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ABSTRACT
Current practices for developing systems software usually
rely on fairly low-level programming languages and tools.
As an alternative, our group has been investigating the pos-
sibility of using a high-level functional language, Haskell, for
kernel and device driver construction, with the hope that it
will allow us to produce more reliable and secure software.
In this paper, we describe our experience developing a pro-
totype operating system, House, in which the kernel, device
drivers, and even a simple GUI, are all written in Haskell.
The House system demonstrates that it is indeed possible to
construct systems software in a functional language. How-
ever, it also suggests some ideas for a new Haskell dialect
with features that target specific needs in this domain, in-
cluding strongly typed support for low-level data structures
and facilities for explicit memory accounting.

1. INTRODUCTION
Development of systems software—including device drivers,

hypervisors, and operating systems—is particularly chal-
lenging when high levels of assurance about program be-
havior are required. On the one hand, programmers must
deal with intricate low-level and performance-critical details
of hardware such as fixed-width registers, bit-level data for-
mats, direct memory access, I/O ports, data and instruction
caches, and concurrency. On the other hand, to ensure cor-
rect behavior, including critical safety and security proper-
ties, the same code must also be related directly and pre-
cisely to high-level, abstract models that can be subjected
to rigorous analysis, possibly including theorem proving and
model checking. Failure of computer software can be a major
problem in many domains, but the consequences of failure
in systems software are especially severe: Even simple errors
or oversights—whether in handling low-level hardware cor-
rectly or in meeting the goals of high-level verification—can
quickly compromise an entire system.

The use of low-level programming languages and tools en-
ables programmers to address performance concerns in sys-
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tems software, but also makes it much harder to reason for-
mally about the code, and hence much harder to obtain high
confidence in the behavior of the resulting software. How-
ever, new options are emerging that could allow the develop-
ment of robust, reliable, and secure software using program-
ming languages that provide a higher level of abstraction
than has traditionally been possible in this domain.

In particular, over the past few years, our group has been
investigating the possibility of using the functional program-
ming language Haskell [20] to implement systems-level soft-
ware. Of course, this offers the advantages that are usu-
ally associated with moving to a higher-level language such
as increased programmer productivity and software reuse.
However, our primary motivation for using Haskell is the
hope that it will allow us to produce more secure and more
reliable software systems. For example, the type and mem-
ory safety properties of Haskell can prevent several nasty
kinds of program bugs. In addition, the adoption of a pure
functional language—with strong, mathematically defined
foundations—enables us to support formal verification and
validation of software systems using connections to theorem
provers, proof assistants, and model checkers.

This paper summarizes our experience building House (Sec-
tion 2), a prototype operating system implemented in Haskell,
including a discussion of some of the obstacles that we ran
into during the process (Section 3). Prompted by these ob-
servations, we are developing a new Haskell dialect that we
hope will address these problems while also preserving the
most important features and benefits of standard Haskell
programming. To illustrate this, we summarize (in Sec-
tion 4) two language extensions that allow bit-level data
structures (referred to collectively as bitdata) and memory-
based tables to be accessed and manipulated in a flexible
and efficient manner, with fine control over representation
and without sacrificing attractive features of Haskell such
as pattern matching and strong typing. We conclude (in
Section 5) by describing additional challenges that we are
tackling in our current work to better support systems soft-
ware development in a functional language, including mech-
anisms for more modular run-time systems, and for more
explicit memory accounting.

2. THE HOUSE OPERATING SYSTEM
We are by no means the first to use functional languages

to develop systems software—earlier examples include the
Fox [10], Ensemble [18], Timber [14], and Hello [7] projects—
but, even so, Haskell is not usually thought of as a systems
programming language. Nevertheless, the development of



House [9] has shown that it is possible to implement sys-
tems software in Haskell without shying away from impor-
tant low-level concerns. More specifically, House1 is a pro-
totype operating system that boots and runs on bare metal
(IA32) and in which the kernel, a small collection of device
drivers (including video, keyboard, mouse, and networking),
a simple graphical user interface, and some basic applica-
tions, have all been implemented in Haskell (See Figure 1).
Among other features, the House kernel supports protected
execution of arbitrary user-level binaries and manages the
virtual memory of each such process by direct manipula-
tion of the page table data structures that are used by the
hardware MMU. Architecturally, House is implemented us-
ing standard Haskell code running on top of a hardware
abstraction layer that we refer to as the H-interface. In fact
the H-interface is also implemented primarily in Haskell, to-
gether with a small collection of primitives implemented in
C and/or assembler. Safety was a key design goal of the H-
interface: with the exception of certain I/O operations, none
of the operations that it provides can corrupt the Haskell
heap. Another design goal was to facilitate modular vali-
dation and verification efforts by capturing the semantics of
the H-interface in a collection of formal properties. These
properties are intended to be used both to establish secu-
rity properties of a kernel running on top of the interface,
and, independently, to validate its implementation in the
mapping to low-level hardware.

Figure 1: A screen shot of House running in graph-
ical mode and showing a simple calculator, a game,
and a couple of open terminal windows, one of which
is being used to run some simple networking demos,
all of which are written in Haskell.

3. ISSUES RAISED
Our experience using Haskell to build House, as well as an

ongoing effort to build a second kernel based on the L4 spec-
ification [17], have shown that it is possible to implement a

1House was developed within our group, primarily by
Thomas Hallgren and Andrew Tolmach, and expanding on
previous work on the hOp system [1] by Sébastian Carlier
and Jérémy Bobbio.

kernel in a functional language. However, it has also ex-
posed several critical issues and problems, which we discuss
in this section.

Low-level Operations.
One of the most common questions that is raised when

we talk about House is how we obtain access to low-level
features such as registers, I/O ports, and memory-based ta-
bles. In fact, this was fairly easy to address using the Haskell
foreign function interface (FFI); some of the more general-
purpose functions that were needed (for example, to peek or
poke into memory) were already provided by the FFI, while
other, more specialized operations were implemented quite
easily by packaging low-level functions coded in C or assem-
bly language as new Haskell primitives [2]. Some of these
functions, however, are potentially unsafe and require care-
ful and disciplined use to ensure that the normal type and
memory safety guarantees of Haskell are not compromised.
For example, it is possible to construct an arbitrary machine
address as an argument for the function that pokes a byte
value to memory. We designed the H-interface so that these
functions would not be needed by client operating system
kernels, and so that their uses could be restricted to the
implementation of the interface. Nevertheless, this did not
prevent us from making some programming mistakes. For
example, an error in formulating the code to zero a 4K page
of bytes in an early version of House resulted in a loop that
actually wrote 4097 bytes, overflowing the page by a single
byte. This error was detected during a code review, but oth-
erwise would probably have resulted in highly unpredictable
behavior, and would have been very difficult to debug. How-
ever, if the type system had enforced the restriction of the
loop index to 12 bits, or if array bounds checking had been
supported (viewing a page as an array of 212 bytes), then
this mistake would have been more easily detected or pre-
vented, possibly even at compile-time.

Performance.
The other common issue that is raised in discussions about

House is the question of performance. There are long-standing
concerns in the systems community that the use of any high-
level language prevents the attention to low-level perfor-
mance details (such as sensitivity to cache issues) that is
needed in a real-world system. However, the House pro-
totype has not yet been subjected to rigorous performance
analysis (or tuning). We do not know, for example, if the
House kernel can be tuned or enhanced to provide reason-
able throughput with the workload of a conventional desktop
or server, or if its network interface can keep pace with line
speed on a standard Ethernet connection. Although it may
be possible to achieve these kinds of performance goals—
especially, in the long term, if we can rely on aggressive,
whole program optimization—it is unlikely that they will be
met with current Haskell systems. We have recently begun
some preliminary experiments to evaluate specific aspects of
the performance of House, and we know even from code in-
spection that there will be several opportunities to increase
performance. Further investigation of this important topic,
however, remains as future work.

Run-time System Issues.
Our work on House has also exposed some deeper and,

in some cases, more subtle problems that require careful



attention. The first of these has to do with the run-time
system that is used to provide services for memory allo-
cation, garbage collection, and concurrency in Haskell pro-
grams. It follows, in particular, that any argument we make
about the security, reliability, or correctness of a Haskell
program requires a corresponding argument about the run-
time system. However, in the House prototype, the run-time
system—derived fairly directly from the run-time system of
GHC, a general purpose Haskell compiler—is a large and
complex software component in its own right (around 50K
lines of code, depending on how it is measured), most of
which is written in C. Such factors make it difficult, at best,
to provide a compelling argument for correctness of a small,
systems software component. Fortunately, experience with
other functional language implementations suggests that it
will be possible to address this problem by developing a dra-
matically smaller and more focused run-time system. A sim-
ple but complete garbage collector for a functional language
can be implemented in just 100–300 lines of code, and a
number of such implementations have been (or are currently
being) formally verified by ourselves and others [19]. There
are fielded production-quality collectors offering good per-
formance (e.g., by using generations) and supporting a rich
set of language features (e.g., many kinds of memory blocks,
weak pointers, etc.) in under 2000 lines.

Another run-time system issue is the question of which
services should be provided and what the associated seman-
tics should be. Dynamic memory allocation, for example, is
a very important facility that we might expect to be pro-
vided by the run-time system. In particular, providing a
general framework for memory allocation would avoid the
wasteful and error-prone approach of writing (and debug-
ging) new allocators from scratch as part of each new ap-
plication. However, it is difficult to build a framework that
is sufficiently generic to handle the wide range of memory
allocation techniques that are in use or to accommodate the
vagaries of specific hardware platforms. For example, the
structure for an IA32 page table does not suggest an obvi-
ous way to include any extra ‘tag’ data that could be used
for run-time type identification, garbage collection, etc. Our
House implementation addresses this by using multiple al-
locators, including a garbage-collected heap that is imple-
mented by the Haskell run-time system as well as an inde-
pendently garbage collected pool of machine pages that is
implemented as part of the H-interface.

There is also some duplication of functionality to sup-
port concurrency in our House prototype. The run-time
system includes facilities for running and switching between
multiple Haskell threads; this is used, for example, to sup-
port some aspects of interrupt handling. A second form of
concurrency is implemented by the H-interface to facilitate
programmed context switching between multiple threads of
user-level code. Unfortunately, we cannot use Haskell threads
for the latter in a kernel that requires, for example, priority-
based scheduling because the (current) run-time system does
not provide this kind of control over scheduling.

In summary, it is unlikely that we could use a single run-
time system facility for either memory allocation or concur-
rency that would be sufficiently generic, while also being
simple enough to enable a manageable, verifiable implemen-
tation. In the long term, a better approach is to develop a
modular run-time system that can be configured to suit a
particular application by including only those (possibly cus-

tomized) components that are required. This strategy would
also help to reduce the overall size of the run-time system.

Resource Management.
High-level languages are designed to distance program-

mers from the details of an underlying machine so that they
can focus more directly on coding their particular applica-
tion. For example, a language like Haskell that supports
automatic garbage collection presents the programmer with
the illusion of a computer with an infinite memory: the pro-
grammer can allocate arbitrary amounts of memory without
(in theory) ever worrying about deallocation, and without
even having to check to see if there is any memory avail-
able before asking for more. Instead, an automatic garbage
collector quietly identifies unreachable blocks of memory on
demand so that they can be recycled and reused. Attempts
to deallocate a single block of memory either prematurely
or else multiple times using free() are notorious sources of
bugs in C programs that can be completely avoided by using
a garbage collector.

But, of course, the illusion is not perfect. Real computers
have only a limited amount of memory, and cannot continue
to execute properly if the memory becomes full. Moreover,
if multiple processes share a single memory, then it is pos-
sible for one process to starve the others (or even to halt
the entire system) by allocating all of the memory to it-
self. Unfortunately, Haskell does not provide any way for a
program to determine how much free memory is available
or, more seriously, to account for fair sharing of memory be-
tween multiple threads. Despite all of our efforts to maintain
type and memory safety, it is still possible to crash House
by running a program that causes the kernel to allocate a
large number of internal data structures and thus overflow
the Haskell heap.

We believe that new language mechanisms, backed by run-
time system support, are needed to enable more explicit con-
trol over memory usage, allowing dynamic partitioning and
reallocation of memory between threads as well as facilities
for detecting and recovering from memory overflow. Issues
like these have received significant attention in the systems
community—for example, fine-grained memory accounting
techniques and per-process user-level memory management
are key elements of Singularity [11] and recent L4 propos-
als [6, 8, 15]—but we are not aware of any previous work
to integrate such functionality into a general-purpose func-
tional language design.

4. TOWARDS “SYSTEMS HASKELL”
In the previous section, we described four high-level is-

sues that we encountered in the development of House: (i)
the loss of strong typing and safety that results from the
use of FFI primitives, which we attribute to weaknesses in
the Haskell type system for describing low-level operations;
(ii) performance concerns; (iii) the inflexibility of a large,
monolithic runtime system; and (iv) resource management
in a language that tries to abstract away from explicit con-
trol of memory allocation and use. We are working actively
to address these problems in the design and implementation
of a new dialect of Haskell that we are tentatively referring
to as “Systems Haskell”. To give a flavor of what this new
dialect might look like, this section describes the language
features that we have developed to address the first of the
four issues listed above. Our presentation here is necessarily



brief, but more details can be found elsewhere [3, 4, 5]. A
pleasing aspect of this work was the realization that we do
not require a fundamentally new type system or language
framework: the desired functionality can be provided quite
elegantly by building on the existing features of the Haskell
type system including kinds, qualified types, and improve-
ment.

4.1 Bitdata
Haskell has excellent support for manipulating tree-like

data structures via algebraic datatypes. Unfortunately, or-
dinary algebraic datatypes are not sufficient in situations
where the representation of the data is of importance. This
is quite common in systems programming and, more gener-
ally, it occurs on the boundaries between different systems:
either between different software components (e.g., the in-
terface between an OS kernel and a user process), or between
software and hardware (e.g., when a driver interacts with a
device). In such situations, the data representation is deter-
mined by a predefined, external protocol. For this reason,
we should not delegate the choice of representation to the
compiler but instead, we should provide a mechanism for
programmers to specify the representation of data.

Our work on bitdata [4, 5] provides one solution to this
problem. We adopt the ideas of algebraic datatypes but
we extend them to support programmer specified data lay-
outs at the bit level. Each constructor of a data declaration
may be augmented with a declaration that specifies the bit
patterns to be used for the values constructed with that con-
structor. For example, here is a datatype that is useful when
configuring a machine based on the IA32 architecture [12]:

bitdata SegType

= DataSeg { expDown :: Bool
, writable :: Bool
, accessed :: Bool
} as B10 # expDown # writable # accessed

| CodeSeg { conform :: Bool
, readable :: Bool
, accessed :: Bool
} as B11 # conform # readable # accessed

| TaskSeg { busy :: Bool
} as B010 # busy # B1

The type SegType has three constructors, DataSeg, CodeSeg,
and TaskSeg, each with a number of fields. For each field we
specify a label and a type (the type Bool is represented with
one bit). The difference from ordinary algebraic datatypes is
in the as clause that comes after each constructor—it spec-
ifies the representation that should be used by the compiler
when it generates code. Note that the symbols B1, B10, and
B010 used here are binary literals (of one, two, and three
bits, respectively) that represent fixed bit patterns in the
representation of the different segment types. For example,
we can define a strongly typed stack_seg segment as follows:

stack_seg = DataSeg { expDown = True
, writable = True
, accessed = False
}

The corresponding (untyped) bit pattern that will be used
to represent stack_seg is 10110.

As with ordinary algebraic datatypes, we use pattern match-
ing to examine and deconstruct values—the compiler gener-

ates code to check the appropriate ‘tag’ bits (e.g., 10 in the
declaration of DataSeg) and to access the bits corresponding
to the fields.

Using bitdata declarations in place of more traditional ap-
proaches, such as ‘bit twiddling’, simplifies the job of the sys-
tems programmer. It makes programs easier to understand
and maintain because it reduces the amount of ‘coding’ and
automates mundane (yet error prone) tasks such as access-
ing bitfields. In addition, bitdata declarations correspond
fairly closely to the specifications used in technical manuals
(e.g., the box diagrams used in the specification of L4[17]
and IA32[12]) which means that they are easy to write and
check for correctness. We have also developed algorithms to
analyze bitdata declarations to help programmers detect po-
tential bugs in their specifications (e.g., to detect when there
are no ‘tag’ bits to distinguish values defined with different
constructors).

4.2 Memory Areas
Bitdata types are useful when we work with fairly small

pieces of data, typically data that fits in a single machine
word. For many problems in the systems domain we also
need to manipulate larger structures that have an explicit
layout in memory. Examples of such structures include page
directories and tables, and data structures that contain ma-
chine state that has been stored by the hardware (e.g., the
thread control blocks that are used in L4 implementations).

Our work on memory areas [3, 5] imports and extends the
ideas from traditional system programming languages, such
as C [16], to the context of modern functional programming
languages. We introduce a set of reference and pointer types
that identify memory areas, and a collection of types that
are used to describe the layout of memory areas. The basic
building blocks for describing memory areas are the bitdata
types that we briefly introduced in Section 4.1. We can com-
bine descriptions of memory areas into descriptions of larger
memory areas by using arrays and structures. As usual, ar-
rays describe a sequence of adjacent identical areas, while
structures describe adjacent areas with different layouts.

Our design differs from other languages in several ways.
One difference is that the types that we use to describe mem-
ory area specify precisely the layout of the data in memory.
For example, implementations are not free to add padding
between the elements of a structure—if padding is required,
then programmers have to declare it explicitly. Also, we
were able to utilize the fairly advanced type system that is
available in Haskell-like languages in several different ways.
We use different types to describe memory areas that contain
big-, little-, or native-endian representations for a bitdata
value. By using Haskell’s overloading mechanism [21, 13] we
were able to present programmers with a unified interface for
manipulating these different types, while the compiler uses
the types to insert endianness coercions automatically. We
also use the type system to track the size of arrays, which
enables us to provide safe array access without the need to
augment the representation of arrays with size information.
Another place where we used the type system was to an-
notate pointers and references with alignment information,
which enables us to specify rather precise types (e.g., we
can write a function whose type guarantees that it will be
applied only to properly aligned pointers). For example,
the following declaration introduces a reference, pdir, to an
IA32 page directory, which is a table of 1024 page directory



entries, and which must be aligned on a 4K (page) boundary.

area pdir :: ARef 4K (Array 1024 (Stored PageDirEntry))

Note that the size and alignment properties of pdir are not
just annotations or hints to the compiler, but are actually
captured in its type, and enforced by the type checker; we
cannot access an array element outside the valid range, and
the correct alignment is guaranteed.

5. CONCLUSIONS AND FUTURE WORK
Developing systems software is, at best, a challenging en-

deavor, so it is important to look for steps that might sim-
plify the task or improve the quality of the results that we
obtain. In this paper, we have described our investigation of
the role that higher-level languages, specifically Haskell, can
play in supporting the construction of a reliable and secure
operating system. We have concentrated here on aspects of
language design. Independently, members of our group are
developing techniques to support the verification of kernel
security features, which we hope will be facilitated by our
use of a functional language; we will discover the extent to
which that goal is realized as work in that area progresses.

Readers familiar with Haskell may be surprised that we
have made no mention of its ‘lazy evaluation’ strategy that
delays the execution of each computation until results are
demanded. This promotes a flexible and modular program-
ming style, and has been put to good use in House, but it also
makes it harder to anticipate the likely cost, in both time
and space, of program execution. We have not yet concluded
whether lazy evaluation is appropriate for Systems Haskell,
although, to increase predictability, we suspect that it may
be necessary to make strict evaluation the default.
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