
Experience Report: Playing the DSL Card
A Domain Specific Language for Component Configuration

Mark P. Jones
Portland State University, Portland, Oregon, USA

mpj@cs.pdx.edu

Abstract
This paper describes our experience using a functional language,
Haskell, to build an embedded, domain-specific language (DSL)
for component configuration in large-scale, real-time, embedded
systems. Prior to the introduction of the DSL, engineers would de-
scribe the steps needed to configure a particular system in a hand-
written XML document. In this paper, we outline the application
domain, give a brief overview of the DSL that we developed, and
provide concrete data to demonstrate its effectiveness. In particular,
we show that the DSL has several significant benefits over the orig-
inal, XML-based approach including reduced code size, increased
modularity and scalability, and detection and prevention of com-
mon defects. For example, using the DSL, we were able to produce
clear and intuitive descriptions of component configurations that
were sometimes less than 1/30 of the size of the original XML.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Design, Languages

Keywords domain-specific languages, functional programming,
Haskell, component configuration, Timber

1. Introduction
This paper describes some experiences from the OGI Timber
project, and, in particular, from our investigation of novel program-
ming language technology in the construction of real-time, em-
bedded systems. The language that we developed was called Tim-
ber (Black et al. 2002) and inherited a functional core from Haskell
and a computational model based on reactive objects (Nordlan-
der et al. 2002) from O’Haskell (Nordlander 1999). One of the
novel features introduced in Timber is its support for embedding
high-level, declarative timing annotations in source code. In our
prototype implementation, these annotations were used to drive a
deadline-based scheduler, but we also intended to use them as in-
put to a static analyzer that could provide compile-time guarantees
about the real-time behavior of executable code.
Our project was just one part of a large program, involving mul-

tiple academic and industrial partners, with an emphasis on shorter-
term deliverables and a commitment to conventional, off-the-shelf

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

programming language and middleware technologies such as C++,
and CORBA. Our project led to interesting research ideas and pro-
totypes, but it was unclear if we would be able to produce a com-
piler for Timber before the project ended, let alone evaluate it ob-
jectively against the established tools. How then could we demon-
strate the benefits of new language technologies in concrete, mea-
surable terms that might convince even our most skeptical partners?

1.1 An Open Experimental Platform

To help address questions like these, one of the industrial partners—
a group from Boeing—was tasked with producing an ‘open experi-
mental platform’ (OEP) that could be shared with other teams. The
OEP provided a representative library of configurable software
components corresponding closely to components used in aircraft
control, navigation, and tracking systems. The OEP also provided a
set of configuration tools, a CORBA-based run-time infrastructure,
and a collection of sample applications referred to as scenarios. As
such, the OEP provided industrial context for individual research
teams as well as a basis for cross-team collaboration.
A natural role for Timber in the OEP would have been as an

implementation language for the real-time components and/or the
infrastructure. Unfortunately, neither was a feasible option for us,
at least in part, because of the engineering effort required to im-
plement CORBA functionality. Moreover, proprietary functional-
ity had been omitted from the components in the OEP leaving
only code for component communication and inter-connect mech-
anisms. It is easy enough to model such components in Timber, but
the results did not seem interesting or complete enough to enable
effective comparisons or demonstrations of real-world examples.

1.2 Playing the DSL Card

The remaining part of the OEP provided tools for configuring and
connecting collections of software components to build complete
applications. For any given scenario, the primary input to these
tools was a large, handwritten XML file describing the required
components and the connections between them. As the project pro-
gressed, I began to recognize that this was an area where functional
languages could be put to good use, even if it had little to do with
the original vision for Timber. Instead of just trying to sell the com-
munity on ‘radical’ ideas for real-time functional programming, I
concluded that it was time to ‘play the DSL card.’
More specifically, using Haskell, I developed an embedded

domain-specific language (DSL) as an alternative way of describ-
ing component configurations. I showed that DSL programs were
clear and intuitive; that they were significantly smaller than the
XML versions (by a factor of more than 30 in some cases); and that,
unlike the original XML, they could also be composed (to support
modular construction and collaborative development) and parame-
terized (to facilitate reuse). I produced tools that not only generated
the required XML files from DSL scripts, but also generated graph-

ical displays of the configurations for visual inspection. And I pro-
duced error checking tools and an automatic, reverse-engineering
tool that turned their XML descriptions into corresponding DSL
code. Using these tools, I discovered literally hundreds of errors (in
around 50K lines of sample XML code), none of which could have
occurred if the descriptions had been authored using the DSL.
While most of the participants in the program had remained un-

convinced by my earlier attempts to sell them on functional pro-
gramming, the DSL work and the results that I described gener-
ated quite a buzz. The Boeing team were enthusiastic about our
approach, and at least one of their engineers started writing DSL
(i.e., functional) programs as a result! Several other teams also ex-
pressed an interest in using the DSL, or in using similar ideas in
their own projects. Unfortunately, so far as I have been able to de-
termine, these activities did not continue after the project ended. I
believe, however, that we demonstrated functional languages as a
powerful ‘language middleware’ that supports rapid development
of (useful!) domain specific languages.
Of course, embedded DSLs are widely used in the functional

programming community (Hudak 1996), and so we were really
just following an established strategy that had already been seen to
work well in other domains. That is why I refer to this approach as
‘playing the DSL card,’ but it is also why I chose not to attempt to
publish anything about this work at that time (or, even to publicize it
outside my own group). Subsequently, however, I’ve come to regret
that because, although the idea is well-known, it is hard to find
concrete data to show that the technique has measurable benefits.
Although several years have passed since the work was done, I
believe that the results in this paper can help to fill that gap, and
I am happy to document and share them as an experience report.

1.3 Paper Outline

In Section 2, we illustrate the role of the DSL using a simple
example, and give details of our comparison between the XML
and DSL descriptions of different scenarios. A brief summary of
the DSL and its implementation is provided in Section 3. Finally,
Section 4 describes some additional and important benefits that
we obtain from the DSL. Obviously, there is not enough space to
describe the target domain in full, or to explain every aspect of the
model of component-based software that the DSL was designed
to support. We ask that the reader may occasionally be prepared
to “suspend disbelief” and accept that the details that have been
omitted are not, in fact, important for the purposes of this paper!

2. A DSL for Component Configuration
During the project, the OEP developers produced a collection of
19 scenarios, each of which paired an informal description (a com-
bination of English text and component diagrams) with a machine-
readable encoding in XML. Figure 1 shows the component diagram
for ‘Scenario 1.1’, the simplest example in the OEP. This system
has three components—called gps, airframe, and navDisplay—
that are connected in a pipeline. (The box in the top right is a com-
ment and indicates that gps should be triggered at 40Hz.) A portion
of the corresponding XML code is shown in Figure 2. The XML
format was designed primarily to be read by tools that automati-
cally generate ‘startup’ code in C++ that will instantiate, configure,
and connect the appropriate set of components when the system
is powered up. This creates a semantic gap between the high- and
low- level views of the system that must be bridged by authors of
XML descriptions. One example is that a single logical connection
between components requires entries in two distinct parts of the
XML file: one in the description of the sending component, and a
second in the description of the receiving component.
The goal of a DSL is to capture the terminology, idioms, and no-

tation of a specific domain, allowing domain experts to focus atten-

Figure 1. Component diagram for Scenario 1.1.

<?xml version="1.0"?>
<!DOCTYPE CONFIGURATION SYSTEM "Configuration.dtd">
<CONFIGURATION>
<PROCESSOR>

<NAME> OCP_P1 </NAME>
<HOME>
<HOME_TYPE> BM__CLOSED_ED_COMPONENT </HOME_TYPE>
<ID>

<NAME> BM__CLOSED_ED_COMPONENT </NAME>
</ID>
<COMPONENT>

<ID>
<NAME> AIRFRAME </NAME>

</ID>
...

</COMPONENT>
</HOME>
...

</PROCESSOR>
</CONFIGURATION>

Figure 2. A portion of the the XML description for Scenario 1.1.
Elided parts of the source are shown here as ”...”; the full XML
source contains 130 lines, plus an additional 40 lines of comment.

tion on solving problems quickly and effectively without being dis-
tracted by lower level concerns. Figure 3 shows a complete, formal
description for Scenario 1.1 using our DSL. The three components

import OEP

scenario
= do processor "P1"

airframe <- new closedEDComp("AIRFRAME")
gps <- new deviceComp("GPS")
navdisplay <- new displayComp("NAV_DISPLAY")

trigger 40 gps

gps <=> airframe
airframe <=> navdisplay

Figure 3. A complete DSL description of Scenario 1.1.

described previously, as well as the 40Hz trigger on the gps can be
seen clearly here, and the two ‘pipeline’ connections between com-
ponents are described as single logical entities, corresponding to
the high-level view of the scenario. Clearly, the DSL code is much
shorter than the XML version, but it still contains all of the nec-
essary information for this scenario. In particular, our DSL toolset

includes a program, dsl2xml, that will generate an XML configu-
ration file automatically from a corresponding DSL description. In
programming language terms, dsl2xml is just a compiler translat-
ing from high-level DSL code to low-level XML. Other programs
in our toolset also fit this pattern, including dsl2dot, which ‘com-
piles’ DSL code into graphical descriptions using the dot language
of the AT&T Graphviz tools. Although we did not attempt it dur-
ing the project, we could also have built a dsl2c++ compiler to
generate C++ startup code directly, without any need for XML.
The numbers in Table 1 summarize each of the OEP scenarios,

listing the total number of components (#comps) and the number
of lines of code (LOC) in both the (original) XML and the DSL
versions1. This data shows that the DSL covers all of the scenarios

Scenario #comps XML LOC DSL LOC ratio
1.1 3 130 13 10
1.2 6 247 20 12.3
1.3 8 411 27 15.2
1.4 50 2,671 93 28.7
1.5 13 479 38 12.6
1.6 4 184 15 12.3
1.7 5 241 18 13.4
1.8 3 141 16 8.8
1.9 81 3993 166 24.1
1.10 15 562 46 12.2
1.11 9 426 27 15.8
1.12 9 387 27 14.3
2.1 397 23,263 754 35
3.1 4 147 20 7.3
3.2 7 258 26 9.9
3.3 17 600 49 12.2
3.4 91 4,280 213 20.1
3.5 3 129 20 6.4
4.1 572 31,796 1,038 30.6

Table 1. Line Counts for the Example Scenarios

in the OEP, and that it provides a significant reduction in lines of
code in all cases, with the biggest reductions occurring in the largest
examples, which is a good indicator of increased scalability.
One can argue that XML was an easy target, and it is true that

XML formats are often quite verbose. In addition, the particular
format that we were targeting had a fair degree of redundancy, du-
plicating some parts of the data multiple times and so increasing
both the length of the input and the potential for introducing in-
consistencies and errors. Nevertheless, many XML formats exhibit
similar characteristics, so we believe that results similar to those in
Table 1 could be seen in other applications.

3. Language Overview and Implementation
In this section, we summarize the DSL from the perspective of
an engineer who might be using it to describe a particular system
of components (Section 3.1), and then we briefly describe some
aspects of its implementation (Section 3.2).

3.1 A DSL User’s Perspective

Using the DSL notation, a typical scenario takes the form:

scenarioName = do command_1
...
command_n

1 The scenario names reflect four general categories of increasing size and
complexity: (1.x) simple uniprocessor; (2.x) realistic uniprocessor; (3.x)
simple multiprocessor; and (4.x) realistic multiprocessor.

The most frequently used commands are as follows:

• A processor name command specifies that subsequently de-
fined components (up to the next processor command) should
be located on the processor called name. This provides a way to
describe distribution of components across multiple processors.

• A comp <- new componentType("NAME") command intro-
duces a new component, comp, of the specified componentType
with a label "NAME" that can be used, among other things, for
debugging purposes. (This notation was, of course, chosen to
echo the C++ syntax used by the OEP developers.) Components
must be introduced before they are used. The DSL supports 25
different component types—covering all of the examples in the
OEP—and is easily expanded to include new types.

• A trigger freq comp command indicates that the compo-
nent comp should be triggered at a frequency of freq Hertz.

• There are three commands for connecting components:
l ==> r creates a “push” connection, indicating that l will
generate events that should be passed on to r.

l <=> r creates a “push/pull” connection, indicating that l
should notify r when new data becomes available, and that
r can call back to l to query for specific data values.

l <== r creates a “pull” connection, indicating that l
should be able to request data from r.

Simple conventions make these notations easy to memorize: (i)
The left component is (usually) the one that initiates communi-
cation; and (ii) Arrows indicate the direction(s) of data flow.

• For convenience, there are also variants of trigger, ==>, and
<=> that can handle multiple components in a single command.
For example, we can specify a 20Hz trigger for three compo-
nents using trigger 20 [c1,c2,c3], or arrange for notifica-
tions from three event generator components to be forwarded to
a single event handler component using [c1,c2,c3] => c.

Even with just the constructs described here, it is possible to de-
scribe most of the uniprocessor scenarios, such as the code in
Figure 3. The DSL does support a few additional commands—
principally to support aspects of concurrency and distribution—
that, for reasons of space, are not described here.
One other significant feature of the DSL is the support that it

provides for attaching “annotations” to commands using the syntax
command # annotation. For example, the following, annotated
command specifies that the events from a collection of sensors
should be correlated before they are delivered to airframe:

[gps, ins, adc, radar] ==> airframe # correl

Annotations override settings that are otherwise filled with
(carefully chosen) defaults. The notation was chosen to resemble a
comment syntax, and to allow for specification of multiple anno-
tations where necessary, as in command # a1 # a2. As a result,
annotations provide a lightweight mechanism for handling special
cases, while otherwise avoiding clutter.

3.2 Implementation

Our DSL is implemented as an embedded DSL, meaning that it
is, in fact, using the syntax of the host language, Haskell, together
with code from a small library of functions that define the DSL
constructs and operators. For example, the do keyword that is used
in defining a scenario is, of course, just the same do keyword that
is used in Haskell to introduce a monad comprehension. The par-
ticular monad that is used for the DSL is called OEP and combines
elements of both a state and an environment monad:

newtype OEP a = OEP (Env -> State -> (a, State))

The environment component, Env, stores default settings that
are used for creating new components, establishing connections,
between components, etc. These are the settings that the annotation
syntax is used to override. The State component tracks the current
processor name and a list of components called a Configuration:

type Configuration = [Component]

The full definition of Component involves 16 auxiliary datatypes
and runs to a total of about 60 lines. Each Component value, for
example, includes details about the name and type of the compo-
nent as well as details of the components to which it is connected.
Individual DSL commands can modify these structures when they
are executed. For example, a command c ==> d modifies the de-
scription of c to indicate that it will serve as a supplier to d and,
at the same time, modifies the description of d to indicate that
it will receive events from c. Of course, we could have chosen
any number of alternative representations for Component. The key
idea, however, is that, as we execute a sequence of commands in
a scenario, we build up a data structure—essentially an abstract
syntax—to represent the corresponding configuration. This is im-
portant because it avoids making a premature commitment to how
the DSL constructs will be interpreted; instead, we can use any
given scenario in a generic manner and then apply a specific
function to the resulting Configuration to obtain a particular re-
sult. For example, the DSL library includes the following functions
for generating XML code and dot graphs for a given configuration
(unsurprisingly, these provide the functionality for the dsl2xml
and dsl2dot tools that were described in Section 2.):

config2XML :: Configuration -> XML
config2dot :: Configuration -> [String]

Of course, it would have been possible to implement an embed-
ded DSL like the one described in this paper using a host language
other than Haskell. One of the benefits of Haskell, however, is that
it allows us to provide a clean and uncluttered syntax for DSL code.
For example, the DSL implementation quietly uses type classes to
allow the # operator to be overloaded to deal with multiple distinct
types of annotation, and to support the option to use either a single
component or a list of components as the target of a trigger or the
source of a ==> connector. The resulting DSL is (arguably) easier
for a user to learn because they do not have to distinguish between
multiple, similar names for different versions of a single concept.

4. Additional Benefits of the DSL
From the results in Table 1, we have already seen that use of the
DSL leads to a significant reduction in code size in comparison to
the original versions that were written in XML. This is certainly a
strong positive for the DSL because, with less code to write, and
less accidental complexity to deal with, there is more time for a
DSL user to focus on higher level details, and there is potential for
better scalability, and for increased productivity.
The DSL also made it possible, for the first time, to construct

new scenarios in a modular fashion, or to build parameterized sce-
narios that could be quickly configured to suit the needs of a partic-
ular application. Prior to the introduction of the DSL, the XML
descriptions were produced by hand, by individuals, using sim-
ple editing tools and the inevitable (but error-prone) cut-and-paste
techniques. A scenario that logically consisted of two smaller and
disjoint subsystems would, nevertheless, be forced into a single,
monolithic XML file that tangled the two subsystems together.
With the DSL, two scenarios can be developed completely inde-
pendently and then combined very naturally using an expression
of the form do scenario1; scenario2. The ability to support
modular construction is essential in scaling to handle very large
configurations developed by members of a collaborative team.

Because the DSL is embedded in Haskell, there is no need for
DSL code to be limited to just the commands described in Sec-
tion 3. To avoid overwhelming DSL users with too many extra de-
tails, we used this facility only lightly in our handwritten examples.
It was clear, however, that there were many opportunities for pro-
grammatic construction of large and complex configurations.
Finally, but perhaps most importantly, the DSL proved to be a

highly effective tool for detecting and eliminating bugs. Our first
DSL examples were produced as a result of (painstaking) manual,
reverse engineering of XML files. Immediately, we began to dis-
cover a surprising number and range of bugs including: ill-formed
XML; inconsistent spelling of component names; incorrectly typed
components; incorrect trigger frequencies; redundancy (compo-
nents that had been configured to generate events, even though
there were no registered listeners); etc. Many of these problems,
we believe, were the result of the way in which the examples had
been constructed, but almost none of them could have occurred if
the XML code had been generated from the DSL. The only ex-
ceptions were specification errors (for example, where the infor-
mal text specified a 10Hz trigger while the XML specified 100Hz).
Even problems like that are much easier to spot in DSL code be-
cause of the dramatic reduction in code size.
It soon became clear that we could automate the process of con-

verting XML descriptions into DSL code, leading to the develop-
ment of a new tool, xml2dsl, that also checked the input XML
code for validity. The OEP evolved during the project, adding new
functionality, new component types, or new scenarios in each re-
lease. Each time, with relatively little effort, we were able to up-
date the DSL to track the OEP. The xml2dsl tool proved to be
very useful in managing these updates; once we had updated the
xml2dsl implementation, we could quickly generate new DSL ver-
sions for each of the scenarios without further reverse-engineering
effort. (The DSL LOC figures in Table 1 reflect the size of DSL
code generated using xml2dsl, but our handwritten DSL code was
always of a similar size.) Of course, we reported the errors that we
found in the OEP examples so that they would be fixed in the next
release. Even so, because they also included new features or exam-
ples, we continued to find around 50–100 new problems in each re-
lease. Even the very last release that we studied before the project
ended included no fewer than 80 components that were unneces-
sarily generating events without any registered listeners, as well as
several more serious problems with the distribution mechanisms, in
which proxy components had been incorrectly configured without
corresponding masters (or vice versa). All of these problems were
detected by xml2dsl, and none of them could have occurred if the
configurations had been authored using the DSL.

Acknowledgments
The work reported in this paper was sponsored in part by DARPA,
contract #F33615-00-C-3042, as part of the PCES program.

References
Andrew P. Black, Magnus Carlsson, Mark P. Jones, Richard Kieburtz,
and Johan Nordlander. Timber: A Programming Language for Real-
Time Embedded Systems. Technical Report, OGI School of Science &
Engineering, April, 2002.

Paul Hudak. Building Domain-Specific Embedded Languages. In ACM
Computing Surveys, 28A(4), December, 1996.

Johan Nordlander. Reactive Objects and Functional Programming. Ph.D.
thesis, Dept. of Computing Science, Chalmers University of Technology,
Göteborg, Sweden, 1999.

Johan Nordlander, Mark Jones, Magnus Carlsson, Dick Kieburtz, and An-
drew Black. Reactive Objects. In Proceedings of the Fifth IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC 2002), Arlington, VA, 2002.

