
Evidence Management in Programatica

Mark P. Jones

1 OGI School of Science & Engineering at OHSU
2 Portland State University

This paper summarizes our efforts in the Programatica project at OGI and PSU
to design new kinds of tools to support the development and certification of
software systems. Our approach relies on a tight integration of program source
code, embedded formal properties, and associated evidence of validity. A partic-
ular goal for the toolset is to facilitate efficient and effective use of many different
kinds of evidence during project development. Our current prototype targets val-
idation of functional (security) properties of programs written in Haskell. This
tool provides connections, through a language of formal properties called P-logic,
to several external validation tools and supports unit testing, random testing,
automated and interactive theorem proving, and signed assertions. The underly-
ing concepts, however, are quite general and should be easily adaptable to other
programming languages and development tools, and to support a wide range of
both process- and artifact-oriented based validation techniques.

1 Software Development and Evidence Management

Software developers rely on a wide variety of techniques to assure themselves
(and their customers) that the system they are building will function correctly:

– In the early stages of a project, experiments, models, and prototypes can be
used to gain a better understanding of system requirements, and unit tests
or specific test data sets may be collected to document expected behavior.

– Developers might also use tools based on static analysis or formal methods—
such as model checkers or theorem provers—to obtain evidence for key prop-
erties. Tools like these can provide strong guarantees about program behav-
ior that are particularly important in safety or security critical applications
where high levels of assurance are required. However, effective use of such
tools can require significant investment in both initial training and daily use,
and hence they are often considered too expensive to be used in the early,
more fluid stages of project development.

– Process-oriented techniques—including, for example, code inspection and de-
sign review—are an important component of current certification method-
ologies and can often be used at multiple stages of the development process.

There are of course, many other techniques that could be listed with the above
examples, some of which are quite general while others are applicable only in
specific domains. But although there are many different techniques, there is still
one important common feature: each of them results in some tangible form of
evidence about specific properties of the software system. For example, an input



and (expected) output pair can be used to document a test case; a script or tactic
can be used to record the structure of a formal proof; and detailed minutes can
be used to capture the results of a code review meeting.

Some of the biggest challenges for anyone tasked with certifying the behavior
or properties of a software system are in managing, maintaining, and exploiting
the large and diverse volumes of evidence that are created during its develop-
ment. This observation motivates the development of new tools and techniques
that will allow evidence to be reused, repeated, or replayed so that validity of
each component in a system can be monitored automatically and incrementally
without the need to reconstruct evidence from scratch at every step, or when
the development is complete.

2 The Programatica Approach to Evidence Management

Our specific goals in the Programatica project are to build tools that allow users:
to capture evidence and collate it with source materials; to exploit dependencies
between evidence and the programs to which it refers as a means of tracking
change; to automate the process of combining and reusing evidence; and, finally,
to understand, manage, and guide further development and validation efforts. In
addition, we recognize that evidence may come in many different forms, and that
tools must be designed to address this: a key feature of our approach is the use of
a general certificate abstraction for encapsulating, accessing, and manipulating
different forms of evidence in a uniform manner.

Our approach is intended to be quite general, but it is inspired, in part, by
techniques adopted in more specialized tools. The practice of “Extreme Pro-
gramming” [2], for example, encourages frequent use of testing as an integral
part of coding and refactoring [4] and has stimulated the development of tools
that automate the testing process. These tools, however, do not attempt to deal
with or incorporate other kinds of evidence. Similarly, compilation tools (such
as make [3]) track dependencies between source code units to minimize the need
for recompilation, but they do not attempt to capture other kinds of dependen-
cies or evidence. As a final example, some systems support “external oracles”
that allow users to integrate theorem proving with other validation tools such as
BDDs [5] or model checking [1]. These tools, however, focus on formal validation
and do not directly address evidence capture and management.

2.1 Certificates

Programatica certificates are a mechanism for encapsulating different types of
evidence. The evidence itself, as well as the internal format by which it is rep-
resented, will vary from one certificate to the next. But, from the perspective of
an evidence management tool, every certificate offers the same basic interface,
with attributes that describe its sequent and validity, and operations that allow
certificates to be validated and edited. Each of these features is described below:



– The sequent of a certificate formalizes the claim that the accompanying evi-
dence is intended to support. Sequents provide the means by which disparate
kinds of evidence can be brought together in a single environment. In our
current system, we write sequents as judgments, Γ ` Γ ′, where the hypothe-
ses in Γ and the conclusions in Γ ′ are lists of formulas over a suitably chosen
specification logic. The formulas in a sequent may include direct references
to variables and functions that are defined in the source text. As such, a
sequent also provides a starting point for tracking dependencies between
certificates and the underlying code base.

– A certificate is valid if its sequent is consistent with the evidence it contains.
For example, a certificate with sequent ` A is valid only if it provides evi-
dence for A. In this way, validity serves as a contract between external tools
and the evidence management system.

– The actions needed to validate a given certificate will depend on the type of
the certificate, and may, in some cases, involve significant computation. To
permit a quick test of validity, each certificate includes a flag that is set only
when the certificate is known to be valid. If either the certificate itself or a
part of the source text that it depends on is changed, then the flag will be
reset and the full test of validity can be deferred until needed.

– The actions needed to edit a certificate—such as modifying it so that its
validity can be established—will also depend on the type of the certificate,
and may, in some cases require significant user interaction.

The Programatica certificate abstraction supports compositional certification.
For example, from a certificate with sequent A ` B and another with sequent
B ` C, we can derive a compound certificate with sequent A ` C. If changes to
the underlying program invalidate only one of the original certificates, then we
will not need to construct new evidence for the other one or for the composite.
Note also that the original two certificates could be constructed using different
tools; the composite can then be tagged to reflect the set of tools that were used in
its construction, and this information can be used as an indication of its pedigree.
In this way, certificates and sequents provide a mechanism for integrating and
reasoning with different kinds of evidence.

2.2 Certificate Servers

Certificate servers (or just ‘servers’) play an important role as a mechanism for
creating and using different types of certificate in a uniform manner. We distin-
guish between: external servers, which are used for certificates whose evidence
is supplied by external tools; and internal servers, which use functionality that
is built in to the evidence management tool, and provide a means for combining
different types of evidence.

– External servers connect the evidence management system to the external
tools that are used to construct and maintain evidence. As such, external
servers can be understood as software plug-ins that must be installed be-
fore certificates of a particular type can be edited and validated. External



servers are responsible for translating between the languages used in source
documents and sequents and the languages used by external tools. It is the
responsibility of each external server to detect and report cases where trans-
lation is not possible. A second responsibility of an external server is to
capture and package context from source documents so that it can be used
by the external tool. We refer to this as ‘theory formation’ because it cor-
responds to assembling a theory that includes the facts and definitions that
would be needed to prove a particular theorem.

– Internal servers provide built-in functionality for generating and combining
evidence. This includes ‘axiom’ servers that can generate and validate cer-
tificates for sequents of a particular form and ‘rule’ servers that can be used
to combine previously constructed certificates.

Servers provide an infrastructure for theorem proving with certificates in which
different servers correspond to different external oracles and inference rules. One
of the most tricky design choices here is to determine how much of this machinery
should be built in to the evidence management tools, and how much should be
delegated to an external theorem prover.

3 Challenges for Future Work

The Programatica approach to evidence management offers a new vision for high-
assurance software development and certification. Our current prototypes [6] are
in an early stage of development but are designed to extend current evaluation
methodologies by supporting and integrating the different kinds of evidence that
they require. We hope that Programatica will also provide an evolution path for
introducing and applying formal methods to document and validate essential
functional properties of critical software systems at high assurance levels.

There are, however, many challenges to address and evaluate with future
generations of the Programatica tools, including:

– What can a tool do to help users visualize and understand the evidence they
have assembled, to prioritize future validation tasks, and to identify areas in
which evidence is either lacking or weak?

– How can we deal with differing levels of trust and confidence in the different
kinds of evidence, servers, and models that are used?

Certainly, some aspects of confidence and trust can be quantified. For example,
if one test suite includes all of the tests from another, then the first should offer
at least the same degree of assurance as the second. But many other aspects are
subjective and will require a flexible tool that can be tailored to policies of an
organization or to the requirements of a particular certification process.

Acknowledgments

The work described in this paper has benefited significantly from the input
of Programatica team members including Thomas Hallgren, James Hook, Dick
Kieburtz, Rebekah Leslie, Andrew Tolmach, and Peter White.



References

1. Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Lifted-FL: A prag-
matic implementation of combined model checking and theorem proving. In Theo-
rem Proving in Higher Order Logics (TPHOLs), July 1999.

2. Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

3. S.I. Feldman. Make-A program for maintaining computer programs. Software—
Practice and Experience, 9(4), 1979.

4. Martin Fowler et al. Refactoring : Improving the Design of Existing Code. Addison-
Wesley, 1999.

5. Michael J.C. Gordon. Reachability programming in HOL98 using BDDs. In Theorem
Proving in Higher Order Logics (TPHOLs), August 2000.

6. The Programatica Team. Programatica tools for certifiable, auditable development
of high-assurance systems in haskell. In High Confidence Software and Systems,
Baltimore, MD, 2003.


