCP idles at server:

}1,{min −= KQP

- where Q is the number of times the server idles
if the object were of infinite size.

- and K is the number of windows that cover the object.

Transport Layer 3-211

TCP Delay Modeling: Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection
estab and request
• O/R to transmit
object
• time server idles due
to slow start

Server idles:
P = min{K-1,Q} times

Transport Layer 3-212

TCP Delay Modeling (3)

R
S

R
S

RTTPRTT
R
O

R
S

RTT
R
S

RTT
R
O

idleTimeRTT
R
O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

th window after the timeidle 2 1 k
R
S

RTT
R
S k =

 −+

+
−

ementacknowledg receivesserver until

segment send tostartsserver whenfrom time=+ RTT
R
S

 window kth the transmit totime2 1 =−

R
Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Transport Layer 3-213

TCP Delay Modeling (4)

 +=

+≥=

≥−=

≥+++=

≥+++=
−

−

)1(log

)}1(log:{min

}12:{min

}/222:{min

}222:{min

2

2

110

110

S
O

S
O

kk

S
O

k

SOk

OSSSkK

k

k

k

L

L

Calculation of Q, number of idles for infinite-size object,
is similar (see HW).

Recall K = number of windows that cover object

How do we calculate K ?

Transport Layer 3-214

HTTP Modeling
r Assume Web page consists of:

m 1 base HTML page (of size O bits)
m M images (each of size O bits)

r Non-persistent HTTP:
m M+1 TCP connections in series
m Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

r Persistent HTTP:
m 2 RTT to request and receive base HTML file
m 1 RTT to request and receive M images
m Response time = (M+1)O/R + 3RTT + sum of idle times

r Non-persistent HTTP with X parallel connections
m Suppose M/X integer.
m 1 TCP connection for base file
m M/X sets of parallel connections for images.
m Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

Transport Layer 3-215

0
2
4
6
8

10
12
14
16
18
20

28
Kbps

100
Kbps

1
Mbps

10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

For low bandwidth, connection & response time dominated by
transmission time.
Persistent connections only give minor improvement over parallel
connections.

Transport Layer 3-216

0

10

20

30

40

50

60

70

28
Kbps

100
Kbps

1
Mbps

10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delay•bandwidth networks.

Transport Layer 3-217

TL: TCP header compression

rWhy?
m Low Bandwidth Links
m Efficiency for interactive

• 40byte headers vs payload size – 1 byte payload for
telnet

rHeader compression
mWhat fields change between packets?
m 3 types – fixed, random, differential
mMostly applied to TCP, but generic to ALL

protocol headers
m Retransmit all packets uncompressed when

compression state is lost

Transport Layer 3-218

TL: TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

Transport Layer 3-219

TL: TCP Header Compression

rWhat happens if packets are lost or
corrupted?
m Packets created with incorrect fields
m Checksum makes it possible to identify
mHow is this state recovered from?

rTCP retransmissions are sent with
complete headers
m Large performance penalty – must take a

timeout, no data-driven loss recovery
mHow do you handle other protocols?

Transport Layer 3-220

TL: Non-reliable Protocols

r IPv6 and other protocols are adding large headers
m However, these protocols don’t have loss recovery
m How to recover compression state

r Decaying refresh of compression state
m Suppose compression state is installed by packet X
m Send full state with X+2, X+4, X+8 until next state
m Prevents large number of packets being corrupted

r Heuristics to correct packet
m Apply differencing fields multiple times

r Do we need to define new formats for each
protocol?
m Not really – can define packet description language

[mobicom99]

Transport Layer 3-221

TL: TCP Extensions

r Implemented using TCP options
m Timestamp
m Protection from sequence number wraparound
m Large windows

Transport Layer 3-222

TL: TCP Timestamp Extension

rUsed to improve timeout mechanism by
more accurate measurement of RTT

rWhen sending a packet, insert current
timestamp into option
m 4 bytes for seconds, 4 bytes for microseconds

r Receiver echoes timestamp in ACK
m Actually will echo whatever is in timestamp

r Removes retransmission ambiguity
m Can get RTT sample on any packet

Transport Layer 3-223

TL: TCP and Sequence Number
Wraparound
rTCP PAWS
m Protection Against Wrapped Sequence Numbers

rWraparound time vs. Link speed
• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds à < MSL!
• 1.2Gbps: 28 seconds

rUse timestamp to distinguish sequence
number wraparound

Transport Layer 3-224

TL: TCP and Large Windows

rDelay-bandwidth product for 100ms delay
• 1.5Mbps: 18KB
• 10Mbps: 122KB > max 16bit window
• 45Mbps: 549KB
• 100Mbps: 1.2MB
• 622Mbps: 7.4MB
• 1.2Gbps: 14.8MB

rScaling factor on advertised window
m Specifies how many bits window must be

shifted to the left
m Scaling factor exchanged during connection

setup

Transport Layer 3-225

TL: Maximum Segment Size
(MSS)
r Exchanged at connection setup
m Typically pick MTU of local link

rWhat all does this effect?
m Efficiency
m Congestion control
m Retransmission

r Path MTU discovery
mWhy should MTU match MSS?

Transport Layer 3-226

TL: Changing Workloads (Aggressive
Applications)

r New applications are changing the way TCP is used
r 1980’s Internet

m Telnet & FTP à long lived flows
m Well behaved end hosts
m Homogenous end host capabilities
m Simple symmetric routing

r 2000’s Internet
m Web & more Web à large number of short xfers
m Wild west – everyone is playing games to get bandwidth
m Cell phones and toasters on the Internet
m Policy routing

Transport Layer 3-227

TL: Problems with Short
Concurrent Flows

r Compete for resources
mN “slow starts” = aggressive
mNo shared learning = inefficient

r Entire life is in slow start
r Fast retransmission is rare

f(n)f(n)

f2f2

f1f1

Server
Client

Internet

Transport Layer 3-228

TL: Well Behaved vs. Wild
West
rHow to ensure hosts/applications do proper

congestion control?
rWho can we trust?
mOnly routers that we control
m Can we ask routers to keep track of each flow

• No, we must avoid introducing per flow state into
routers

m Active router mechanisms for control in next
lecture

Transport Layer 3-229

TL: Congestion information
sharing
r Congestion control

m Share a single congestion window across all connections
to a destination

r Advantages
m Applications can’t defeat congestion control by opening

multiple connections simultaneously
m Overall loss rate of the network drops
m Possibly better performance for applications like Web

r Disadvantages?
m What if you’re the only one doing this? à you get lousy

throughput
m What about hosts like proxies?

Transport Layer 3-230

TL: Sharing Congestion
Information
r Intra-host sharing
mMultiple web connections from a host
m [Padmanabhan98, Touch97]

r Inter-host sharing
m For a large server farm or a large client

population
mHow much potential is there?

Transport Layer 3-231

TL: Sharing Information

r Loss recovery
mHow is loss detected?

• By the arrival of later packets from source
• Why does this have to be later packets on the same

connection?
m Sender keeps order of packets transmitted

across all connections
mWhen packet is not acked but later packets on

other connections are acked, retransmit packet
• Can we just follow standard 3 packet reordering rule?
• No, delayed acknowledgments make the conditions

more complicated

Transport Layer 3-232

TL: Integrated Loss Recovery

Router

ClientServer Router

Router

Data Packets Acknowledgments

123

4

1 2 3

7

8

8

7

4

56

4
Server

Server

Client

Client

Transport Layer 3-233

TL: Short Transfers

r Fast retransmission needs at least a window of 4
packets
m To detect reordering

r Should not be necessary if small outstanding
number of packets
m Adjust threshold to min(3, cwnd/outstanding)

r Some paths have much more reordering than
others
m Adapt threshold to past reordering

r Allow new packets to be transmitted for first few
dupacks
m Will create new dupacks and force retransmission
m Will not reduce goodput in situations of reordering
m Follows packet conservation

Transport Layer 3-234

TL: Enhanced TCP Loss
Recovery

Router

Router

Router

Data Packets Acknowledgments

4

6 5

8 7

3 3

ClientServer

Server

Server

Client

Client

Transport Layer 3-235

TL: Enhanced TCP Loss
Recovery

Router

Router
2

3 3

Data Packets Acknowledgments

Server

Server

Client

Client

Transport Layer 3-236

TL: Short Transfers

rShort transfer performance is limited by
slow start à RTT
m Start with a larger initial window
mWhat is a safe value?

• TCP already burst 3 packets into network during slow
start

• Large initial window = min (4*MSS, max (2*MSS,
4380 bytes)) [rfc2414]

• Enables fast retransmission
• Only used in initial slow start not in any subsequent

slow start

Transport Layer 3-237

TL: Asymmetric Behavior

rThree important characteristics of a path
m Loss
m Delay
m Bandwidth

r Forward and reverse paths are often
independent even when they traverse the
same set of routers
mMany link types are unidirectional and are used

in pairs to create bi-directional link

Transport Layer 3-238

TL: Asymetric Loss

r Loss
m Information in acks is very redundant
m Low levels of ack loss will not create problems
m TCP relies on ack clocking – will burst out

packets when cumulative ack covers large
amount of data

• Burst will in turn cause queue overflow/loss
mMax burst size for TCP and/or simple rate

pacing
• Critical also during restart after idle

Transport Layer 3-239

TL: Ack Compression

rWhat if acks encounter queuing delay?
m Ack clocking is destroyed

• Basic assumption that acks are spaced due to packets
traversing forward bottleneck is violated

m Sender receives a burst of acks at the same
time and sends out corresponding burst of data

mHas been observed and does lead to slightly
higher loss rate in subsequent window

Transport Layer 3-240

TL: Bandwidth Asymmetry

r Could congestion on the reverse path ever limit
the throughput on the forward link?

r Let’s assume MSS = 1500bytes and delayed acks
m For every 3000 bytes of data need 40 bytes of acks
m 75:1 ratio of bandwidth can be supported
m Modem uplink (28.8Kbps) can support 2Mbps downlink
m Many cable and satellite links are worse than this
m Header compression solves this

• A bi-directional transfer makes this much worse and more
clever techniques are needed

Transport Layer 3-241

TL: ATM congestion control

End-end congestion
control:

r no explicit feedback
from network

r congestion inferred
from end-system
observed loss, delay

r approach taken by TCP

Network-assisted
congestion control:

r routers provide feedback
to end systems
m single bit indicating

congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

m explicit rate sender
should send at

Two broad approaches towards congestion control:

Transport Layer 3-242

TL: Case study: ATM ABR congestion
control

ABR: available bit rate:
r “elastic service”
r if sender’s path

“underloaded”:
m sender should use

available bandwidth
r if sender’s path

congested:
m sender throttled to

minimum guaranteed
rate

RM (resource management)
cells:

r sent by sender, interspersed
with data cells

r bits in RM cell set by switches
(“network-assisted”)
m NI bit: no increase in rate

(mild congestion)
m CI bit: congestion

indication
r RM cells returned to sender by

receiver, with bits intact

Transport Layer 3-243

TL: Case study: ATM ABR congestion
control

r two-byte ER (explicit rate) field in RM cell
m congested switch may lower ER value in cell
m sender’ send rate thus minimum supportable rate on path

r EFCI bit in data cells: set to 1 in congested switch
m if data cell preceding RM cell has EFCI set, sender sets CI

bit in returned RM cell

Transport Layer 3-244

Chapter 3: Summary

r principles behind
transport layer services:
m multiplexing/demultiplexing
m reliable data transfer
m flow control
m congestion control

r instantiation and
implementation in the Internet
m UDP
m TCP

Next:
r leaving the network

“edge” (application
transport layer)

r into the network
“core”

Transport Layer 3-245

TL: TCP Connection Integrity

1. (CRASH)
2. CLOSED
3. SYN-SENT à <SEQ=400><CTL=SYN>
4. (!!) ß <SEQ=300><ACK=100><CTL=ACK>
5. SYN-SENT à <SEQ=100><CTL=RST>
6. SYN-SENT
7. SYN-SENT à <SEQ=400><CTL=SYN>

(send 300, receive 100)
ESTABLISHED

à (??)
ß ESTABLISHED
à (Abort!!)

CLOSED
à

TCP BTCP A

Transport Layer 3-246

15-744: Computer Networking

L-10 Alternatives

Transport Layer 3-247

Transport Alternatives

rTCP Vegas
rAlternative Congestion Control
rHeader Compression
rAssigned reading
m [BP95] TCP Vegas: End to End Congestion

Avoidance on a Global Internet
m [FHPW00] Equation-Based Congestion Control

for Unicast Applications

Transport Layer 3-248

Overview

rTCP Vegas
rTCP Modeling
rTFRC and Other Congestion Control
r Changing Workloads
rHeader Compression

Transport Layer 3-249

TCP Vegas Slow Start

r ssthresh estimation via packet pair
rOnly increase every other RTT
m Tests new window size before increasing

Transport Layer 3-250

Packet Pair

rWhat would happen if a source transmitted
a pair of packets back-to-back?

rSpacing of these packets would be
determined by bottleneck link
m Basis for ack clocking in TCP

rWhat type of bottleneck router behavior
would affect this spacing
mQueuing scheduling

Transport Layer 3-251

Packet Pair

r FIFO scheduling
m Unlikely that another flows packet will get

inserted in-between
m Packets sent back-to-back are likely to be

queued/forwarded back-to-back
m Spacing will reflect link bandwidth

r Fair queuing
m Router alternates between different flows
m Bottleneck router will separate packet pair at

exactly fair share rate

Transport Layer 3-252

Packet Pair in Practice

rMost Internet routers are FIFO/Drop-Tail
r Easy to measure link bandwidths
m Bprobe, pathchar, pchar, nettimer, etc.

rHow can this be used?
mNewReno and Vegas use it to initialize ssthresh
m Prevents large overshoot of available bandwidth
mWant a high estimate – otherwise will take a

long time in linear growth to reach desired
bandwidth

Transport Layer 3-253

TCP Vegas Congestion
Avoidance
rOnly reduce cwnd if packet sent

after last such action
mReaction per congestion episode not per

loss
r Congestion avoidance vs. control
rUse change in observed end-to-end delay

to detect onset of congestion
m Compare expected to actual throughput
m Expected = window size / round trip time
m Actual = acks / round trip time

Transport Layer 3-254

TCP Vegas

r If actual < expected < actual + α
mQueues decreasing à increase rate

r If actual + α < expected < actual + β
m Don’t do anything

r If expected > actual + β
mQueues increasing à decrease rate before

packet drop
rThresholds of α and β correspond to how

many packets Vegas is willing to have in
queues

Transport Layer 3-255

TCP Vegas

r Fine grain timers
m Check RTO every time a dupack is received or for

“partial ack”
m If RTO expired, then re-xmit packet
m Standard Reno only checks at 500ms

r Allows packets to be retransmitted earlier
m Not the real source of performance gain

r Allows retransmission of packet that would have
timed-out
m Small windows/loss of most of window
m Real source of performance gain
m Shouldn’t comparison be against NewReno/SACK

Transport Layer 3-256

TCP Vegas

r Flaws
m Sensitivity to delay variation
m Paper did not do great job of explaining where

performance gains came from
rSome ideas have been incorporated into

more recent implementations
rOverall
m Some very intriguing ideas
m Controversies killed it

Transport Layer 3-257

Overview

rTCP Vegas
rTCP Modeling
rOther Congestion Control
r Changing Workloads
rHeader Compression

Transport Layer 3-258

Binomial Congestion Control

r In AIMD
m Increase: Wn+1 = Wn + α
m Decrease: Wn+1 = (1- β) Wn

r In Binomial
m Increase: Wn+1 = Wn + α/Wn

k

m Decrease: Wn+1 = Wn - β Wn
l

m k=0 & l=1 à AIMD
m l < 1 results in less than multiplicative decrease

• Good for multimedia applications

Transport Layer 3-259

Binomial Congestion Control

r Rate ~ 1/ (loss rate)1/(k+l+1)

r If k+l=1 à rate ~ 1/p0.5

m TCP friendly if l ☯ 1
rAIMD (k=0, l=1) is the most aggressive of

this class
m Good for applications that want to probe quickly

and can use any available bandwidth

Transport Layer 3-260

Next Lecture: Queue
Management
r RED
r Blue
rAssigned reading
m [FJ93] Random Early Detection Gateways for

Congestion Avoidance
m [Fen99] Blue: A New Class of Active Queue

Management Algorithms

Transport Layer 3-261

15-744: Computer Networking

L-11 Queue Management

Transport Layer 3-262

Queue Management

r RED
r Blue
rAssigned reading
m [FJ93] Random Early Detection Gateways for

Congestion Avoidance
m [Fen99] Blue: A New Class of Active Queue

Management Algorithms

Transport Layer 3-263

Overview

rQueuing Disciplines

rDECbit

r RED

r RED Alternatives

r BLUE

Transport Layer 3-264

Queuing Disciplines

r Each router must implement some queuing
discipline

rQueuing allocates both bandwidth and
buffer space:
m Bandwidth: which packet to serve (transmit)

next
m Buffer space: which packet to drop next (when

required)
rQueuing also affects latency

Transport Layer 3-265

Packet Drop Dimensions

Aggregation
Per-connection state Single class

Drop position
Head Tail

Random location

Class-based queuing

Early drop Overflow drop

Transport Layer 3-266

Typical Internet Queuing

r FIFO + drop-tail
m Simplest choice
m Used widely in the Internet

r FIFO (first-in-first-out)
m Implies single class of traffic

r Drop-tail
m Arriving packets get dropped when queue is full

regardless of flow or importance
r Important distinction:

m FIFO: scheduling discipline
m Drop-tail: drop policy

Transport Layer 3-267

FIFO + Drop-tail Problems

r Leaves responsibility of congestion control
to edges (e.g., TCP)

rDoes not separate between different flows
rNo policing: send more packets à get more

service
rSynchronization: end hosts react to same

events

Transport Layer 3-268

Active Queue Management

rDesign active router queue management to
aid congestion control

rWhy?
m Router has unified view of queuing behavior
m Routers can distinguish between propagation

and persistent queuing delays
m Routers can decide on transient congestion,

based on workload

Transport Layer 3-269

Active Queue Designs

rModify both router and hosts
m DECbit -- congestion bit in packet header

rModify router, hosts use TCP
m Fair queuing

• Per-connection buffer allocation
m RED (Random Early Detection)

• Drop packet or set bit in packet header as soon as
congestion is starting

Transport Layer 3-270

Overview

rQueuing Disciplines

rDECbit

r RED

r RED Alternatives

r BLUE

Transport Layer 3-271

The DECbit Scheme

r Basic ideas:
mOn congestion, router sets congestion indication

(CI) bit on packet
m Receiver relays bit to sender
m Sender adjusts sending rate

r Key design questions:
mWhen to set CI bit?
mHow does sender respond to CI?

Transport Layer 3-272

Setting CI Bit

AVG queue length = (previous busy+idle + current interval)/(averaging interval)

Previous cycle Current cycle

Averaging interval

Current time

Time

Queue length

Transport Layer 3-273

DECbit Routers

r Router tracks average queue length
m Regeneration cycle: queue goes from empty to non-

empty to empty
m Average from start of previous cycle
m If average > 1 à router sets bit for flows sending

more than their share
m If average > 2 à router sets bit in every packet
m Threshold is a trade-off between queuing and delay
m Optimizes power = (throughput / delay)
m Compromise between sensitivity and stability

r Acks carry bit back to source

Transport Layer 3-274

DECbit Source

rSource averages across acks in window
m Congestion if > 50% of bits set
mWill detect congestion earlier than TCP

rAdditive increase, multiplicative
decrease
m Decrease factor = 0.875

• Lower than TCP (1/2) – why?
m Increase factor = 1 packet
m After change, ignore DECbit for packets in

flight (vs. TCP ignore other drops in window)
rNo slow start

Transport Layer 3-275

DECbit Evaluation

r Relatively easy to implement
rNo per-connection state
rStable
rAssumes cooperative sources
r Conservative window increase policy

Transport Layer 3-276

Overview

rQueuing Disciplines

rDECbit

r RED

r RED Alternatives

r BLUE

Transport Layer 3-277

Internet Problems

r Full queues
m Routers are forced to have have large queues to

maintain high utilizations
m TCP detects congestion from loss

• Forces network to have long standing queues in
steady-state

r Lock-out problem
m Drop-tail routers treat bursty traffic poorly
m Traffic gets synchronized easily à allows a few

flows to monopolize the queue space

Transport Layer 3-278

Design Objectives

r Keep throughput high and delay low
rAccommodate bursts
rQueue size should reflect ability to accept

bursts rather than steady-state queuing
r Improve TCP performance with minimal

hardware changes

Transport Layer 3-279

Lock-out Problem

r Random drop
m Packet arriving when queue is full causes some

random packet to be dropped
rDrop front
mOn full queue, drop packet at head of queue

r Random drop and drop front solve the lock-
out problem but not the full-queues
problem

Transport Layer 3-280

Full Queues Problem

rDrop packets before queue becomes full
(early drop)

r Intuition: notify senders of incipient
congestion
m Example: early random drop (ERD):

• If qlen > drop level, drop each new packet with fixed
probability p

• Does not control misbehaving users

Transport Layer 3-281

Random Early Detection (RED)

rDetect incipient congestion, allow bursts
r Keep power (throughput/delay) high
m Keep average queue size low
m Assume hosts respond to lost packets

rAvoid window synchronization
m Randomly mark packets

rAvoid bias against bursty traffic
rSome protection against ill-behaved users

Transport Layer 3-282

RED Algorithm

rMaintain running average of queue length
r If avg < minth do nothing
m Low queuing, send packets through

r If avg > maxth, drop packet
m Protection from misbehaving sources

r Else mark packet in a manner proportional
to queue length
mNotify sources of incipient congestion

Transport Layer 3-283

RED Operation
Min threshMax thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)

Transport Layer 3-284

RED Algorithm

rMaintain running average of queue length
m Byte mode vs. packet mode – why?

r For each packet arrival
m Calculate average queue size (avg)
m If minth ☯ avg < maxth

• Calculate probability Pa

• With probability Pa

– Mark the arriving packet
• Else if maxth ☯ avg

– Mark the arriving packet

Transport Layer 3-285

Queue Estimation

rStandard EWMA: avg - (1-wq) avg + wqqlen
m Special fix for idle periods – why?

rUpper bound on wq depends on minth
mWant to ignore transient congestion
m Can calculate the queue average if a burst

arrives
• Set wq such that certain burst size does not exceed

minth

r Lower bound on wq to detect congestion
relatively quickly

rTypical wq = 0.002

Transport Layer 3-286

Thresholds

rminth determined by the utilization
requirement
m Tradeoff between queuing delay and utilization

r Relationship between maxth and minth
mWant to ensure that feedback has enough time

to make difference in load
m Depends on average queue increase in one RTT
m Paper suggest ratio of 2

• Current rule of thumb is factor of 3

Transport Layer 3-287

Packet Marking

rMarking probability based on queue length
m Pb = maxp(avg - minth) / (maxth - minth)

r Just marking based on Pb can lead to
clustered marking
m Could result in synchronization
m Better to bias Pb by history of unmarked

packets
m Pa = Pb/(1 - count*Pb)

Transport Layer 3-288

Packet Marking

rmaxp is reflective of typical loss rates
r Paper uses 0.02
m 0.1 is more realistic value

r If network needs marking of 20-30% then
need to buy a better link!

Transport Layer 3-289

Extending RED for Flow
Isolation
r Problem: what to do with non-cooperative

flows?
r Fair queuing achieves isolation using per-

flow state – expensive at backbone routers
mHow can we isolate unresponsive flows without

per-flow state?
r RED penalty box
mMonitor history for packet drops, identify

flows that use disproportionate bandwidth
m Isolate and punish those flows

Transport Layer 3-290

Overview

rQueuing Disciplines

rDEC-bit

r RED

r RED Alternatives

r BLUE

Transport Layer 3-291

FRED

r Fair Random Early Drop (Sigcomm, 1997)
rMaintain per flow state only for active

flows (ones having packets in the buffer)
rminq and maxq à min and max number of

buffers a flow is allowed occupy
r avgcq = average buffers per flow
rStrike count of number of times flow has

exceeded maxq

Transport Layer 3-292

FRED – Fragile Flows

r Flows that send little data and want to
avoid loss

rminq is meant to protect these
rWhat should minq be?
mWhen large number of flows à 2-4 packets

• Needed for TCP behavior
mWhen small number of flows à increase to

avgcq

Transport Layer 3-293

FRED

rNon-adaptive flows
m Flows with high strike count are not allowed

more than avgcq buffers
m Allows adaptive flows to occasionally burst to

maxq but repeated attempts incur penalty
r Fixes to queue averaging
m RED only modifies average on packet arrival
mWhat if queue is 500 and slowly empties out?

• Add averaging on exit as well

Transport Layer 3-294

CHOKe

r CHOse and Keep/Kill (Infocom 2000)
m Existing schemes to penalize unresponsive flows

(FRED/penalty box) introduce additional
complexity

m Simple, stateless scheme
rDuring congested periods
m Compare new packet with random pkt in queue
m If from same flow, drop both
m If not, use RED to decide fate of new packet

Transport Layer 3-295

CHOKe

r Can improve behavior by selecting more
than one comparison packet
mNeeded when more than one misbehaving flow

rDoes not completely solve problem
m Aggressive flows are punished but not limited

to fair share

Transport Layer 3-296

Overview

rQueuing Disciplines

rDEC-bit

r RED

r RED Alternatives

r BLUE

Transport Layer 3-297

Blue

rUses packet loss and link idle events
instead of average queue length – why?
mHard to decide what is transient and what is

severe with queue length
m Based on observation that RED is often forced

into drop-tail mode
m Adapt to how bursty and persistent congestion

is by looking at loss/idle events

Transport Layer 3-298

Blue

r Basic algorithm
m Upon packet loss, if no update in freeze_time

then increase pm by d1
m Upon link idle, if no update in freeze_time then

decrease pm by d2
m d1 >> d2 à why ?

• More critical to react quickly to increase in load

Transport Layer 3-299

Comparison: Blue vs. RED

rmaxp set to 1
mNormally only 0.1
m Based on type of tests & measurement

objectives
• Want to avoid loss à marking is not penalized
• Enough connections to ensure utilization is good
• Is this realistic though?

r Blue advantages
mMore stable marking rate & queue length
m Avoids dropping packets
mMuch better behavior with small buffers

Transport Layer 3-300

Stochastic Fair Blue

rSame objective as RED Penalty Box
m Identify and penalize misbehaving flows

r Create L hashes with N bins each
m Each bin keeps track of separate marking rate

(pm)
m Rate is updated using standard technique and a

bin size
m Flow uses minimum pm of all L bins it belongs to
mNon-misbehaving flows hopefully belong to at

least one bin without a bad flow
• Large numbers of bad flows may cause false positives

Transport Layer 3-301

Stochastic Fair Blue

r Is able to differentiate between approx.
NL flows

r Bins do not actually map to buffers
m Each bin only keeps drop rate
m Can statistically multiplex buffers to bins
mWorks well since Blue handles small queues
mHas difficulties when large number of

misbehaving flows

Transport Layer 3-302

Stochastic Fair Blue

r False positives can continuously penalize
same flow

rSolution: moving hash function over time
m Bad flow no longer shares bin with same flows
m Is history reset àdoes bad flow get to make

trouble until detected again?
• No, can perform hash warmup in background

Transport Layer 3-303

Next Lecture: Fair Queuing

r Fair Queuing
r Core-stateless Fair queuing
rAssigned reading
m [DKS90] Analysis and Simulation of a Fair

Queueing Algorithm, Internetworking: Research
and Experience

m [SSZ98] Core-Stateless Fair Queueing:
Achieving Approximately Fair Allocations in
High Speed Networks

Transport Layer 3-304

TCP Futures

rThroughput in terms of loss rate

r ? L = 2?10-10 Wow
rNew versions of TCP for high-speed

needed!

LRTT
MSS⋅22.1

