
Functional Programming with Overloading and
Higher-Order Polymorphism

Mark P. Jones

Department of Computer Science, University of Nottingham, University Park,
Nottingham NG7 2RD, UK.

Abstract. The Hindley/Milner type system has been widely adopted as
a basis for statically typed functional languages. One of the main reasons
for this is that it provides an elegant compromise between flexibility, al-
lowing a single value to be used in different ways, and practicality, freeing
the programmer from the need to supply explicit type information.
Focusing on practical applications rather than implementation or theo-
retical details, these notes examine a range of extensions that provide
more flexible type systems while retaining many of the properties that
have made the original Hindley/Milner system so popular. The topics
discussed, some old, but most quite recent, include higher-order poly-
morphism and type and constructor class overloading. Particular em-
phasis is placed on the use of these features to promote modularity and
reusability.

1 Introduction

The Hindley/Milner type system [6, 19, 3], hereafter referred to as HM, repre-
sents a significant and highly influential step in the development of type systems
for functional programming languages. In our opinion, the main reason for this
is that it combines the following features in a single framework:

– Type security: soundness results guarantee that well-typed programs can-
not ‘go wrong’. This should be compared with the situation in dynamically
typed languages like Scheme where run-time tests are often required to check
that appropriate types of value are used in a particular context, and the ex-
ecution of a program may terminate if these tests fail.

– Flexibility: polymorphism allows the use and definition of functions that
behave uniformly over all types. This should be compared with the situa-
tion in monomorphically typed languages where it is sometimes necessary
to produce several versions of a particular function or algorithm to deal
with different types of values. Standard examples include swapping a pair of
values, choosing the minimum of two values, sorting an array of values, etc.

– Type inference: there is an effective algorithm which can be used to deter-
mine that a given program term is well-typed and, in addition, to calculate
its most general (principal) type, without requiring any type annotations in
the source program. In practice, even though it is not required, programmers
often choose to include explicit type information in a program as a form of

documentation. In this case, the programmer benefits from a useful consis-
tency check that is obtained automatically by comparing the declared types
with the results of the type inference algorithm.

– Ease of implementation: the type inference algorithm is easy to imple-
ment and behaves well in practice. Polymorphism itself is also easy to im-
plement, for example, by using a uniform (or boxed) representation that is
independent of the type of the values concerned.

As a result, HM has been used as a basis for several widely used functional
languages including Hope [2], Standard ML [20], Miranda1 [27] and Haskell [7].

The features listed above make HM an attractive choice for language de-
signers, but we should also recognize that it has some significant limitations.
In particular, while HM polymorphism allows the definition of functions that
behave uniformly over all types, it does not permit:

– Restricted polymorphism/overloading: the use or definition of func-
tions that are can be used for some, but not necessarily all, types, with
potentially different behaviours in each case.

– Higher-order polymorphism: the use or definition of functions that be-
have uniformly over all type constructors.

– Polymorphic arguments: the use or definition of functions with polymor-
phic arguments that can be used at different instances in the body of the
function.

These notes describe how the first two of these restrictions can be relaxed, while
preserving many of the properties that have made HM so popular. The third
item, to permit the use of function arguments with polymorphic components, is
a topic of current research. For example, one approach that we are investigating
is to use explicit type annotations to supplement the results of type inference.
However, for reasons of space, this will not be addressed any further here.

Our main aim is to illustrate practical applications of these extended type
systems using a variety of functional programming examples. To this end, we
avoid the distraction of long technical discussions about either the underlying
type theory or the implementation; these have already been covered in depth
elsewhere. We place particular emphasis on the use of these extensions to pro-
mote modularity, extensibility and reusability at the level of the core language2.

The main subjects of these notes are illustrated in Fig. 1. We start with a brief
review of the original Hindley/Milner type system (Sect. 2). The first extension
of HM that we consider is to support overloading using a system of type classes,
as described in Sect. 3. Introduced, at least in the form used here, by Wadler
and Blott [30], type classes have been adopted as part of the definition of the
standard for the functional programming language Haskell [7]. Type classes are

1 Miranda is a is a trademark (TM) of Research Software Limited.
2 i.e. for programming in the small. These notes do not address the subject of modu-

larity for programming in the large. Such goals are better met by powerful module
systems, for example, the structures and functors of Standard ML.

particularly useful for describing the implementation of standard polymorphic
operators such as equality, arithmetic and printing. We also include examples to
show how they can be used to provide a flexible framework for other applications.

Hindley/Milner
Type System

(Sect. 2)

Higher-order
Hindley/Milner

(Sect. 4)

Type Classes
(Sect. 3)

Constructor
Classes
(Sect. 5)

?

-

?

-

Fig. 1. A summary of the main subjects covered in these notes

Another way to extend HM is to make use of a form of higher-order poly-
morphism, i.e. polymorphism over type constructors as well as types. This is
described in Sect. 4. The generalization to the higher-order case is surprisingly
straightforward; it is most useful as a tool for specifying datatypes but it does
not significantly increase the expressiveness of the type system as a whole.

However, there is a significant increase in expressiveness when we combine
higher-order polymorphism with a class based overloading mechanism, leading
to the system of constructor classes described in Sect. 5. For example, we show
how constructor classes can be used to capture general patterns of recursion
of a large family of datatypes, to support the use of monads and to construct
modular programming language interpreters.

We assume familiarity with the basic techniques of functional programming,
as described by Bird and Wadler [1] for example, and with the concrete syntax
and use of Haskell [7] and/or Gofer [12]; these are the languages that were used
to develop the examples shown in these notes.

2 The Hindley/Milner Type System

These notes assume that the reader is already familiar with the use of HM in
languages like Standard ML or Haskell. However, it seems useful to start with
a summary of what we consider the most important features of HM for the
purposes of this paper.

The goal of the type system is to assign a type to each part of an input
program, guaranteeing that execution of the program will not go wrong, i.e.

that it will not encounter a run-time type error. Terms that cannot be assigned
a type will result in a compile-time type error.

One of the most striking differences between HM and many other type sys-
tems is the fact that the most general type of a term can be inferred without the
need for type annotations. In some cases, the most general type is monomorphic:

not :: Bool -> Bool
not False = True
not True = False

In other cases, the most general type is polymorphic:

identity :: a -> a
identity x = x

The type variable a appearing in the type of identity here represents an arbi-
trary type; if the argument x to identity has type a, then so will the result of
identity x. Another simple example is the length function which is used to
calculate the length of a list. One way to define length is as follows:

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

In this example, the appearance of the type variable a in the type of length
indicates that this single function length may be applied to any list, regardless
of the type of values that it contains.

In some treatments of HM, the types of the identity and length functions
about might be written more formally as ∀a.a → a and ∀a.[a] → Int , respec-
tively, so that polymorphic type variables are explicitly bound by a universal
quantifier. These quantifiers are left implicit in the concrete syntax of Haskell.
However, it is sometimes convenient to write the types of particular functions
using the quantifier notation to emphasize the role of polymorphism.

3 Type Classes

The HM type system is convenient for many applications, but there are some
important functions that cannot be given a satisfactory type. There are several
well-rehearsed examples, including arithmetic and equality operators, which il-
lustrate this point:

– If we treat addition as a monomorphic function of type Int -> Int -> Int,
then it can be used to add integer values, but it is not as general as we might
have hoped because it cannot also be used to add floating point quantities.
On the other hand, it would not be safe to use a polymorphic type such as
a -> a -> a for the addition operator because this allows a to be any type,
but addition is only defined for numeric types.

– If we treat equality as a monomorphic function of type T -> T -> Bool for
some type constructor T, then it is less general than we might have hoped
because it cannot be used to compare values of other types. However, a
polymorphic type like a -> a -> Bool would not be appropriate because
it includes the case where a is a function type, and there is no computable
equality for functional values.

In both of these examples we find ourselves in a position where monomorphic
types are too restrictive and fully polymorphic types are too general. Type
classes, described in some detail below, are an attempt to remedy such prob-
lems. This is achieved by providing an intermediate step between monomorphic
and polymorphic types, i.e. by allowing the definition of values that can be used
over a range of types, without requiring that they can be used over all types.

3.1 Basic principles

Type classes can be understood and used at several different levels. To begin
with, we restrict our attention to the built-in classes of Haskell. Later, we will
describe how these classes can be extended, and how new classes can be intro-
duced.

The Haskell standard prelude is a large library of useful types, type classes,
and functions, that is automatically imported into every Haskell program. The
prelude datatypes include Booleans (Bool), integers (fixed precision Int and
arbitrary precision Integer), rationals (Ratio), complex numbers (Complex),
floating point values (single precision Float and double precision Double), char-
acters (Char), lists, tuples, arrays, etc.

The prelude also defines a number of type classes, which can be thought of
as sets of types whose members are referred to as the instances of the class. If C
is the name of a class and a is a type, then we write C a to indicate that a is an
instance of C. Each type class is in fact associated with a collection of operators
and this has an influence on the choice of names. For example, the Eq class
contains types whose elements can be tested for equality, while the class Ord
contains types whose elements are ordered. We will return to this again below,
but for the time being, we will continue to think of classes as sets of types.

The instances of a class are defined by a collection of instance declarations.
For example, the instances of the Eq class are described by the declarations:

instance Eq Bool
instance Eq Char
instance Eq Int
instance Eq Integer
instance Eq Float
instance Eq Double
instance Eq a => Eq [a]
instance (Eq a, Eq b) => Eq (a,b)
instance (Eq a, Eq b, Eq c) => Eq (a,b,c)

Eq

´
´

´
´

´́+QQs
Binary

Ord

QQs ´́+

Ix

´
´

´
´

´́+
Enum

´́+
Num

QQs ´́+

Real

QQs ´́+
Fractional

QQs ´́+

Integral RealFrac

´́+
Floating

QQs

RealFloat

Fig. 2. The hierarchy of standard Haskell type classes

instance (Eq a, Eq b, Eq c, Eq d) => Eq (a,b,c,d)
...

The first few lines indicate that the types Bool, Char, Int, Integer, Float and
Double are instances of Eq class. The remaining declarations include a context
to the left of the => symbol. For example, the instance Eq a => Eq [a] dec-
laration can be read as indicating that, if a is an instance of Eq, then so is the
list type [a]. The very first declaration tells us that Bool is an instance of Eq,
and hence so are [Bool], [[Bool]], . . .

More formally, the effect of these instance declarations is to define Eq as the
smallest solution of the equation:

Eq = { Bool, Char, Int, Integer, Float, Double } ∪
{ [τ] | τ ∈ Eq } ∪
{ (τ1, τ2) | τ1, τ2 ∈ Eq } ∪
{ (τ1, τ2, τ3) | τ1, τ2, τ3 ∈ Eq } ∪
{ (τ1, τ2, τ3, τ4) | τ1, τ2, τ3, τ4 ∈ Eq } ∪
. . .

The Haskell prelude defines a number of other classes, as illustrated in Fig. 2.
Not all of the standard classes are infinite like Eq. For example, the prelude
includes instance declarations which defines the classes Integral and RealFloat
of integer and floating point number types, respectively, to be equivalent to:

Integral = { Int, Integer }
RealFloat = { Float, Double }

The prelude also specifies inclusions between different classes; these are illus-
trated by arrows in Fig. 2. For example, the Ord class is a subset of Eq: every
instance of Ord is also an instance of Eq. These inclusions are described by a
collection of class declarations like the following:

class Eq a
class (Eq a) => Ord a
class (Eq a, Text a) => Num a
...

The last declaration shown here specifies that Num is a subset of both Eq and
Text3. The inclusions between classes are verified by the compiler, and are of
most use in reasoning about whether a particular type is an instance of a given
class.

Finally, on top of the type, class, and instance declarations, the standard pre-
lude defines a large collection of primitive values and general purpose functions.
Some of the values defined in the prelude have monomorphic types:

not :: Bool -> Bool -- Boolean negation
ord :: Char -> Int -- Character to ASCII code

Others have polymorphic types:

(++) :: [a] -> [a] -> [a] -- List append
length :: [a] -> Int -- List length

There are also a number of functions with restricted polymorphic types:

(==) :: Eq a => a -> a -> Bool -- Test for equality
min :: Ord a => a -> a -> a -- Find minimum
show :: Text a => a -> String -- Convert to string
(+) :: Num a => a -> a -> a -- Addition

We refer to these types as being restricted because they include type class con-
straints. For instance, the first example tells us that the equality operator, (==),
can be treated as a function of type a -> a -> Bool. But the choice for a is
not arbitrary; the context Eq a will only be satisfied if a is an instance of Eq.
Thus we can use ’a’==’b’ to compare character values, or [1,2,3]==[1,2,3]
to compare lists of integers, but we cannot use id == id, where id is the identity
function, because the class Eq does not contain any function types. In a similar
way, the (+) operator can be used to add two integer values or two floating point
numbers because these are all instances of Num, but it cannot be used to add two
lists, say, because Haskell does not include lists in the Num class; any attempt to
add two list values will result in a compile-time type error.

Class constraints may also appear in the types of user-defined functions that
make use, either directly or indirectly of prelude functions with restricted poly-
morphic types. For example, consider the following definitions:

> member xs x = any (x==) xs
> subset xs ys = all (member ys) xs

3 This aspect of Haskell syntax can sometimes be confusing. It might have been better
if the roles of the expressions on the left and right hand side of => were reversed so
that Num a => (Eq a, Text a) could be read as an implication; if a is an instance
of Num, then a is also an instance of Eq and Text.

The definition of member takes a list xs of type [a] and a value x of type a, and
returns a boolean value indicating whether x is a member of xs; i.e. whether
any element of xs is equal to x. Since (==) is used to compare values of type
a, it is necessary to restrict our choice of a to instances of Eq. In a similar way,
it follows that subset must also have a restricted polymorphic type because it
makes use of the member function. Hence the types of these two functions are:

> member :: Eq a => [a] -> a -> Bool
> subset :: Eq a => [a] -> [a] -> Bool

These functions can now be used to work with lists of type [a] for any instance
a of Eq. But what if we want to work with user-defined datatypes that were not
mentioned in the prelude? In Haskell, this can be dealt with by including a list
of classes as part of the datatype definition. For example:

> data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
> deriving (Eq, Ord, Text)

The second line, deriving (Eq, Ord, Text), is a request to the compiler to
extend the three named classes to include the Day datatype, and to generate
appropriate versions of any overloaded operators for values of type Day. For
example:

? member [Mon,Tue,Wed,Thu,Fri] Wed
True
? subset [Mon,Sun] [Mon,Tue,Wed,Thu,Fri]
False
?

Instances of a type class that are obtained in this way are described as derived
instances. In the general case, a derived instance may require a context. For
example, the following datatype definition:

> data Either a b = Left a | Right b deriving (Eq, Ord)

will result in two derived instances:

instance (Eq a, Eq b) => Eq (Either a b)
instance (Ord a, Ord b) => Ord (Either a b)

3.2 Defining instances

The simple approach to type classes described above works quite well until you
run into a situation where either you want to include a new datatype in a class
for which derived instances are either not permitted4 or not suitable because
4 Haskell only permits derived instances of Eq, Ord, Text, Ix, Enum, and Binary. In

some cases, there are additional restrictions on the form of the datatype definition
when a derived instance is requested.

the rules for generating versions of overloaded functions do not give the desired
semantics. For example, suppose that we define a set datatype using lists to store
the members of each set, but without worrying about duplicate values or about
the order in which the elements are listed. A datatype definition like:

data Set a = Set [a] deriving (Eq)

would result in an implementation of equality satisfying:

Set xs == Set ys = xs == ys

where the equality on the right hand side is the equality on lists. Thus the sets
Set [1,2] and Set [2,1,2] would be treated as being distinct because their
element lists differ, even though they are intended to represent the same set.

In situations like this, it is possible for a programmer to provide their own
semantics for the overloaded operators associated with a particular class. To
start with, we need to take a more careful look at the full definition of the Eq
class:

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)

This indicates that, to include a type a as an instance of the Eq class, the pro-
grammer must supply definitions for the (==) and (/=) functions, both of type
a -> a -> Bool. In fact, the final line eases the programmers task a little by
providing a default definition for (/=) that will be used if the programmer does
not give a suitable definition of their own. As a result, all that the programmer
has to do is to provide a definition for (==); i.e. to define what it means for two
values of type a to be equal.

Returning to the example above, we can define the set datatype as:

> data Set a = Set [a]

and we use the following in place of a derived instance:

> instance Eq a => Eq (Set a) where
> Set xs == Set ys = subset xs ys && subset ys xs

This properly captures the intended semantics of set equality, i.e. that two sets
are equal precisely when each is a subset of the other, indicating that they have
the same members.

It is important to notice that a class can be arbitrarily extended to include
new instances, without any modification to the original class definition. This
gives a high degree of extensibility and modularity in many cases.

3.3 Defining classes

We have now seen how a programmer can use either derived instances or their
own implementations to specify the instances of one the standard Haskell classes.
This may be all that some programmers will ever need to know about Haskell
type classes. However, for some applications, it is useful for a programmer to be
able to define new classes. We will give a number of examples to illustrate this
point below.

In defining a new class, the first step is to decide exactly what common
properties we expect the instances to share, and to decide how this should be
reflected in the choice of the operators listed in the class declaration. However, it
is important to recognize that overloading is only appropriate if the meaning of
a symbol is uniquely determined by the types of the values that are involved. For
instance, some might consider the following example, using classes to describe
monoids, as an abuse of the system because monoid structures are not uniquely
determined by type.

class Monoid a where
e :: a
op :: a -> a -> a

instance Monoid [a] where
e = [] -- Empty list
op = (++) -- List append

instance Monoid (a -> a) where
e = id -- Identity function
op = (.) -- Function composition

instance Monoid Int where
e = 0
op = (+)

The final instance declaration here is particularly difficult to justify; there is
another equally good way to define a monoid structure on Integers using e=1
and op=(*), i.e. multiplication. There does not seem to be any good reason why
we should favour either one of these alternatives over the other.

We hope that the reader will find that most of the applications of type classes
in this paper, and of constructor classes in later sections, are well suited to over-
loading, with a single natural implementation for each instance of a particular
overloaded operator.

Trees. From search trees to the representation of parsed terms in a compiler,
trees, of one form or another, must rate as one of the most widely used data
structures in functional programming. There are many different kinds of tree
structure, with variations such as the number of branches out of each node,

and the type of values used as labels. The following datatype definitions help to
illustrate the point:

– Simple binary trees, with a value of type a at each leaf node.

> data BinTree a = Leaf a
> | BinTree a :^: BinTree a

– Labelled trees with a value of type a at each leaf node, and a value of type
l at each interior node:

> data LabTree l a = Tip a
> | LFork l (LabTree l a) (LabTree l a)

– Binary search trees, with data values of type a in the body of the tree.
These values would typically be used in conjunction with an ordering on the
elements of type a in order to locate a particular item in the tree.

> data STree a = Empty
> | Split a (STree a) (STree a)

– Rose trees, in which each node is labelled with a value of type a, and may
have an arbitrary number of subtrees:

> data RoseTree a = Node a [RoseTree a]

– Abstract syntax, for example, the following datatype might be used to rep-
resent λ-expressions in a simple interpreter. In this case, the leaf nodes cor-
respond to variables while the interior nodes represent either applications or
abstractions:

> type Name = String
> data Term = Var Name -- variable
> | Ap Term Term -- application
> | Lam Name Term -- lambda abstraction

On the other hand, there are some strong similarities between these datatypes,
and many familiar concepts, for example, depth, size, paths, subtrees, etc. can
be used with any of these different kinds of tree.

Consider the task of calculating the depth of a tree. Normally, it would be
necessary to write a different version of the depth calculation for each different
kind of tree structure that we are interested in. However, using type classes it
is possible to take a more general approach by defining a class of tree-like data
types. Starting with the observation that, whichever datatype we happen to be
using, every tree has a number of subtrees, we are lead to the following simple
characterization of tree-like data structures:

> class Tree t where
> subtrees :: t -> [t]

In words, subtrees t generates the list of (proper) subtrees of a given tree, t.
There are many properties of trees that this does not address, for example, the
use of labels, but of course, these are exactly the kind of things that we need to
ignore to obtain the desired level of generality.

The following instance declarations can be used to include each of the five
tree-like data structures listed above as an instance of the Tree class:

> instance Tree (BinTree a) where
> subtrees (Leaf n) = []
> subtrees (l :^: r) = [l,r]

> instance Tree (LabTree l a) where
> subtrees (Tip x) = []
> subtrees (LFork x l r) = [l,r]

> instance Tree (STree a) where
> subtrees Empty = []
> subtrees (Split x l r) = [l,r]

> instance Tree (RoseTree a) where
> subtrees (Node x gts) = gts

> instance Tree Term where
> subtrees (Var _) = []
> subtrees (Ap f x) = [f,x]
> subtrees (Lam v b) = [b]

With these definitions in place, we can start to construct a library of useful
functions that can be applied to any kind of tree that has been included in the
Tree class. For example, the following definitions can be used to determine the
depth and the size (i.e. the number of nodes) in any given tree:

> depth :: Tree t => t -> Int
> depth = (1+) . foldl max 0 . map depth . subtrees

> size :: Tree t => t -> Int
> size = (1+) . sum . map size . subtrees

There are more efficient ways to describe these calculations for particular kinds
of tree. For example, the definition of size for a BinTree could be simplified to:

size (Leaf n) = 1
size (l :^: r) = size l + size r

without constructing the intermediate list of subtrees. However, it is entirely
possible that this more efficient implementation could be obtained automati-
cally in a compiler, for example, by generating specialized versions of overloaded
functions [11].

Another simple example of an algorithm that can be applied to many different
kinds of tree is the process of calculating the list of paths from the root node
to each of the leaves. In specific cases, we might be tempted to use sequences of
labels, or sequences of directions such as ‘left’ and ‘right’ to identify a particular
path in the tree. Neither of these is possible in our more general framework.
Instead, we will identify each path with the corresponding sequence of subtrees.
This leads to the following definition:

> paths :: Tree t => t -> [[t]]
> paths t | null br = [[t]]
> | otherwise = [t:p | b<-br, p<-paths b]
> where br = subtrees t

The definitions of depth-first and breadth-first search can also be expressed
in our current framework, each yielding a list of subtrees in some appropriate
order:

> dfs :: Tree t => t -> [t]
> dfs t = t : concat (map dfs (subtrees t))

> bfs :: Tree t => t -> [t]
> bfs = concat . lev
> where lev t = [t] : foldr cat [] (map lev (subtrees t))
> cat = combine (++)

> combine :: (a -> a -> a) -> ([a] -> [a] -> [a])
> combine f (x:xs) (y:ys) = f x y : combine f xs ys
> combine f [] ys = ys
> combine f xs [] = xs

The depth-first algorithm given here is straightforward. We refer the reader to
[8] for further details and explanation of the breadth-first algorithm. It may seem
strange to define functions that return the complete list of every subtree in a
given tree. But this approach is well-suited to a lazy language where the list
produced by the search may not be fully evaluated. For example, if p is some
predicate on trees, then we might use the function:

head . filter p . dfs

to find the first node in a depth first search of a tree that satisfies p, and, once
it has been found, there will not be any need to continue the search.

As a final example, we sketch the implementation of a function for drawing
character-based diagrams of arbitrary tree values. This might, for example, be
useful as a way of visualizing the results of simple tree-based algorithms. The

following examples show the output of the function for two different kinds of
tree:

? drawTree ((Leaf 1 :^: Leaf 2) :^: (Leaf 3 :^: Leaf 4))
--@--@--1

| |
| ‘--2
|
‘--@--3

|
‘--4

? drawTree (Lam "f" (Ap (Ap (Var "f") (Var "x")) (Var "y")))
--\f--@--@--f

| |
| ‘--x
|
‘--y

?

The tree-drawing algorithm is based on a function:

> drawTree’ :: Tree t => (t -> String) -> t -> [String]

The first argument of drawTree’ is a function of type (t -> String) that
produces a text string corresponding to the label (if any) of the root node of a
tree of type t. The second argument of drawTree’ is the tree itself. The result
of the function is a list of strings, each corresponding to a single line of output,
that can be combined using the standard unlines function to produce a single
string with a newline character after each line.

To save the trouble of specifying a labelling function for drawTree, we define
a subclass of Tree that provides appropriate functions for labelling and drawing:

> class Tree t => DrawTree t where
> drawTree :: t -> String
> labTree :: t -> String
>
> drawTree = unlines . drawTree’ labTree

For example, the instance declaration that we use for the Term datatype is as
follows:

> instance DrawTree Term where
> labTree (Var v) = v
> labTree (Ap _ _) = "@"
> labTree (Lam v _) = "\\"++v

We leave the construction of drawTree’ and the definition of instances of the
DrawTree class for the other tree types defined above as an exercise for the
reader.

Duality and the De Morgan Principle. Our next example is inspired by the
work of Turner [26] to extend the concept of duality on Boolean algebras, and
the well-known De Morgan principle, to the list datatype. We start by defining a
class Dual of types with a function dual that maps values to appropriate duals:

> class Dual a where
> dual :: a -> a

The only property that we will require for an instance of Dual is that the corre-
sponding implementation of dual is self-inverse:

dual . dual = id

The easiest way to deal with classes constrained by laws such as this is to treat the
laws as proof obligations for each instance of the class that is defined, assuming
that the laws are satisfied for each of the subinstances involved.

The first example of duality is the inversion of boolean values given by:

> instance Dual Bool where
> dual = not

For example, dual True = False and dual False = True. It is easy to see
that this declaration satisfies the self-inverse property since because not . not
is the identity on booleans.

To make any further progress, we need to extend the concept of duality to
function values:

> instance (Dual a, Dual b) => Dual (a -> b) where
> dual f = dual . f . dual

The proof that this satisfies the self-inverse law is straightforward:

dual (dual f)
= { definition of dual, twice }

dual . dual . f . dual . dual
= { Assuming dual . dual = id for Dual a, Dual b }

id . f . id
= { ((.),id) monoid }

f

The dual function distributes over application and composition of functions:

dual (f x) = (dual f) (dual x)
dual (f . g) = dual f . dual g

We leave formal verification of these properties as a straightforward exercise for
the reader. These laws can be used to calculate duals. For example, consider the
definition of conjunction in the Haskell standard prelude:

True && x = x
False && x = False

Applying dual to both sides of each equation and simplifying, we obtain:

dual (&&) False x = x
dual (&&) True x = True

which shows that dual (&&) = (||), i.e. that disjunction (or) is the dual of
conjunction (and), as we would expect from the standard version of De Morgan’s
theorem for boolean values.

There are a variety of other applications of duality. Turner’s work was moti-
vated by the duality on finite lists that arises from the list reverse function:

> instance Dual a => Dual [a] where
> dual = reverse . map dual

If we restrict our attention to finite lists, then reverse . reverse is the identity
function and it is easy to show that this definition satisfies the self-inverse law.
We can make direct use of dual in calculations such as:

? dual head [1..10] -- dual head = last
10
? dual tail [1..10] -- dual tail = init
[1, 2, 3, 4, 5, 6, 7, 8, 9]
? dual (++) [1,2] [3,4] -- dual (++) = flip (++)
[3, 4, 1, 2]
?

The flip function referred to in the last example is the Haskell equivalent of
the classical W combinator that switches the order of the arguments to a curried
function:

flip :: (a -> b -> c) -> (b -> a -> c)
flip f x y = f y x

This can also be used to illustrate the use of the duals of the Haskell prelude
functions foldl an foldr, as in the following:

? foldl (flip (:)) [] [1..4]
[4, 3, 2, 1]
? dual foldr (:) [] [1..4]
[4, 3, 2, 1]
?

In general, the two fold functions are related by the formulae:

dual foldr = foldl . flip
dual foldl = foldr . flip

We refer the reader to the text by Bird and Wadler [1] for further discussion on
the relationship between foldl and foldr, and on duality for lists.

To conclude our comments about duality, we extend the framework to include
integers with unary minus as the dual function:

> instance Dual Int where
> dual = negate

For example:

? dual (+) 3 4 -- dual (+) = (+)
7
? dual max 3 5 -- dual max = min
3
? dual min 3 5 -- dual min = max
5
?

Computing with Lattices. A lattice is a partially ordered set with a top
and a bottom value in which every pair of elements has a meet (greatest lower
bound) and a join (least upper bound). There are many applications for lattices
in computer science, particularly in studies of semantics and program analysis.
Motivated by the study of frontiers and their use in strictness analysis, Jones
[9] developed a general framework for computing with (finite) lattices using type
classes. The result is an elegant system that includes a range of different types
of lattice and extends easily to accommodate other kinds of lattice needed for
particular applications. This compares very favourably with an earlier imple-
mentation of the same ideas that did not use type classes and, because of the
limitations imposed by HM, was less robust, more awkward to work with, and
harder to extend.

The most important part of Jones’ framework is the definition of a class of
lattices:

> class Eq a => Lattice a where
> bottom, top :: a
> meet, join :: a -> a -> a
> lt :: a -> a -> Bool
> x ‘lt‘ y = (x ‘join‘ y) == y

The lt function, written here as an infix operator, is used to describe the partial
order on the elements of the lattice. The default definition for lt shows how it
can be defined in terms of the join and equality operators.

The Bool datatype gives one of the simplest examples of a lattice, with meet
and join corresponding to conjunction and disjunction, respectively:

> instance Lattice Bool where
> bottom = False
> top = True
> meet = (&&)
> join = (||)

Note that we ignore any improper elements of lattice types, in this case, just
the bottom element ⊥ of type Bool, since these values cannot be used without
risking abnormal- or non-termination.

As a slightly more complex example, we can define the lattice structure of a
product of two lattices using the declaration:

> instance (Lattice a, Lattice b) => Lattice (a,b) where
> bottom = (bottom,bottom)
> top = (top,top)
> (x,y) ‘meet‘ (u,v) = (x ‘meet‘ u, y ‘meet‘ v)
> (x,y) ‘join‘ (u,v) = (x ‘join‘ u, y ‘join‘ v)

It is possible to extend the Lattice class with other kinds of lattice, such as
lattices of subsets, lattices of frontiers, lifted lattices, and lattices of functions.

We will use the problem of defining the least fixed point operator as an
illustration of the use of the Lattice class. It is well-known that, if f is a
monotonic function5 on some lattice a, then f has a least fixed point which
can be obtained as the limit of the sequence:

iterate f bottom = [bottom, f bottom, f (f bottom), ...

Assuming that the lattice in question is finite, the limit will be the first (and
only) repeated value in this sequence. This translates directly to an algorithm
for calculating the least fixed point, fix f:

> fix :: Lattice a => (a -> a) -> a
> fix f = firstRepeat (iterate f bottom)

> firstRepeat :: Eq a => [a] -> a
> firstRepeat (x:xs) = if x==head xs then x else firstRepeat xs

Building on examples like these, Jones [9] shows how to define general tools for
computing with lattices, including an algorithm to enumerate the elements of a
finite lattice. It is beyond the scope of these notes to give any further details of
these examples here.

4 A Higher-order Hindley/Milner Type System

We have already seen examples showing how HM allows the programmer to
generalize with respect to types, suggesting that a polymorphic function has a
uniform implementation for a range of different types. For example, the type
of the length function in Sect. 2 is ∀a.[a] → Int ; this reflects the fact that the
elements of a list do not play a part in the calculation of its length. However, HM
does not allow us to generalize with respect to type constructors, for example to
define a function:

size :: ∀t .∀a.t(a) → Int .

that could be used to give some measure of the size of an object of type (t a)
for any type constructor t , and any type a (for instance, we might expect that

5 In the notation used here, this means that f x ‘lt‘ f y, whenever x ‘lt‘ y.

length would be a special case of size, using the list type constructor in place
of the variable t).

At first glance, we may be concerned that a generalization of HM to support
this weak form of higher-order polymorphism would quickly run into technical
difficulties. For example, standard type inference algorithms require the use of
a unification algorithm to determine when two types are equal. In the higher-
order case, we need to be able to compare type constructors which might seem
to imply a need for higher-order unification, known to be undecidable. In fact,
the generalization of HM to support higher-order polymorphism that is sketched
here is surprisingly straightforward. Many of the technical properties of HM, and
their proofs, carry over with little or no change. In particular, there is an effective
type inference algorithm, based on a (decidable) kinded, first-order unification
process6. To the best of our knowledge, the only place where this has been
described in the past is as an integral part of the system of constructor classes
[10] which is the subject of the next section. Our goal here is to highlight the
fact that the higher-order extension is independent of any use of overloading.

The extension rests on the use of a kind system:

κ ::= ∗ monotypes
| κ1 → κ2 function kinds

Kinds are used to identify particular families of type constructors in much the
same way as types are used to describe collections of values. The ∗ kind represents
the set of all monotypes, i.e. nullary type constructors, while the kind κ1 → κ2

represents constructors that take something of kind κ1 and return something
of kind κ2. For each kind κ, we have a collection of constructors C κ (including
constructor variables ακ) of kind κ given by:

C κ ::= χκ constants
| ακ variables
| C κ′→κ C κ′ applications

This corresponds very closely to the way that most type expressions are already
written in Haskell. For example, List a is an application of the constructor
constant List to the constructor variable a. In addition, each constructor con-
stant has a corresponding kind. For example, writing (->) for the function space
constructor and (,) for pairing we have:

Int, Float, () :: *
List, BinTree :: * -> *
(->), (,), LabTree :: * -> * -> *

The task of checking that a given type expression is well-formed can now be
reformulated as the task of checking that a given constructor expression has kind
∗. The apparent mismatch between the explicitly kinded constructor expressions

6 This is possible because the language of constructors is built up from constants and
applications; in particular, there are no abstractions.

specified above and the implicit kinding used in examples can be resolved by a
process of kind inference; i.e. by using standard techniques to infer kinds without
the need for programmer supplied kind annotations [10].

Given this summary of the technical issues, we turn our attention to appli-
cations of the extended type system. Here, we find that, by itself, higher-order
polymorphism is often too general for practical examples. For example, in the
case of the size function described above, it is hard to construct a definition for
any interesting functions of type ∀t .∀α.t(α) → Int7 because we need a definition
that will work for any type constructor t , and any type a. The only possibilities
are functions of the form λx .n where n is an integer constant, all of which can
be treated as having the more general type ∀a.a → Int without the need for
higher-order polymorphism.

Even so, higher-order types are still useful, particularly as a means of speci-
fying new datatypes where we can use a mixture of types and type constructors
as parameters.

data Mu f = In (f (Mu f))

data NatF s = Zero | Succ s
type Nat = Mu NatF

data StateT s m a = STM (s -> m (a,s))

The first three examples here can be used to provide a general framework
for constructing recursive datatypes and corresponding recursion schemes. The
fourth example is used to describe a parameterized state monad. Both of these
examples will be described in the following section.

The reader may like to check the following kinds for each of the type con-
structors introduced above.

Mu :: (* -> *) -> *
NatF :: * -> *
Nat :: *
StateT :: * -> (* -> *) -> * -> *

All of these kinds can be determined automatically without the use of kind
annotations.

As a final comment, it is worth noting that the implementation of this form
of higher-order polymorphism is straightforward, and that experience with prac-
tical implementations, for example, Gofer, suggests that it is also natural from
a programmer’s perspective.

7 observation that this argument is based on an implicit assumption that we do not
have any extra constants that were not included in HM. Adding suitable constants
with types that involve higher-order polymorphism would make the type system
described here much more powerful.

5 Constructor Classes

Type class overloading and higher-order polymorphism are independent exten-
sions of HM. In this section, we give a number of examples to illustrate the
expressiveness of a system that combines these two ideas. Previously, we have
used classes to represent sets of types, i.e. constructors of kind *, but in this
section, we will use classes to represent sets of constructors of any fixed kind κ.
We will refer to these sets as constructor classes [10], including the type classes
of Sect. 3 as a special case.

5.1 Functors

We begin our discussion of constructor classes with a now standard example.
Consider the familiar map function that can be used to apply a function to each
element in a list of values:

map :: (a -> b) -> (List a -> List b)
map f [] = []
map f (x:xs) = f x : map f xs

It is well known that map satisfies the following laws:

map id = id
map f . map g = map (f . g)

Many functional programmers will be aware that it is possible to define vari-
ants of map, each satisfying very similar laws, for many other datatypes. Such
constructions have also been widely studied in the context of category theory
where the observations here might be summarized by saying that the list type
constructor List, together with the map function correspond to a functor. This
is an obvious application for overloading because the implementation of a par-
ticular variant of map (if it exists) is uniquely determined by the choice of the
type constructor that it involves.

Overloading map. Motivated by the discussion above, we define a constructor
class, Functor with the following definition:

> class Functor f where
> fun :: (a -> b) -> (f a -> f b)

Note that we have used the name fun to avoid a conflict with the prelude map
function. Renaming the ‘functor’ laws above gives:

fun id = id
fun f . fun g = fun (f . g)

The following datatypes will be used in later parts of these notes, and all of them
can be treated as functors:

> data Id a = Id a
> type List = []
> data Maybe a = Just a | Nothing
> data Error a = Ok a | Fail String
> data Writer a = Result String a
> type Read r = (r ->)

The syntax in the final example may need a little explanation; (r->) is just a
more attractive way of writing the partial application of constructors ((->) r).
The whole declaration tells us that the expression Read r should be treated as
a synonym for (r->), and hence that (a->b), ((a->) b), and Read a b are
equivalent ways of writing the same type constructor. In this case, the type
keyword is something of a misnomer since (r->), and hence also Read r, has
kind (*->*) rather than just *.

The functor structures for each of these datatypes are captured by the fol-
lowing definitions:

> instance Functor Id where
> fun f (Id x) = Id (f x)

> instance Functor List where
> fun f [] = []
> fun f (x:xs) = f x : fun f xs

> instance Functor Maybe where
> fun f (Just x) = Just (f x)
> fun f Nothing = Nothing

> instance Functor Error where
> fun f (Ok x) = Ok (f x)
> fun f (Fail s) = Fail s

> instance Functor Writer where
> fun f (Result s x) = Result s (f x)

> instance Functor (r->) where
> fun f g = f . g

Again, we would draw special attention to the final example. As functional pro-
grammers, we tend to think of mapping a function over the elements of a list as
being a very different kind of operation to composing two functions. But, in fact,
they are both instances of a single concept. This means that, in future functional
languages, we could dispense with the use of two different symbols for these two
concepts. We might have, for example:

f . (xs ++ ys) = (f . xs) ++ (f . ys)
(f . g) . xs = f . (g . xs)
id . x = x

Recursion schemes: Functional programming with bananas and lenses.
Functions like map are useful because they package up a particular pattern of
computation in a convenient form as a higher-order function. Algorithms ex-
pressed in terms of map are often quite because they hide the underlying recur-
sion over the structure of a list and may be more useful in program calculation
where standard, but general laws for map can be used in place of inductive proof.
The foldr function is another well known example of this, again from the theory
of lists:

foldr :: (a -> b -> b) -> b -> List a -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

As with map, there are variants of this function for other datatypes. For example,
the fold function for the RoseTree datatype is:

> foldRT :: (a -> [b] -> b) -> RoseTree a -> b
> foldRT f (Node a xs) = f a (map (foldRT f) xs)

Given that foldr and foldRT don’t even have the same number of parameters,
it will probably seem unlikely that we will be able to use overloading to view
these two functions as instances of a single concept.

In fact, it is possible to do just this, provided that we are prepared to adopt a
more uniform way of defining recursive datatypes. These ideas have already been
widely studied from a categorical perspective where datatypes are constructed as
fixed points of functors. The general version of a fold function is often described
as a catamorphism and there is a dual notion of an anamorphism. It is common
to use the notation (|φ|) for a catamorphism, and db(ψ)ec for an anamorphism.
Inspired by the shape of the brackets used here, the use of these operators has
been described as ‘functional programming with bananas and lenses’ [17]. The
remainder of this section shows how these ideas can be implemented directly
using constructor classes. These ideas are dealt with in more detail elsewhere
in this volume. A more detailed overview of our implementation can be found
elsewhere [18].

We start by defining a datatype for constructing fixed points of unary type
constructors:

> data Mu f = In (f (Mu f))

Ideally, we would like to view the In constructor as an isomorphism of f (Mu f)
and Mu f with the inverse isomorphism given by:

> out :: Mu f -> f (Mu f)
> out (In x) = x

Unfortunately, the semantics of Haskell treats In as a non-strict constructor,
so these functions are not actually isomorphisms. We will not concern ourselves
any further with this rather technical point here, except to note that there have

been several proposals to extend Haskell with mechanisms that would allow us
to define these functions as true isomorphisms.

Now, choosing an appropriate functor as a parameter, we can use the Mu
constructor to build recursive types:

– Natural numbers: the datatype Nat of natural numbers is defined as the fixed
point of a functor NatF:

> type Nat = Mu NatF
> data NatF s = Zero | Succ s

> instance Functor NatF where
> fun f Zero = Zero
> fun f (Succ x) = Succ (f x)

For convenience, we define names for the zero natural number and for the
successor function:

> zero :: Nat
> zero = In Zero

> succ :: Nat -> Nat
> succ x = In (Succ x)

For example, the number 1 is represented by one = succ zero.
– Lists of integers: Following the same pattern as above, we define the type

IntList as the fixed point of a functor IntListF, and we introduce conve-
nient names for the constructors:

> type IntList = Mu IntListF
> data IntListF a = Nil | Cons Int a

> instance Functor IntListF where
> fun f Nil = Nil
> fun f (Cons n x) = Cons n (f x)

> nil = In Nil
> cons x xs = In (Cons x xs)

– Rose trees: Again, we follow a similar pattern:

> type RoseTree a = Mu (RoseTreeF a)
> data RoseTreeF a b = Node a [b]

> instance Functor (RoseTreeF a) where
> fun f (Node x ys) = Node x (map f ys)

> node :: a -> [RoseTree a] -> RoseTree a
> node x ys = In (Node x ys)

The general definitions of catamorphisms and anamorphisms can be ex-
pressed directly in this framework, writing cata phi and ana psi for (|φ|) and
db(ψ)ec, respectively:

> cata :: Functor f => (f a -> a) -> Mu f -> a
> cata phi = phi . fun (cata phi) . out

> ana :: Functor f => (a -> f a) -> a -> Mu f
> ana psi = In . fun (ana psi) . psi

To illustrate the use of these recursions schemes, consider the following defini-
tions for arithmetic on natural numbers (addition, multiplication and exponen-
tiation):

> addNat n m = cata (\fa -> case fa of
> Zero -> m
> Succ x -> succ x) n
> mulNat n m = cata (\fa -> case fa of
> Zero -> zero
> Succ x -> addNat m x) n
> expNat n m = cata (\fa -> case fa of
> Zero -> one
> Succ x -> mulNat n x) m

The same recursion schemes can be used with other datatypes as shown by the
following implementations of functions to calculate the length of a list of integers
and to append two lists. The final example uses an anamorphism to construct
an infinite list of integers:

> len = cata (\fa -> case fa of
> Nil -> zero
> Cons z zs -> succ zs)

> append xs ys = cata (\fa -> case fa of
> Nil -> ys
> Cons z zs -> cons z zs) xs

> intsFrom = ana (\n -> Cons n (n+1))

5.2 Monads

Motivated by the work of Moggi [21] and Spivey [24], Wadler [29, 28] has pro-
posed a style of functional programming based on the use of monads. Wadler’s
main contribution was to show that monads, previously studied in depth in the
context of abstract category theory [16], could be used as a practical method
for structuring functional programming, and particularly for modelling ‘impure’
features in a purely functional setting.

One useful way to think about monads is as a means of representing compu-
tations. If m is a monad, then an object of type m a represents a computation
that is expected to produce a result of type a. The choice of monad reflects
the (possible) use of particular programming language features as part of the
computation. Simple examples include state, exceptions and input/output. The
distinction between computations of type m a and values of type a reflects the
fact that the use of programming language features is a property of the compu-
tation itself and not of the result that it produces.

Every monad provides at least two operations. First, there must be some way
to return a result from a computation. We will use an expression of the form
result e to represent a computation that returns the value e with no further
effect, where result is a function:

result :: a -> m a

corresponding to the unit function in Wadler’s presentations.
Second, to describe the way that computations can be combined, we use a

function:

bind :: m a -> (a -> m b) -> m b

Writing bind as an infix operator, we can think of c ‘bind‘ f as a computation
which runs c, passes the result x of type a to f, and runs the computation f x
to obtain a final result of type b. In many cases, this corresponds to sequencing
of one computation after another.

The description above leads to the following definition for a constructor class
of monads:

> class Functor m => Monad m where
> result :: a -> m a
> bind :: m a -> (a -> m b) -> m b

The monad operators, result and bind, are required to satisfy some simple
algebraic laws, that are not reflected in this class declaration. For further in-
formation, we refer the reader to the more detailed presentations of monadic
programming in this volume.

One well-known application of monads is to model programs that make use
of an internal state. Computations of this kind can be represented by state
transformers, i.e. by functions of type s -> (a,s), mapping an initial state to
a result value paired with the final state. For the system of constructor classes
in this paper, state transformers can be represented using the datatype:

> data State s a = ST (s -> (a,s))

The functor and monad structures for state transformers are as follows:

> instance Functor (State s) where
> fun f (ST st) = ST (\s -> let (x,s’) = st s in (f x, s’))

> instance Monad (State s) where
> result x = ST (\s -> (x,s))
> m ‘bind‘ f = ST (\s -> let ST m’ = m
> (x,s1) = m’ s
> ST f’ = f x
> (y,s2) = f’ s1
> in (y,s2))

Note that the State constructor has kind * -> * -> * so that, for any state
type s, the constructor State s has kind * -> * as required for instances of the
Functor and Monad classes. We refer the reader to other sources [28, 29, 10] for
examples illustrating the use of state monads.

Many of the datatypes that we described as functors in the previous section
can also be given a natural monadic structure:

– The identity monad has little practical use on its own, but provides a trivial
base case for use with the monad transformers that are described in later
sections.

> instance Monad Id where
> result = Id
> Id x ‘bind‘ f = f x

– The list monad is useful for describing computations that may produce a
sequence of zero or more results.

> instance Monad List where
> result x = [x]
> [] ‘bind‘ f = []
> (x:xs) ‘bind‘ f = f x ++ (xs ‘bind‘ f)

– The Maybe monad has been used to model programs that either produce a
result (by returning a value of the form Just e) or raise an exception (by
returning a value of the form Nothing).

> instance Monad Maybe where
> result x = Just x
> Just x ‘bind‘ f = f x
> Nothing ‘bind‘ f = Nothing

– The Error monad is closely related to the Maybe datatype, but attaches a
string error message to any computation that does not produce a value.

> instance Monad Error where
> result = Ok
> Ok x ‘bind‘ f = f x
> Fail msg ‘bind‘ f = Fail msg

– The Writer monad is used to allow a program to produce both an output
string8 and a return value.

> instance Monad Writer where
> result x = Result "" x
> Result s x ‘bind‘ f = Result (s ++ s’) y
> where Result s’ y = f x

– A Reader monad is used to allow a computation to access the values held
in some enclosing environment (represented by the type r in the following
definitions).

> instance Monad (r->) where
> result x = \r -> x
> x ‘bind‘ f = \r -> f (x r) r

As a passing comment, it is interesting to note that these two functions are
just the standard K and S combinators of combinatory logic.

Operations on Monads. From a user’s point of view, the most interesting
properties of a monad are described, not by the result and bind operators, but
by the additional operations that it supports, for example, to permit access to
the state, or to deal with input/output. It would be quite easy to run through
the list of monads above and provide a small catalogue of useful operators for
each one. For example, we might include an operator to update the state in a
State monad, or to output a value in a Writer monad, or to signal an error
condition in an Error monad.

In fact, we will take a more forward-thinking approach and use the con-
structor class mechanisms to define different families of monads, each of which
supports a particular collection of simple primitives. The benefit of this is that,
later, we will want to consider monads that are simultaneously instances of sev-
eral different classes, and hence support a combination of different primitive
features. This same approach has proved to be very flexible in other recent work
[10, 15].

In these notes, we will make use of the following classes of monad:

– State monads: The principal characteristic of state based computations is
that there is a way to access and update the state. We will represent these
two features by a single update operator that applies a user supplied function
to update the current state, returning the old state as its result.

> class Monad m => StateMonad m s where
> update :: (s -> s) -> m s

8 Note that, for a serious implementation of Writer, it would be better to use functions
of type ShowS = String -> String as the output component of the Writer monad
in place of the strings used here. This is a well-known trick to avoid the worst-case
quadratic behaviour of nested calls to the append operator, (++).

The State s monad described above is an obvious example of a StateMonad:

> instance StateMonad (State s) s where
> update f = ST (\s -> (s, f s))

Simple uses of a state monad include maintaining an integer counter:

> incr :: StateMonad m Int => m Int
> incr = update (1+)

or generating a sequence of pseudo-random numbers, in this case using the
algorithm suggested by Park and Miller [23]:

> random :: StateMonad m Int => Int -> m Int
> random n = update min_stand ‘bind‘ \m ->
> result (m ‘mod‘ n)

> min_stand :: Int -> Int
> min_stand n = if test > 0 then test else test + 2147483647
> where test = 16807 * lo - 2836 * hi
> hi = n ‘div‘ 127773
> lo = n ‘mod‘ 127773

– Error monads: The main feature of this class of monads is the ability for
a computation to fail, producing an error message as a diagnostic.

> class Monad m => ErrorMonad m where
> fail :: String -> m a

The Error datatype used above is a simple example of an ErrorMonad:

> instance ErrorMonad Error where
> fail = Fail

– Writer monads: The most important feature of a writer monad is the
ability to output messages.

> class Monad m => WriterMonad m where
> write :: String -> m ()

> instance WriterMonad Writer where
> write msg = Result msg ()

– Reader monads: A class of monads for describing computations that con-
sult some fixed environment:

> class Monad m => ReaderMonad m r where
> env :: r -> m a -> m a
> getenv :: m r

> instance ReaderMonad (r->) r where
> env e c = _ -> c e
> getenv = id

To illustrate why this approach is so attractive, consider the following definition:

> nxt m = update (m+) ‘bind‘ \n ->
> if n > 0 then write ("count = " ++ show n)
> else fail "count must be positive"

The nxt function uses a combination of features: state, error and output. This
is reflected in the inferred type:

(WriterMonad m, ErrorMonad m, StateMonad m Int) => Int -> m ()

In this example, the type inference mechanism records the combination of fea-
tures that are required for a particular computation, without committing to a
particular monad m that happens to meet these constraints9. This last point is
important for two reasons. First, because we may want to use nxt in a context
where some additional features are required, resulting in an extra constraint on m.
Second, because there may be several ways to combine a particular combination
of features with corresponding variations in semantics. Clearly, it is preferable to
retain control over this, rather than leaving the type system to make an arbitrary
choice on our behalf.

Monads as substitutions. Up to this point, we have concentrated on the use
of monads to describe computations. In fact, monads also have a useful inter-
pretation as a general approach to substitution. This in turn provides another
application for constructor classes.

Suppose that a value of type m v represents a collection of terms with ‘vari-
ables’ of type v. Then a function of type w -> m v can be thought of as a
substitution, mapping variables of type w to terms over v. For example, consider
the representation of a simple language of types constructed from type variables
and the function space constructor using the datatype:

> data Type v = TVar v -- Type variable
> | TInt -- Integer type
> | Fun (Type v) (Type v) -- Function type

For convenience, we define an instance of the Text class to describe how such
type expressions will be displayed:

instance Text v => Text (Type v) where
> showsPrec p (TVar v) = shows v
> showsPrec p TInt = showString "Int"
> showsPrec p (Fun l r) = showParen (p>0) str
> where str = showsPrec 1 l . showString " -> " . shows r

9 In fact, none of the monad examples that we have seen so far are instances of all
of these classes. The process of constructing new monads which do satisfy all of the
class constraints listed here will be described later in these notes.

The functor and monad structure of the Type constructor are as follows:

> instance Functor Type where
> fun f (TVar v) = TVar (f v)
> fun f TInt = TInt
> fun f (Fun d r) = Fun (fun f d) (fun f r)

> instance Monad Type where
> result v = TVar v
> TVar v ‘bind‘ f = f v
> TInt ‘bind‘ f = TInt
> Fun d r ‘bind‘ f = Fun (d ‘bind‘ f) (r ‘bind‘ f)

In this setting, the fun function gives a systematic renaming of the variables
in a term (there are no bound variables), while result corresponds to the null
substitution that maps each variable to the term for that variable. If t has type
Type v and s is a substitution of type v -> Type v, then t ‘bind‘ s gives the
result of applying the substitution s to the term t, replacing each occurrence of
a variable v in t with the corresponding term s v in the result. In other words,
application of a substitution to a term is captured by the function:

> apply :: Monad m => (a -> m b) -> (m a -> m b)
> apply s t = t ‘bind‘ s

Note that this operator can be used with any monad, not just the Type construc-
tor that we are discussing here. Composition of substitutions also corresponds
to a more general operator, called Kleisli composition, that can be used with
arbitrary monads. Written here as the infix operator (@@), Kleisli composition
can be defined as:

> (@@) :: Monad m => (a -> m b) -> (c -> m a) -> (c -> m b)
> f @@ g = join . fun f . g

> join :: Monad m => m (m a) -> m a
> join xss = bind xss id

Apart from its use in the definition of (@@), the join operator defined here can
also be used an alternative to bind for combining computations [28].

In most cases, the same type will be used to represent variables in both the
domain and range of a substitution. We introduce a type synonym to capture
this and to make some type signatures a little easier to read.

> type Subst m v = v -> m v

One of the simplest kinds of substitution, which will be denoted by v >> t,
is a function that maps the variable v to the term t but leaves all other variables
fixed:

> (>>) :: (Eq v, Monad m) => v -> m v -> Subst m v
> (v >> t) w = if v==w then t else result w

The type signature shown here is the most general type of the (>>) operator,
and could also have been inferred automatically by the type system. The class
constraints (Eq v, Monad m) indicate that, while (>>) is defined for arbitrary
monads, it can be used only in cases where the values representing variables can
be tested for equality.

The following definition gives an implementation of the standard unification
algorithm for values of type Type v. This illustrates the use of monads both as a
means of describing substitutions and as a model for computations, in this case,
in an ErrorMonad:

> unify TInt TInt = result result
> unify (TVar v) (TVar w) = result (if v==w then result
> else v >> TVar w)
> unify (TVar v) t = varBind v t
> unify t (TVar v) = varBind v t
> unify (Fun d r) (Fun e s) = unify d e ‘bind‘ \s1 ->
> unify (apply s1 r)
> (apply s1 s) ‘bind‘ \s2 ->
> result (s2 @@ s1)
> unify t1 t2 = fail ("Cannot unify " ++ show t1 ++
> " with " ++ show t2)

The only way that unification can fail is if we try to bind a variable to a type
that contains that variable. A test for this condition, often referred to as the
occurs check, is included in the auxiliary function varBind:

> varBind v t = if (v ‘elem‘ vars t)
> then fail "Occurs check fails"
> else result (v>>t)
> where vars (TVar v) = [v]
> vars TInt = []
> vars (Fun d r) = vars d ++ vars r

A Simple Application: A Type Inference Algorithm. To illustrate how
some of the classes and functions introduced above might be used in practice,
we will describe a simple monadic implementation of Milner’s type inference
algorithm W. We will not attempt to explain in detail how the algorithm works
or to justify its formal properties since these are already well-documented, for
example in [19, 3].

The purpose of the type checker is to determine types for the terms of a
simple λ-calculus represented by the Term datatype introduced in Section 3.3:

> type Name = String
> data Term = Var Name -- variable
> | Ap Term Term -- application
> | Lam Name Term -- lambda abstraction
> | Num Int -- numeric literal

We will also use the representation of types described above with type variables
represented by integer values so that it is easy to generate ‘new’ type variables as
the algorithm proceeds. For example, given the term Lam x (Var x), we expect
the algorithm to produce a result of the form Fun n n :: Type Int for some
(arbitrary) type variable n = TVar m.

At each stage, the type inference algorithm maintains a collection of assump-
tions about the types currently assigned to free variables. This can be described
by an environment mapping variable names to types and represented using as-
sociation lists:

> data Env t = Ass [(Name,t)]

> emptyEnv :: Env t
> emptyEnv = Ass []

> extend :: Name -> t -> Env t -> Env t
> extend v t (Ass as) = Ass ((v,t):as)

> lookup :: ErrorMonad m => Name -> Env t -> m t
> lookup v (Ass as) = foldr find err as
> where find (w,t) alt = if w==v then result t else alt
> err = fail ("Unbound variable: " ++ v)

> instance Functor Env where
> fun f (Ass as) = Ass [(n, f t) | (n,t) <- as]

As the names suggest, emptyEnv represents the empty association list, extend
is used to add a new binding, and lookup is used to search for a binding, raising
an error if no corresponding value is found. We have also defined an instance of
the Functor class that allows us to apply a function to each of the values held
in the list, without changing the keys.

The type inference algorithm behaves almost like a function taking assump-
tions a and a term e as inputs, and producing a pair consisting of a substitution
s and a type t as its result. The intention here is that t will be the principal type
of e under the assumptions obtained by applying s to a. The complete algorithm
is given by the following definition, with an equation for each different kind of
Term:

> infer a (Var v)
> = lookup v a ‘bind‘ \t ->
> result (result,t)

> infer a (Lam v e)
> = incr ‘bind‘ \b ->
> infer (extend v (TVar b) a) e ‘bind‘ \(s,t) ->
> result (s, s b ‘Fun‘ t)

> infer a (Ap l r)
> = infer a l ‘bind‘ \(s,lt) ->
> infer (fun (apply s) a) r ‘bind‘ \(t,rt) ->
> incr ‘bind‘ \b ->
> unify (apply t lt) (rt ‘Fun‘ TVar b) ‘bind‘ \u ->
> result (u @@ t @@ s, u b)

> infer a (Num n)
> = result (result, TInt)

The reason for writing this algorithm in a monadic style is that it is not quite
functional. There are two reasons for this; first, it is necessary to generate ‘new’
variables during type checking. This is usually dealt with informally in presenta-
tions of type inference, but a more concrete approach is necessary for a practical
implementation. For the purposes of this algorithm, we use a StateMonad with
an integer state to represent the next unused type variable. New variables are
generated using the function incr.

The second reason for using the monadic style is that the algorithm may fail,
either because the term contains a variable not bound in the assumptions a, or
because the unification algorithm fails.

Both of these are reflected by the class constraints in the type of infer
indicating that an instance of both StateMonad and ErrorMonad is required to
use the type inference algorithm:

infer :: (ErrorMonad m, StateMonad m Int) =>
Env (Type Int) ->
Term ->

m (Subst Type Int, Type Int)

Our problem now is that to make any use of infer, we need to construct a monad
m that satisfies these constraints. It is possible to deal with such problems on a
case-by-case basis, but it is obviously more attractive to use more general tools
if possible. This is the problem that we turn our attention to in the following
sections.

Combining Monads. While we can give some nice examples to illustrate the
use of one particular set of features, for example, the use of state in a state monad,
real programs typically require a combination of several different features. It is
therefore quite important to develop systematic techniques for combining groups
of features in a single monad.

In recent years, there have been several investigations into techniques for
combining monads in functional programming languages10. Examples of this
include the work of King and Wadler [14], and of Jones and Duponcheel [13]

10 In fact, much of this work is a rediscovery of ideas that have already been developed
by category theorists, albeit in a more abstract manner that is perhaps less accessible
to some computer scientists.

to investigate the conditions under which a pair of monads m and n can be
composed. In the following definitions, we adapt the swap construction of Jones
and Duponcheel to the framework used in these notes. For reasons of space, we
do not give any formal proof or motivation for these techniques here. We urge the
reader not to be too distracted by the formal definitions shown below, focusing
instead on the main objective which is to construct composite monads.

To begin with, it is useful to define two different forms of composition; for-
wards (FComp) and backwards (BComp):

> data FComp m n a = FC (n (m a))
> data BComp m n a = BC (m (n a))

> unBC (BC x) = x
> unFC (FC x) = x

It may seem strange to provide both forms of composition here since any value of
type FComp m n a corresponds in an obvious way to a value of type BComp n m a,
and vice versa. However, it is useful to have both forms of composition when
we consider partial applications; the constructors FComp m and BComp m are not
equivalent.

The functor structure for the two forms of composition are straightforward:

> instance (Functor m, Functor n) => Functor (FComp m n) where
> fun f (FC c) = FC (fun (fun f) c)

> instance (Functor m, Functor n) => Functor (BComp m n) where
> fun f (BC c) = BC (fun (fun f) c)

These two definitions rely on the overloading mechanisms to determine which
version of the fun operator is used for a particular occurrence.

Two monads m and n can be ‘composed’ if there is a function:

swap :: m (n a) -> n (m a)

satisfying certain laws set described by Jones and Duponcheel [13]. Fixing the
monad m and using n to represent an arbitrary monad, it follows that the forward
composition FComp m n is a monad if m is an instance of the class:

> class Monad m => Into m where
> into :: Monad n => m (n a) -> n (m a)

and the into function satisfies the laws for swap. We refer to this operator as
into because it allows us to push the monad m into an arbitrary computation
represented by a monad n. Given this function, the structure of the composite
monad is given by:

> instance (Into m, Monad n) => Monad (FComp m n) where
> result x = FC (result (result x))
> FC c ‘bind‘ f = FC ((fun join . join . fun f’) c)
> where f’ = into . fun (unFC . f)

For example, any forward composition of one of either the Maybe, Error or
Writer monads with another arbitrary monad can be obtained using the follow-
ing instances of Into:

> instance Into Maybe where
> into Nothing = result Nothing
> into (Just c) = fun Just c

> instance Into Error where
> into (Fail msg) = result (Fail msg)
> into (Ok c) = fun Ok c

> instance Into Writer where
> into (Result s c) = c ‘bind‘ \x -> result (Result s x)

In a similar way, for any fixed monad m and an arbitrary monad n, the
backward composition BComp m n is a monad if m is an instance of the class:

> class Monad m => OutOf m where
> outof :: Monad n => n (m a) -> m (n a)

and the outof operator satisfies the laws for swap. In this case, the monad
structure can be described by the definition:

> instance (OutOf m, Monad n) => Monad (BComp m n) where
> result x = BC (result (result x))
> BC c ‘bind‘ f = BC ((fun join . join . fun f’) c)
> where f’ = outof . fun (unBC . f)

For example, any backward composition of a reader monad and another arbitrary
monad, yields a monad:

> instance OutOf (r ->) where
> outof c = \r -> c ‘bind‘ \f -> result (f r)

Monad Transformers. Notice that, rather than allowing us to combine two
arbitrary monads, all of the examples above use one fixed monad to transform
another arbitrary monad. In other words, the following constructors can be un-
derstood as monad transformers, each having kind (* -> *) -> (* -> *) and
mapping a monad to a new transformed monad that includes some extra fea-
tures:

> type MaybeT = FComp Maybe
> type ErrorT = FComp Error
> type WriterT = FComp Writer
> type ReaderT r = BComp (r ->)

The possibility of using monad transformers had previously been suggested by
Moggi [22], leading independently to the use of pseudomonads in Steele’s work
on the construction of modular interpreters [25], and to a Scheme implementa-
tion by Espinosa [4, 5]. The problem of implementing monad transformers in
a strongly typed language has been addressed by Liang, Hudak and Jones [15]
using constructor classes.

We can define a class of monad transformers using the definition:

> class MonadT t where
> lift :: Monad m => m a -> t m a

The intention here is that lift embeds a computation in the m monad into the
extended monad t m, without using any of the extra features that it supports.
Partial applications of both forward and backward compositions give rise to
monad transformers, including the four examples above as special cases:

> instance Into m => MonadT (FComp m) where
> lift = FC . fun result

> instance OutOf m => MonadT (BComp m) where
> lift = BC . result

There are also examples of monad transformers that are not easily expressed
as compositions. A standard example of this is the following definition of a state
monad transformer:

> data StateT s m a = STM (s -> m (a,s))

> instance Monad m => Functor (StateT s m) where
> fun f (STM xs) = STM (\s -> xs s ‘bind‘ \(x,s’) ->
> result (f x, s’))

> instance Monad m => Monad (StateT s m) where
> result x = STM (\s -> result (x,s))
> STM xs ‘bind‘ f = STM (\s -> xs s ‘bind‘ (\(x,s’) ->
> let STM f’ = f x
> in f’ s’))

> instance MonadT (StateT s) where
> lift c = STM (\s -> c ‘bind‘ \x -> result (x,s))

In fact, this defines a family of monad transformers, each of which takes the
form StateT s for some state type s.

Previously, we have defined classes of monads for describing computations
involving state, errors, writers and readers, but we have only defined one instance
of each with no overlap between the different classes. Using monad transformers,
we can extend these classes with new instances, and construct monads that are
simultaneously instances of several different classes. We will illustrate this with

two examples, leaving the task of extending some of the other classes introduced
above to include transformed monads as an exercise for the reader.

– The state monad transformer: The following instance declaration indicates
that we can apply StateT s to an arbitrary monad m to obtain a monad
with a state component of type s:

> instance Monad m => StateMonad (StateT s m) s where
> update f = STM (\s -> result (s, f s))

On the other hand, if m is a monad with a state component of type s, then
so is the result of applying an arbitrary transformer to m:

> instance (MonadT t, StateMonad m s) => StateMonad (t m) s where
> update f = lift (update f)

These two instance definitions overlap; a monad of the form StateT s m
matches both of the monad constructors to the right of the => symbol. In
Gofer, these conflicts are dealt with by choosing the most specific instance
that matches the given constructor.

– The Error monad transformer: Following a similar pattern to the declarations
above, the following definitions tell us that applying ErrorT to any monad
or an arbitrary transformer to an ErrorMonad will produce an ErrorMonad:

> instance Monad m => ErrorMonad (ErrorT m) where
> fail msg = FC (result (fail msg))

> instance (MonadT t, ErrorMonad m) => ErrorMonad (t m) where
> fail msg = lift (fail msg)

Now, at last, we have the tools that we need to combine monads to sat-
isfy particular sets of constraints. For example, for the type inference algorithm
described above, we need to find a monad m satisfying the constraints:

(ErrorMonad m, StateMonad m Int)

We have at least two different ways to construct a suitable monad:

– ErrorT (State Int): in this case, m is equivalent to the monad:

ES a = Int -> (Error a, Int)

With this combination of state and error handling it is possible to return a
modified state, even if an error occurs.

– StateT Int Error, in this case, m is equivalent to the monad:

SE a = Int -> Error (a,Int)

With this combination of state and error handling the final state will only
be returned if the computation does not produce an error.

This example shows how monad transformers can be used to combine several
different features in a single monad, with the flexibility to choose an appropriate
semantics for a particular application.

References

1. R. Bird and P. Wadler. Introduction to functional programming. Prentice Hall,
1988.

2. R.M. Burstall, D.B MacQueen, and D.T. Sanella. Hope: An experimental applica-
tive language. In The 1980 LISP Conference, pages 136–143, Stanford, August
1980.

3. L. Damas and R. Milner. Principal type schemes for functional programs. In 9th
Annual ACM Symposium on Principles of Programming languages, pages 207–212,
Albuquerque, N.M., January 1982.

4. David Espinosa. Modular denotational semantics. Unpublished manuscript, De-
cember 1993.

5. David Espinosa. Building interpreters by transforming stratified monads. Unpub-
lished manuscript, June 1994.

6. R. Hindley. The principal type-scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:29–60, December 1969.

7. P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report on the Programming
Language Haskell, A Non-strict Purely Functional Language (Version 1.2). ACM
SIGPLAN Notices, 27(5), May 1992.

8. Geraint Jones and Jeremy Gibbons. Linear-time breadth-first tree algorithms, an
exercise in the arithmetic of folds and zips. Programming Research Group, Oxford,
December 1992.

9. Mark P. Jones. Computing with lattices: An application of type classes. Journal
of Functional Programming, 2(4), October 1992.

10. Mark P. Jones. A system of constructor classes: overloading and implicit higher-
order polymorphism. In FPCA ’93: Conference on Functional Programming Lan-
guages and Computer Architecture, Copenhagen, Denmark, New York, June 1993.
ACM Press.

11. Mark P. Jones. Dictionary-free overloading by partial evaluation. In ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Program Manipula-
tion, Orlando, Florida, June 1994. To appear.

12. Mark P. Jones. The implementation of the Gofer functional programming system.
Research Report YALEU/DCS/RR-1030, Yale University, New Haven, Connecti-
cut, USA, May 1994.

13. M.P. Jones and L. Duponcheel. Composing monads. Research Report
YALEU/DCS/RR-1004, Yale University, New Haven, Connecticut, USA, Decem-
ber 1993.

14. D.J. King and P. Wadler. Combining monads. In Proceedings of the Fifth Annual
Glasgow Workshop on Functional Programming, Ayr, Scotland, 1992. Springer Ver-
lag Workshops in Computer Science.

15. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Conference record of POPL ’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, CA, January
1995.

16. S. MacLane. Categories for the working mathematician. Graduate texts in math-
ematics, 5. Springer-Verlag, 1971.

17. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In 5th ACM conference on Functional
Programming Languages and Computer Architecture, pages 124–144, New York,
1991. Springer-Verlag. Lecture Notes in Computer Science, 523.

18. Erik Meijer and Mark P. Jones. Gofer goes bananas. In preparation, 1994.
19. R. Milner. A theory of type polymorphism in programming. Journal of Computer

and System Sciences, 17(3), 1978.
20. Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML.

The MIT Press, 1990.
21. E. Moggi. Computational lambda-calculus and monads. In IEEE Symposium on

Logic in Computer Science, Asilomar, California, 1989.
22. E. Moggi. An abstract view of programming languages. Technical Report ECS-

LFCS-90-113, Laboratory for Foundations of Computer Science, University of Ed-
inburgh, Edinburgh, Scotland, 1990.

23. Stephen K Park and Keith W Miller. Random number generators: Good ones are
hard to find. Communications of the ACM, 31(10):1192–1201, Oct 1988.

24. M. Spivey. A functional theory of exceptions. Science of Computer Programming,
14(1), 1990.

25. Guy L. Steele Jr. Building interpreters by composing monads. In Conference
record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 472–492, Portland, OR, January 1994.

26. D.A. Turner. Duality and De Morgan principles for lists. In W. Feijen, N. van
Gasteren, D. Gries, and J. Misra, editors, Beauty is Our Business, A Birthday
Salute to Edsger W. Dijkstra, pages 390–398. Springer-Verlag, 1990.

27. D.A. Turner. An overview of Miranda. In David Turner, editor, Research Topics
in Functional Programming, chapter 1, pages 1–16. Addison Wesley, 1990.

28. P. Wadler. Comprehending monads. In ACM conference on LISP and Functional
Programming, Nice, France, 1990.

29. P. Wadler. The essence of functional programming (invited talk). In Conference
record of the Nineteenth annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of Programming Languages, pages 1–14, Jan 1992.

30. P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In Pro-
ceedings of 16th ACM Symposium on Principles of Programming Languages, pages
60–76, Jan 1989.

This article was processed using the LaTEX macro package with LLNCS style

