
Dictionary-free Overloading by Partial Evaluation

Mark P. Jones
Yale University, Department of Computer Science,

P.O. Box 208285, New Haven, CT 06520-8285.
jones-mark@cs.yale.edu

Abstract

One of the most novel features in the functional program-
ming language Haskell is the system of type classes used to
support a combination of overloading and polymorphism.
Current implementations of type class overloading are based
on the use of dictionary values, passed as extra parameters
to overloaded functions. Unfortunately, this can have a sig-
nificant effect on run-time performance, for example, by re-
ducing the effectiveness of important program analyses and
optimizations.

This paper describes how a simple partial evaluator can be
used to avoid the need for dictionary values at run-time by
generating specialized versions of overloaded functions. This
eliminates the run-time costs of overloading. Furthermore,
and somewhat surprisingly given the presence of multiple
versions of some functions, for all of the examples that we
have tried so far, specialization actually leads to a reduction
in the size of compiled programs.

1 Introduction

The functional programming language Haskell [9] supports a
flexible combination of overloading and polymorphism based
on the use of type classes [20]. The standard implementa-
tion technique, adopted in all of the Haskell systems to date,
involves the use of dictionary values that are passed as addi-
tional parameters to overloaded functions to resolve the use
of overloading at run-time. Unfortunately, it is very difficult
to obtain an efficient implementation using this approach be-
cause of the overheads of manipulating dictionaries at run-
time and because their presence reduces the effectiveness of
important program analyses and optimizations.

This paper describes a compiler for a small Haskell-like lan-
guage that uses a partial evaluator to eliminate run-time
dictionaries. Instead of dictionaries, we generate specialized
versions of overloaded functions at compile-time, completely
avoiding the costs of run-time overloading. While the po-
tential for dictionary-free overloading has been discussed in
the past, the idea has not been adopted in practical systems
for fear that it could lead to a substantial increase in the size
of compiled programs—a so-called code explosion. In fact,
for all of the programs we have tried so far, we find that the
partial evaluator actually gives a reduction in program size!
The main reason for this seems to be that the use of partial
evaluation allows us to do a better job identifying redundant
sections of code that will not be needed at run-time.

Our system fits naturally into the framework of offline par-
tial evaluation with the type class type inference algorithm
providing a simple binding time analysis. The results of this
paper therefore provide further motivation for including a
more general partial evaluation system as part of produc-
tion quality compilers for languages like Haskell.

The remainder of this paper is organized as follows. We
begin with a brief introduction to the use of type classes
in Haskell in Section 2, describing the way in which over-
loaded functions can be defined and extended to work over
a range of datatypes. The dictionary-passing implementa-
tion techniques used in all current Haskell implementations
are presented in Section 3, with comments outlining some
of the obstacles to an efficient implementation. The need
to eliminate the use of dictionaries motivates the use of a
form of partial evaluation in Section 4 which produces a
dictionary-free implementation of programs using type class
overloading. We provide some measurements of program
size for a collection of ‘realistic’ programs using both the
dictionary passing style and the dictionary-free implemen-
tations. Finally, Section 5 gives some pointers to further
and related work, in particular to the problems of combin-
ing global partial evaluation and separate compilation.

2 Type classes

Type classes were introduced by Wadler and Blott [20] as a
means of supporting overloading (ad-hoc polymorphism) in
a language with a polymorphic type system. This section
gives a brief overview of the use of type classes in a language
like Haskell and provides some examples that will be used
in later sections. Further details may be found in [8, 9].

The basic idea is that a type class corresponds to a set of
types (called the instances of the class) together with a col-
lection of member functions (sometimes described as meth-
ods) that are defined for each instance of the class. For
example, the standard prelude in Haskell defines the class
Num of numeric types using the declaration:

class (Eq a,Text a) ⇒ Num a where
(+), (∗), (−) :: a → a → a
negate :: a → a
abs, signum :: a → a
fromInteger :: Integer → a

x − y = x + negate y

The first line of the declaration introduces the name for
the class, Num, and specifies that every instance a of Num

must also be an instance of Eq and Text . These are two
additional standard classes in Haskell representing the set
of types whose elements can be compared for equality and
those types whose values can be converted to and from a
printable representation respectively. Note that, were it not
for a limited character set, we might well have preferred
to write type class constraints such as Num a in the form
a ∈ Num.

The remaining lines specify the operations that are specific
to numeric types including simple arithmetic operators for
addition (+), multiplication (∗) and subtraction (−) and
unary negation negate. The fromInteger function is used
to allow arbitrary integer value to be coerced to the cor-
responding value in any other numeric type. This is used
primarily for supporting overloaded integer literals as will
be illustrated below. Notice the last line of the declaration
which gives a default definition for subtraction in terms of
addition and unary negation. This definition will only be
used if no explicit definition of subtraction is given for par-
ticular instances of the class.

Instances of the class Num are defined by a collection of
instance declarations which may be distributed throughout
the program in distinct modules. The program is free to
extend the class Num with new datatypes by providing ap-
propriate definitions. In the special case of the built-in type
Integer (arbitrary precision integers or bignums), the in-
stance declaration takes the form:

instance Num Integer where
(+) = primPlusInteger

...
fromInteger x = x

This assumes that the implementation provides a built-in
function primPlusInteger for adding Integer values. Note
that, for this special case, the implementation of fromInteger
is just the identity function. The Haskell standard prelude
also defines a number of other numeric types as instances
of Num including fixed precision integers and floating point
numbers. The definition of fromInteger is typically much
more complicated for examples like these.

Other useful datatypes can be declared as instances of Num.
For example, the following definition is a simplified version
of the definition of the type of complex numbers in Haskell:

data Complex a = a :+a

instance Num a ⇒ Num (Complex a) where
(x :+y) + (u :+v) = (x + u) :+(y + v)

...
fromInteger x = fromInteger x :+fromInteger 0

We can deal with many other examples such as rational
numbers, polynomials, vectors and matrices in a similar way.

As a simple example of the use of the numeric class, we can
define a generic fact function using:

fact n = if n == 0
then 1
else n ∗ fact (n − 1)

Any integer constant m appearing in a Haskell program
is automatically replaced with an expression of the form

fromInteger m so that it can be treated as an overloaded
numeric constant, not just an integer. If we make this ex-
plicit, the definition of fact above becomes:

fact n = if n == fromInteger 0
then fromInteger 1
else n ∗ fact (n − fromInteger 1)

As a result, the fact function has type Num a ⇒ a → a
indicating that, if n is an expression of type a and a is an
instance of Num, then fact n is also an expression of type
a. For example:

fact 6 =⇒ 720
fact (6.0 :+0.0) =⇒ 720.0 :+0.0

The type system ensures that the appropriate definitions of
multiplication, subtraction etc. are used in each case to pro-
duce the correct results. At the same time, an expression
like fact ′f ′ will generate a type error since there is no decla-
ration that makes Char , the type of characters, an instance
of Num.

3 Dictionary passing implementation

This section outlines the technique of dictionary passing and
explains some of the reasons why it is so difficult to produce
efficient code in the presence of dictionary values.

The biggest problem in any implementation of overloading
is that of finding an efficient and effective way to deal with
method dispatch – selecting the appropriate implementation
for an overloaded operator in a particular situation. One
common technique is to attach a tag to the run-time repre-
sentation of each object; each overloaded function is imple-
mented by inspecting the tags of the values that it is applied
to and, typically using some form of lookup table, branching
to the appropriate implementation.

Apart from any other considerations about the use of tags,
this approach can only deal with certain kinds of overload-
ing. In particular, it cannot be used to implement the
fromInteger function described in the previous section; the
implementation of fromInteger depends, not on the type of
its argument, but on the type of the value it is expected to
return.

An elegant solution to this problem is to separate tags from
values, treating tags as data objects in their own right. For
example, we can implement the fromInteger function by
passing the tag of the result as an extra argument. This
amounts to passing type information around at run-time but
is only necessary when overloaded functions are involved.

Another approach – based on the use of dictionary values
– was introduced by Wadler and Blott [20] and has been
adopted in all current Haskell systems. A dictionary is a tu-
ple that contains the implementations for each of the mem-
ber functions in a given class. Superclasses are represented
by pointers to corresponding subdictionaries. For example,
Figure 1 illustrates the structure of a dictionary for the Num
class, including the auxiliary dictionaries for the superclasses
Eq and Text .

Specific instances of this structure are constructed as neces-
sary using the instance declarations in a program. We use
the names of the member functions as selectors that can
be applied to a suitable dictionaries to extract the corre-
sponding implementation. For example, if dictNumInteger

Num

(+)

(∗)

(−)

negate

abs

signum

fromInteger

p -

p

-

Text

showsPrec

showList

readsPrec

readList

Eq

(==)

(/ =)

Figure 1: Dictionary structure for the Num class

is the dictionary corresponding to the instance declaration
for Num Integer given in Section 2, then:

(+) dictNumInteger 2 3 =⇒ primPlusInteger 2 3
=⇒ 5

fromInteger dictNumInteger 42
=⇒ 42

Notice that these overloaded primitive functions are dealt
with by adding an extra dictionary parameter. The same
technique can be used to implement other overloaded func-
tions. For example, adding an extra dictionary parameter to
the fact function given above and using member functions
as selectors, we obtain:

fact d n
= if (==) (eqOfNum d) n (fromInteger d 0)

then fromInteger d 1
else (∗) d n (fact d ((−) n (fromInteger d 1)))

This example uses a function eqOfNum to extract the su-
perclass dictionary for Eq from the dictionary for the corre-
sponding instance of Num. Further details about the trans-
lation process are are given by [1, 17, 19, 20].

The dictionary passing style is reasonably simple to under-
stand and implement and is well-suited to separate compi-
lation; only the general structure of a dictionary and the set
of instances of a particular class (both of which can be ob-
tained from module interfaces) are needed to compile code
that makes use of operators in that class. Unfortunately, the
use of dictionaries also causes some substantial problems:

• Unused elements in a dictionary cause an unwanted
increase in code size.

• In the general case, the selectors used to implement
method dispatch are higher-order functions. It is well-
known that efficient code generation and static analy-
sis are considerably more difficult in this situation.

• The need to construct dictionary values and pass these
as additional parameters at run-time adds further over-
heads.

The following sections discuss each of these points in a little
more detail.

3.1 Dictionaries increase program size

In an attempt to reduce the size of executable programs,
many compilers use some form of ‘tree shaking’ to eliminate
unused sections of code from the output program. This is
particularly important when large program libraries are in-
volved; the standard prelude in Haskell is an obvious exam-
ple. However, we will see that the use of dictionaries can
reduce the benefits of tree shaking.

The idea of grouping related operations into a single class is
certainly quite natural. In addition, it often results in less
complicated types. For example, if Haskell used separate
classes Eq , Plus and Mult for each of the operators (==),
(+) and (∗) respectively, then the function:

pyth x y z = x ∗ x + y ∗ y == z ∗ z

might be assigned the type:

(Eq a,Plus a,Mult a) ⇒ a → a → a → Bool

rather than the simpler:

Num a ⇒ a → a → a → Bool .

A disadvantage of grouping together methods like this is
that it becomes rather more difficult to identify unneces-
sary sections of code. For example, any program that uses
a dictionary for an instance of Num will also require cor-
responding dictionaries for Eq and Text . Many such pro-
grams will not make use of all of the features of the Text
class, but it is still likely that large portions of the stan-
dard prelude dealing with reading and printing values will
be included in the output program. In a similar way, even
if a program uses only Int arithmetic, the need to include a
fromInteger function as part of the Num Int dictionary may
result in compiled programs that include substantial parts
of the run-time support library for Integer bignums.

Another factor that tends to contribute to the size of pro-
grams that are implemented using the dictionary passing
style is the need to include additional code to deal with the
construction of dictionary values (and perhaps to implement
the selector functions corresponding to each member func-
tion and superclass).

3.2 Dictionaries defeat optimization

It is well known that the presence of higher-order functions
often results in significant obstacles to effective static anal-
ysis and efficient code generation. Exactly the same kind

of problems occur with the use of dictionaries—the selec-
tor functions used to implement member functions are (usu-
ally) higher-order functions—except that the problems are,
if anything, more severe since many of the most primitive
operations in Haskell are overloaded.

To illustrate the problems that can occur, consider the fol-
lowing definition of a general purpose function for calculat-
ing the sum of a list of numbers1:

sum :: Num a ⇒ [a] → a
sum xs = loop 0 xs

where loop tot [] = tot
loop tot (x : xs) = loop (tot + x) xs

After the translation to include dictionary parameters this
becomes:

sum d xs = loop d (fromInteger d 0) xs
where loop d tot [] = tot

loop d tot (x : xs) = loop d ((+) d tot x) xs

As the original definition is written, it seems reasonable that
we could use standard strictness analysis techniques to dis-
cover that the second (accumulating) argument in recursive
calls to loop can be implemented using call-by-value so that
the calculation of the sum runs in constant space. Unfortu-
nately, this is not possible because we do not know enough
about the strictness properties of the function (+) d ; even if
the implementation of addition is strict in both arguments
for every instance of Num in a particular program, it is still
possible that a new instance of Num could be defined in an-
other module which does not have this property. The code
for sum has to be able to work correctly with this instance
and hence the implementation of sum will actually require
space proportional to the length of the list for any instance
of Num.

The implementation of sum given above also misses some
other opportunities for optimization. For example, if we
were summing a list of machine integers (values of type Int)
then the second argument to loop could be implemented
as an unboxed value, and the addition could be expanded
inline, ultimately being implemented by just a couple of low-
level machine instructions.

3.3 The run-time overhead of dictionary passing

There are a number of additional run-time costs in an im-
plementation of type class overloading based on dictionaries.
The construction of a dictionary involves allocation and ini-
tialization of its components. Our experience suggests that
the number of distinct dictionaries that will be required in
a given program is usually rather small (see Section 4.3 for
more concrete details) so the cost of dictionary construction
should not, in theory, be too significant. However, there are
many examples which show that the same dictionary value
may be constructed many times during the execution of a
single program. Some of these problems can be avoided by
using more sophisticated translation schemes when dictio-
nary parameters are added to Haskell programs, but others
cannot be avoided because of the use of context reduction in
the Haskell type system (see [10] for further details).

1Augustsson [1] uses essentially the same example to demonstrate
similar problems.

There is also a question about whether dictionary construc-
tion is implemented lazily or eagerly. In the first case, every
attempt to extract a value from a dictionary must be pre-
ceded by a check to trigger the construction of the dictionary
if it has not previously been evaluated. (Of course, this is
entirely natural for a language based on lazy evaluation and
standard techniques can be used to optimize this process in
many cases.) The second alternative, eager construction of
dictionary values, risks wasted effort building more of the
dictionary structure than is needed. This is a real concern;
with the definitions in the standard prelude for Haskell, the
dictionary for the instance RealFloat (Complex Double) in-
volves between 8 and 16 additional superclass dictionaries,
depending on the way in which equivalent dictionary values
are shared. With a lazy strategy, all of the member func-
tions for the RealFloat class can be accessed after building
only a single dictionary.

Finally, there is a potential cost of manipulating the addi-
tional parameters used to pass dictionary values. For exam-
ple, it may be necessary to generate extra instructions and
to reserve additional space in a closure (or allocate more
application nodes in a graph-based implementation) for dic-
tionaries. However, our experience suggests that these costs
are relatively insignificant in practice.

3.4 The use of explicit type signatures

One common optimization in current Haskell systems is to
recognize when the dictionaries involved in an expression
are constant and to extract the implementations of member
functions at compile-time. This often requires the program-
mer to supply additional type information in the form of an
explicit type declarations such as:

fact :: Int → Int .

The translation of fact can then be simplified to:

fact n
= if primEqInt n zero

then one
else primMultInt n (fact (primSubInt n one))

where primEqInt , primMulInt and primSubInt are primitive
functions which can be recognized by the code generator and
compiled very efficiently, and zero and one are the obvious
constant values of type Int .

In current Haskell systems, adding an explicit type signature
like this in small benchmark programs which make extensive
use of overloading can sometimes give a ten-fold improve-
ment in program execution time! (Of course, the speedups
are much more modest for ‘real-world’ programs.) As a re-
sult, it has become quite common to find Haskell programs
that are sprinkled with type annotations, not so much to
help resolve overloading, but rather to avoid it altogether.

Of course, there would be no need for overly restrictive type
signatures if the programmer could rely on the compiler to
generate efficient, type specific versions of overloaded func-
tions.

4 A dictionary-free implementation

From the programmer’s perspective, Haskell type classes
have proved to be a valuable extension of the Hindley-Milner

type system used in languages like ML. The standard pre-
lude for Haskell included in [9] illustrates this with a range of
applications including equality, ordering, sequencing, arith-
metic, array indexing, and parsing/displaying printable rep-
resentations of values. However, it is clear from the com-
ments in the previous section that any implementation based
on the use of dictionary passing faces some serious obstacles
to good run-time performance.

The possibility of a dictionary-free implementation was men-
tioned by Wadler and Blott in the original paper introducing
the use of type classes [20], together with the observation
that this might result in an exponential growth in code size.
This was illustrated by considering the function:

squares (x , y , z) = (x ∗ x , y ∗ y , z ∗ z)

which has type:

(Num a,Num b,Num c) ⇒ (a, b, c) → (a, b, c).

Notice that, even if there are only two instances of the class
Num, there are still eight possible versions of this function
that might be required in a given program.

But do examples like this occur in real programs? Other
situations where the apparent problems suggested by theo-
retical work do not have any significant impact on practical
results are well known. For example, it has been shown
that the complexity of the Damas-Milner type inference al-
gorithm is exponential, but the kind of examples that cause
this do not seem to occur in practice and the algorithm be-
haves well in concrete implementations.

To investigate whether expanding programs to avoid the use
of dictionaries results in a code explosion, we have devel-
oped a compiler for Gofer, a functional programming system
based on Haskell, that does not use make use of dictionary
parameters at run-time. The compiler is based on an earlier
version whose output programs did rely on the use of dic-
tionaries. The main difference is the use of a specialization
algorithm, described in Section 4.1, to produce specialized
versions of overloaded functions. Not surprisingly, the same
results can be obtained using a more general partial evalu-
ation system and we discuss this in Section 4.2. Comparing
the sizes of the programs produced by the two different ver-
sions of the compiler, we have been able to get some measure
of the potential code explosion. We had expected that ex-
panding out all of the definitions of overloaded functions
in realistic applications would produce larger compiled pro-
grams, but we hoped that our experiments would show fairly
modest increases. To our surprise, we found that, for all the
examples we have tried, the ‘expanded’ program is actually
smaller than the original dictionary based version!

4.1 A formal treatment of specialization

This section describes an algorithm for converting the code
for a dictionary-based implementation of a program with
overloading to a specialized form that does not involve dic-
tionaries. Although our presentation is rather formal, the
algorithm itself is simple enough; starting with the top-level
expression in a given program, we replace each occurrence of
an overloaded function f , together with the dictionary values
d that it is applied to, with a new variable, f ′. The resulting
expression is enclosed in the scope of a new definition for f ′

that is obtained by specializing the original definition for f
and using the corresponding dictionary arguments d .

4.1.1 Source language

The algorithm takes the translations produced by the type
checker [10] as its input; the syntax of these terms is given
by the following grammar:

M ::= xe variables
| M M application
| λx .M abstraction
| let B in M local definitions

The symbol x ranges over a given set of term variables, and
e ranges over (possibly empty) sequences of dictionary ex-
pressions. In addition, B ranges over finite sets of bindings
(pairs of the form x = λv .M where v denotes a possibly
empty sequence of dictionary parameters) in which no vari-
able x has more than one binding. The set of variables x
bound in B will be written dom B . An additional constraint
that is guaranteed by the type system but not reflected by
the grammar above is that every occurrence of a variable in
a given scope has the same number of dictionary arguments
(equal to the number of class constraints in the type assigned
to the variable and to the number of dictionary parameters
in the defining binding).

Note also that the language used in [10] allows only single
bindings in local definitions; of course, an expression of the
form let x = M in M ′ in that system can be represented
as let {x = M } in M ′ in the language used here. The mo-
tivation for allowing multiple bindings is that we want to
describe the specialization algorithm as a source to source
transformation and it may be necessary to have several spe-
cialized versions of a single overloaded function.

4.1.2 Specialization sets

Motivated by the informal comments above, we describe the
algorithm using a notion of specializations each of which is
an expression of the form f d ; f ′ for some variables f and
f ′ and some sequence of dictionary parameters d . As a con-
venience, we will always require that f ′ is a ‘new’ variable
that is not used elsewhere. Since a given program may actu-
ally require several specialized versions of some overloaded
functions, we will usually work with (finite) sets of special-
izations. To ensure that these sets are consistent, we will
restrict ourselves to those sets S such that:

(x d ; x ′), (y e ; x ′) ∈ S ⇒ x = y ∧ d = e.

In other words, we do not allow the same variable to repre-
sent distinct specializations. This is precisely the condition
needed to ensure that any specialization set S can be inter-
preted as a substitution where each (x d ; x ′) ∈ S repre-
sents the substitution of x d for the variable x ′. For example,
applying the specialization set {x d ; y} as a substitution
to the term (λy .y)y gives (λy .y)(x d).

In practice, it is sensible to add the following restrictions
in an attempt to reduce the size of specialization sets, and
hence the size of compiled programs:

• Avoid duplicated specialization of the same function:
if (x d ; x ′), (x d ; y ′) ∈ S , then x ′ = y ′.

• Avoid unused specializations: there is no need to in-
clude (x d ; x ′) ∈ S unless x actually occurs with
dictionary arguments d in the scope of the original
definition of x .

Note however that these conditions are motivated purely by
practical considerations and are not required to establish the
correctness of the specialization algorithm.

It is convenient to introduce some special notation for work-
ing with specialization sets:

• If V is a set of variables, then we defined SV as:

SV = { (x d ; x ′) ∈ S | x 6∈ V }.
In other words, SV is the specialization set obtained
from S by removing any specializations involving a
variable in V . As a special case, we write Sx as an
abbreviation for S{x}.

• For any specialization set S , we define:

Vars S = { x | (x d ; x ′) ∈ S }.

• We define the following relation to characterize the
specialization sets that can be obtained from a given
set S , but with different specializations for variables
bound in a given B :

S ′ extends (B ,S) ⇐⇒ ∃S ′′.Vars S ′′ ⊆ dom B ∧
S ′ = S(dom B) ∪ S ′′.

4.1.3 The specialization algorithm

The specialization algorithm is described using judgments of
the form S ` M ; M ′ and following the rules in Figure 2.
The expression M is the input to the algorithm and the

(var-let)
(xd ; x ′) ∈ S e = d

S ` xe ; x ′

(var-λ)
x 6∈ Vars S

S ` x ; x

(app)
S ` M ; M ′ S ` N ; N ′

S ` MN ; M ′N ′

(abs)
Sx ` M ; M ′

S ` λx .M ; λx .M ′

(let)

S ,S ′ ` B ; B ′ S ′ ` M ; M ′

S ′ extends (B ,S)

S ` let B in M ; let B ′ in M ′

Figure 2: Specialization algorithm

output is a new term M ′ that implements M without the
use of dictionaries and a specialization set S for overloaded
functions that appear free in M .

Note that there are two rules for dealing with variables. The
first, (var-let), is for variables that are bound in a let ex-
pression or defined in the initial top-level environment; these
are the only places that variables can be bound to over-
loaded values, and hence the only places where specializa-
tions might be required. The second rule, (var-λ), deals with

the remaining cases; i.e. variables bound by a λ-abstraction
or variables defined in a let expression that are not over-
loaded. Although it is beyond the scope of this paper, we
mention that this distinction can be characterized more for-
mally using the full set of typing rules for the system.

The hypothesis e = d in the rule (var-let) implies compile-
time evaluation of the dictionary expressions e to dictionary
constants d . In order for the specialization algorithm to be
part of a practical compiler, we need to ensure that this
calculation can always be carried out without risk of non-
termination. See Section 4.1.6 for further comments.

We should also mention the judgment S ,S ′ ` B ; B ′ used
as a hypothesis in the rule (let). This describes the process
of specializing a group of bindings B with respect to a pair
of specialization sets S and S ′ to obtain a dictionary-free
set of bindings B ′ and is defined by:

S ,S ′ ` B ; B ′

⇐⇒
B ′ = { x ′ = N ′ | (x = λv .N) ∈ B

∧ (xe ; x ′) ∈ S ′

∧ S ` [e/v]N ; N ′ }

Note that, for each variable bound in B , only those that
also appear in Vars S ′ will result in corresponding bindings
in B ′. Assuming we follow the suggestions in the previ-
ous section and do not include unused specializations in S ′,
then the specialization algorithm also provides tree shaking,
eliminating redundant definitions from the output program.

It is also worth mentioning that the (let) rule can very easily
be adapted to deal with recursive bindings (often written
using let rec in place of let). All that is necessary is to
replace S ,S ′ ` B ; B ′ with S ′,S ′ ` B ; B ′.
Remember that the goal of program specialization is to pro-
duce a dictionary-free implementation of any input term. It
is clear from the definition above that the output from the
algorithm does not involve dictionary values, but it remains
to show that the two terms are equal. This, in turn, means
that we have to be more precise about what it means for
two terms to be equal. For the purposes of this paper we
will assume only the standard structural equality together
with the two axioms:

let {x1 = M1, . . . , xn = Mn} in M
= [M1/x1, . . . ,Mn/xn]M

(λv .M) e = [e/v]M

The second of these is simply the familiar rule of β reduc-
tion, restricted to dictionary values arguments. The care-
ful reader may notice that the statement of this rule uses
dictionary parameters and expressions in positions that are
not permitted by the grammar in Section 4.1.1. For the
purposes of the following theorem, we need to work in the
slightly richer language of [10] that allows arbitrary terms
of the form Me or λv .M .

With this notion of equality, we can establish the correctness
of the specialization algorithm as:

Theorem 1 If S ` M ; M ′, then M = SM ′.

Proof: The proof is by induction on the structure of S `
M ; M ′ and is straightforward, except perhaps for the (let)

rule. In that case we have a derivation of the form:

S ,S ′ ` B ; B ′ S ′ extends (B ,S) S ′ ` M ; M ′

S ` let B in M ; let B ′ in M ′

The required equality can now be established using the fol-
lowing outline:

let B in M = [λv .N /x]M

= [λv .N /x](S ′M ′) (∗)
= [λv .N /x] [xe/x ′](SM ′)

= [(λv .N)e/x ′](SM ′)

= [[e/v]N /x ′](SM ′)

= [SN ′/x ′](SM ′) (∗)
= S([N ′/x ′]M ′)

= S(let B ′ in M ′)

(The two steps labeled (∗) follow by induction. The other
steps are justified by the properties of substitutions.) 2

4.1.4 A simple example

To illustrate the way that the specialization algorithm works,
consider the simple Haskell expression:

let f x = x + x in f one.

After type checking and the insertion of dictionary parame-
ters, this becomes:

let {f = λv .λx .(+) v x x} in f d one

where d denotes the dictionary for Num Int . We begin with
the specialization set S = {(+) d ; primPlusInt}. Writing
B = {f = λv .N }, N = λx .(+) v x x , M = f d one and
using the rule (let), we need to find B ′ and M ′ such that:

S ` let B in M ; let B ′ in M ′

where S ,S ′ ` B ; B ′ and S ′ ` M ; M ′ for some S ′ such
that S ′ extends (B ,S). Taking S ′ = S ∪ {f d ; f ′}, it
follows that M ′ = f ′ one. We can also calculate:

B ′ = { f ′ = N ′ | S ` [d/v]N ; N ′ }
= { f ′ = N ′ | S ` λx .(+) d x x ; N ′ }
= { f ′ = λx .primPlusInt x x }

Hence the specialized version of the original term is:

let {f ′ = λx .primPlusInt x x} in f ′ one.

4.1.5 The treatment of member functions

Specializations involving member functions can be handled
a little more efficiently than other overloaded functions. In
particular, given a specialization (m d ; x ′) where m is a
member function and d is an appropriate dictionary, there is
no need to generate an additional binding for x ′. Instead we
can extract the appropriate value M from d during special-
ization, find its specialized form M ′ and use that in place

of x ′ in the rule (var-let). Thus specialization of member
functions might be described by a rule of the form:

(var-member)
m e = M S ` M ; M ′

S ` m e ; M ′

The expression m e = M represents the process of evalu-
ating e to obtain a dictionary d , and extracting the im-
plementation M of the member function for m. This rule is
essential for ensuring that the output programs produced by
specialization do not include code for functions that would
normally be included in dictionaries, even though they are
never actually used in the program.

4.1.6 Termination

Were it not for the evaluation of dictionary expressions in
rule (var-let) and the specialization of member functions
in rule (var-member), it would be straightforward to prove
termination of the specialization algorithm by induction on
the structure of judgments of the form S ` M ; M ′. To
establish these additional termination properties (for Gofer
and Haskell), it is sufficient to observe that both the set
of overloaded functions and the set of dictionaries involved
in any given program are finite and hence there are only
finitely many possible specializations. (We assume that a
cache/memo-function is used to avoid repeating the special-
ization of any given function more than once.)

The fact that there are only finitely many dictionaries used
in a given program depends critically on the underlying type
system. In particular, it has been suggested that the Haskell
type system could be modified to allow definitions such as:

f :: Eq a ⇒ a → Bool
f x = x == x && f [x].

This would not be permitted in a standard Hindley/Milner
type system since the function f is used at two different in-
stances within its own definition. Attempting to infer the
type assigned to f leads to undecidability, but this can be
avoided if we insist that an explicit type signature is included
as part of its definition. The set of dictionaries that are re-
quired to evaluate the expression f 0 is infinite and the spe-
cialization algorithm will not terminate with this program.
If the Haskell type system is extended in this way, then it
will be necessary to use the dictionary passing implementa-
tion to deal with examples like this, even if dictionaries can
be avoided in most other parts of the program.

4.2 The relationship with partial evaluation

Techniques for program specialization have already been
widely studied as an important component of partial eval-
uation. Broadly speaking, a partial evaluator attempts to
produce an optimized version of a program by distinguish-
ing static data (known at compile-time) from dynamic data
(which is not known until run-time). This process is often
split into two stages:

• Binding-time analysis: to find (a safe approxima-
tion of) the set of expressions in a program that can
be calculated at compile-time, and add suitable anno-
tations to the source program.

• Specialization: to calculate a specialized version of
the program using the binding-time annotations as a
guide.

The specialization algorithm described here fits very neatly
into this framework. One common approach to binding time
analysis is to translate λ-terms into a two-level λ-calculus
that distinguishes between dynamic and static applications
and abstractions [6]. The dynamic versions of these op-
erators are denoted by underlining, thus M N denotes an
application that must be postponed until run-time, while
M N can be specialized at compile-time. Any λ-term can
be embedded in the two-level system by underlining all ap-
plications and abstractions, but a good binding time analysis
will attempt to avoid as many underlinings as possible.

For the purposes of the specialization algorithm described
here, all the binding time analysis need do is mark standard
abstractions and applications as delayed, flagging the cor-
responding dictionary constructs for specialization with the
correspondence:

standard
operations

{
λx .M ∼ λx .M
M N ∼ M N

}
delayed

dictionary
operations

{
λv .M ∼ λv .M
M e ∼ M e

}
eliminated by
specialization

Thus dictionary specialization could be obtained using a
more general partial evaluator, using the distinction between
dictionaries and other values to provide binding time infor-
mation. Even better, we could use this information as a
supplement to the results of a standard binding-time analy-
sis to obtain some of the other benefits of partial evaluation
in addition to eliminating dictionary values.

4.3 Specialization in practice

The specialization algorithm presented here has been imple-
mented in a modified version of the Gofer compiler, trans-
lating input programs to C via an intermediate language
resembling G-code.

Figure 3 gives a sample of our results, comparing the size
of the programs produced by the original dictionary-based
implementation with those obtained by partial evaluation.
For each program, we list the total number of supercombina-
tors in the output program, the number of G-code instruc-
tions and the size of the stripped executable compiled with
cc -O on a NeXTstation Turbo (68040) running NeXTstep
3.0. The figures on the first row are for the dictionary-based
implementation and the expressions n/m indicates that a
total of n words are required to hold the m distinct dictio-
naries that are required by the program. The figures in the
second row are for the partially evaluated version, and each
expression of the form n ; m indicates that, of the total
number of supercombinators used in the program, m super-
combinators were generated by specialization from n distinct
overloaded supercombinators in the original program.

The programs have been chosen as examples of realistic ap-
plications of the Gofer system:

• The largest program, anna is a strictness analyzer writ-
ten by Julian Seward. Including the prelude file, the
source code runs to a little over 15,000 lines spread
over 30 script files.

Program Total number of G-code Executable
name supercombinators instrs size
anna 1509 (814/151) 58,371 851,968

1560 (170;259) 56,931 819,200
veritas 1032 (105/22) 32,094 499,712

990 (36;49) 30,596 483,328
infer 394 (67/13) 6,069 131,072

361 (29;43) 5,210 114,688
prolog 256 (76/14) 5,590 114,688

177 (21;32) 3,207 81,920
expert 235 (66/12) 5,774 114,688

141 (23;28) 3,315 81,920
calendar 188 (46/8) 3,901 90,112

86 (8;9) 1,273 49,152
lattice 190 (293/48) 3,880 90,112

134 (47;101) 1,810 57,344

Figure 3: Code size indicators

• veritas is a theorem prover written by Gareth Howells
and taken from a preliminary version of the Glasgow
nofib benchmark suite.

• infer is a Hindley/Milner type checker written by
Philip Wadler as a demonstration of the use of monads.

• prolog is an interpreter for a small subset of Prolog.

• expert is an minimal expert system written by Ian
Holyer.

• calendar is a small program for printing calendars,
similar to the Unix cal command.

• lattice is a program for enumerating the elements of
the lattice D3 where D0 = Bool and Dn+1 = Dn → Dn

as described in [11]. It is included here as an exam-
ple of a program that makes particularly heavy use of
overloading (as the figures indicate, 75% of the super-
combinators in the output program are the result of
specialization).

The same prelude file was used for all these tests; a version of
the Gofer standard prelude modified to provide closer com-
patibility with Haskell (including, in particular, a full defini-
tion of the Text class). Some of these programs made use of
Haskell-style derived instances. This allows the programmer
to request automatically generated instance declarations for
standard type classes when defining a new datatype. Our
system does not currently support derived instances and
hence it was sometimes necessary to add explicit declara-
tions. It is worth mentioning that, in the case of the anna
benchmark, the code for derived instances caused an in-
crease in the size of the final executable of over 15% for
both versions of the compiler.

These figures are of interest in their own right; we are not
aware of any previous work to make a quantitative assess-
ment of the degree to which overloading is used in realis-
tic applications. For all of the examples listed here, the
output program produced by specialization is smaller than
the dictionary-based version; in fact, we have yet to find
an example where the dictionary-based version of the code
is smaller! Not surprisingly, the benefits are greatest for

the smaller programs. But even for the larger examples it
seems clear that the ability to eliminate redundant parts of
dictionaries and to avoid manipulating dictionary parame-
ters more than ‘pays’ for the increase in code size due to
specialization.

In the special case of the anna the specialization algorithm
increases compile-time (i.e. translation to C) by approxi-
mately 15%, from 20.3 user seconds for the dictionary pass-
ing version to 23.2 when specialization is used. However, the
code generator is very simple minded and we would expect
that a high quality, optimizing code generator would have a
more significant effect. It is also possible that there would
be further overheads in the presence of separate compila-
tion; Gofer does not support the use of modules; a program
is just a sequence of script files loaded one after the other.

The time required to translate Gofer code to C is only a
fraction of the time required to compile the C code. Using
anna again as a typical example, translation to C takes only
3% of the total compilation time. Furthermore, the fact that
the specialized version of the program is a little smaller than
the dictionary-based version means that the total compile-
time is actually slightly lower when specialization is used.
Clearly, there are much more pressing concerns than the
relatively small costs associated with a more sophisticated
C code generator.

Using Gofer, the run-time performance of our programs is
improved only marginally by the use of partial evaluation.
This is because the Gofer code generator is very simple and
does not carry out any of the optimizations described in
Sections 3.2, 3.3, and 3.4. We have already argued that
these optimizations have the potential to offer significant
improvements in run-time performance for specialized code,
a claim which is supported by measurements described in [1].
One obvious way to gauge this potential would be to use the
specialized programs produced by Gofer as the input to a
more sophisticated compiler. Unfortunately, for technical
reasons quite unrelated to specialization, this is not possible
with the current implementation. Instead, as a very crude
indicator, we have run some simple experiments using the
following program which makes use of two of the functions
described above:

fact :: Num a ⇒ a → a
fact n = if n == 0 then 1

else n ∗ fact (n − 1)

nums :: (Ord a, Num a) ⇒ a → [a]
nums n = if n < 1000 then n : nums (n + 1)

else []

sum :: Num a ⇒ [a] → a
sum xs = loop 0 xs

where loop tot [] = tot
loop tot (x : xs) = loop (tot + x) xs

main :: Dialogue
main = print (sum (map fact (nums (1::Int))))

Using the Chalmers Haskell B. compiler on a Sun Sparc-
Server 690MP, this program runs in 13.6 user seconds and
allocates approximately 43MB on the heap. By contrast, a
hand-specialized version of the same program takes only 2.1

user seconds, less than one sixth of the original time, and al-
locates 9MB on the heap. This program makes particularly
heavy use of overloaded functions, and we would be unlikely
to obtain speedup factors as good as this for more typical ap-
plications programs. Nevertheless, these example does help
both to illuminate some of the performance problems with
current implementations of overloading and to demonstrate
the potential benefits of specialization.

5 Further and related work

Haskell type classes provide a useful extension to a language
with a polymorphic type system but the dictionary-passing
style used in all current Haskell systems can incur substan-
tial overheads. Expanding the definitions of all overloaded
functions in a given program to avoid the problems caused
by the use of dictionaries can, in theory, result in an expo-
nential increase in the size of the program code. However,
our experience with an implementation of type classes based
on this approach suggests very strongly that this does not
occur in realistic programs.

We believe that this work demonstrates a successful applica-
tion of partial evaluation. In a full system, we would expect
to obtain further benefits by using a more general binding-
time analysis to augment the information produced by dis-
tinguishing between dictionary and standard abstractions
and applications.

The idea of producing specialized versions of functions as
an implementation of polymorphism or overloading is by
no means new (see [5, 16], for example) but has not been
widely adopted in practical systems. The particular case of
specializing to avoid the need for dictionaries in Haskell style
overloading was considered in [10] but the techniques pro-
posed there were somewhat ad-hoc, and intertwined with
the type inference algorithm. Motivated by the costs of
dictionary manipulation, some implementations of Haskell
[1] allow the programmer to request specialized versions of
specific overloaded functions using source code annotations.
Unfortunately, dictionaries are still required in many cases
and there is no guarantee that specialized versions of func-
tions will always be used whenever they are available.

The work described in this paper is closely related to previ-
ous work using specialization techniques to improve the per-
formance of method dispatch in object-oriented languages
[2, 13, 21]. In fact, although the setting is a little different,
the dictionary based implementation of overloading can be
considered as a particular form of method dispatch. In this
respect, the most interesting aspect of the work described
here is the surprising effect of specialization on program size.
However, we are unlikely to see the same effect in object-
oriented dynamic languages since it is more difficult to pre-
dict the form of an object at compile-time, and hence to
eliminate redundant sections of code.

There are two particular areas where further work would
be desirable; the treatment of separate compilation and the
extension of our techniques to the specialization of polymor-
phism.

5.1 Interaction with separate compilation

The biggest outstanding problem with the work described
here is its interaction with separate compilation. For ex-
ample, we need to deal with cases where the need for a

specialized version of a function may not be known when
the module containing its definition is compiled. Our pro-
totype implementation avoids these problems by requiring
all of the source modules in a program to be supplied to the
compiler at the same time time. Clearly, this would not be
acceptable for large scale program development.

The same problems occur in any system where partial eval-
uation or program optimization across module boundaries
is required. There has already been some work in this area;
for example, Consel and Jouvelot [4] give an algorithm that
can be used to avoid repeated computation of binding time
information for frequently used libraries of functions. How-
ever, much remains to be done.

The current module system in Haskell has been criticized
as one of the weakest parts of the language and there have
been suggestions that future versions of Haskell might adopt
a more powerful system. With the comments of this paper
in mind, one of the factors that should strongly influence
the choice of any replacement is the degree to which it sup-
ports optimization, analysis and specialization across mod-
ule boundaries.

5.2 Specialization of polymorphism

The results presented in this paper suggest quite strongly
that we can expect to obtain a viable and efficient imple-
mentation of overloading using program specialization. As
a more radical proposal, we might question whether it is
possible to obtain a realistic implementation of ML-style
polymorphism in a similar manner, producing specialized
monomorphic versions of polymorphic functions as neces-
sary for a given program.

Once again, the biggest problems in such a system are likely
to be the risk of code explosion and the interaction with
separate compilation. However, we can also expect some
significant benefits. For example, many implementations of
ML-style polymorphism require the arguments of polymor-
phic functions to be packaged as boxed values—a uniform
representation that is independent of the type of values in-
volved. Converting between boxed and unboxed representa-
tions can be quite expensive and there have been a number
of attempts to find techniques for reducing or eliminating
unnecessary conversions [14, 18, 15, 7]. The alternative sug-
gested here is to reduce polymorphic definitions to a collec-
tion of monomorphic versions, each of which can be imple-
mented using an appropriate representation for the values
that it manipulates. This will probably be most effective
in languages with strict semantics where there is no need to
distinguish between values and delayed computations. Some
preliminary experiments in this direction are reported in
[12], and further investigation is already in progress.

Acknowledgments

This work was supported in part by a grant from ARPA,
contract number N00014-91-J-4043. Thanks also to Martin
Odersky, Kung Chen, John Peterson, Paul Hudak, and the
referees for their comments on an earlier version of this work
and to Julian Seward for encouraging me to take my original
experiments a little further and for providing me with my
biggest benchmark, anna.

References

[1] L. Augustsson. Implementing Haskell overloading. Con-
ference on Functional Programming Languages and
Computer Architecture, Copenhagen, Denmark, June
1993.

[2] C. Chambers and D. Ungar. Customization: optimiz-
ing compiler technology for Self, a dynamically-typed
object-oriented programming language. Programming
Language Design and Implementation, Portland, Ore-
gon, ACM SIGPLAN notices, volume 24, number 7,
July 1989.

[3] K. Chen, P. Hudak, and M. Odersky. Parametric type
classes (Extended abstract). ACM conference on LISP
and Functional Programming, San Francisco, Califor-
nia, June 1992.

[4] C. Consel and P. Jouvelot. Separate polyvariant
binding-time analysis. Oregon Graduate Institute, De-
partment of Computer Science, Technical report CS/E
93-006, March 1993.

[5] D. Gries and N. Gehani. Some ideas on data types
in high-level languages. Communications of the ACM,
Volume 20, Number 6, June 1977.

[6] C.K. Gomard and N.D. Jones. A partial evaluator for
the untyped lambda-calculus. Journal of Functional
Programming, 1, 1, January 1991.

[7] F. Henglein and J. Jørgensen. Formally optimal boxing.
In Proceedings of the 21st ACM Symposium on Prin-
ciples of Programming Languages, Portland, Oregon,
January 1994.

[8] P. Hudak and J. Fasel. A gentle introduction to Haskell.
ACM SIGPLAN notices, 27, 5, May 1992.

[9] P. Hudak, S.L. Peyton Jones and P. Wadler (eds.). Re-
port on the programming language Haskell, version 1.2.
ACM SIGPLAN notices, 27, 5, May 1992.

[10] M.P. Jones. Qualified types: Theory and Practice. D.
Phil. Thesis. Programming Research Group, Oxford
University Computing Laboratory. July 1992.

[11] M.P. Jones. Computing with lattices: An application of
type classes. Journal of Functional Programming, Vol-
ume 2, Part 4, October 1992.

[12] M.P. Jones. Partial evaluation for Dictionary-free over-
loading. Yale University, Department of Computer Sci-
ence, Research Report YALEU/DCS/RR-959. April
1993.

[13] S.C. Khoo and R.S. Sundaresh. Compiling inheri-
tance using Partial Evaluation. Yale University, De-
partment of Computer Science, Research Report
YALEU/DCS/RR-836. December 1990.

[14] X. Leroy. Efficient data representation in polymorphic
languages. INRIA research report 1264, July 1990.

[15] X. Leroy. Unboxed objects and polymorphic typing. In
ACM Principles of Programming Languages, New York,
January 1992.

[16] R. Morrison, A. Dearle, R.C.H. Connor and A.L.
Brown. An ad-hoc approach to the implementation
of polymorphism. ACM Transactions on Programming
Languages and Systems, 13, 3, July 1991.

[17] J. Peterson and M. Jones. Implementing Type Classes.
ACM SIGPLAN ’93 Conference on Programming Lan-
guage Design and Implementation, Albuquerque, New
Mexico, June 1993.

[18] S.L. Peyton Jones and J. Launchbury. Unboxed values
as first class citizens in a non-strict functional language.
In Functional Programming Languages and Computer
Architecture, Cambridge, MA, Springer Verlag LNCS
582, August 1991.

[19] S.L. Peyton Jones and P. Wadler. A static semantics for
Haskell (draft). Manuscript, Department of Computing
Science, University of Glasgow, February 1992.

[20] P. Wadler and S. Blott. How to make ad-hoc polymor-
phism less ad-hoc. In 16th ACM annual symposium on
Principles of Programming Languages, Austin, Texas,
January 1989.

[21] D. Weise and S. Seligman. Accelerating object-oriented
simulation via automatic program specialization. De-
partment of Electrical Engineering and Computer Sci-
ence, Stanford University, Technical Report CSL-TR-
92-519, April 1992.

