
Using Parameterized Signatures to Express Modular Structure

Mark P. Jones
Department of Computer Science, University of Nottingham,

University Park, Nottingham NG7 2RD, England.
mpj@cs.nott.ac.uk

http://www.cs.nott.ac.uk/Department/Staff/mpj/

Abstract

Module systems are a powerful, practical tool for manag-
ing the complexity of large software systems. Previous at-
tempts to formulate a type-theoretic foundation for modular
programming have been based on existential, dependent, or
manifest types. These approaches can be distinguished by
their use of different quantifiers to package the operations
that a module exports together with appropriate implemen-
tation types. In each case, the underlying type theory is
simple and elegant, but significant and sometimes complex
extensions are needed to account for features that are im-
portant in practical systems, such as separate compilation
and propagation of type information between modules.

This paper presents a simple type-theoretic framework
for modular programming using parameterized signatures.
The use of quantifiers is treated as a necessary, but inde-
pendent concern. Using familiar concepts of polymorphism,
the resulting module system is easy to understand and ad-
mits true separate compilation. It is also very powerful,
supporting high-order, polymorphic, and first-class modules
without further extension.

1 Introduction

Large scale software development obtains significant bene-
fits from the ability to break programs into collections of
modules, each of which can be designed, implemented and
understood as individual, often reusable, components. For-
mal studies of the theoretical foundations for modular pro-
gramming provide valuable insights into the design of more
powerful, and more effective module systems for practical
programming languages.

During the past decade, there have been several attempts
to provide type-theoretic foundations for modular program-
ming [23, 16, 21, 7, 22, 27, 1, 6, 13, 15, 3]. The main propos-
als can be distinguished by their use of different constructs
to describe the type of a module. To illustrate these alterna-
tives, suppose that we wish to construct a complex number

To appear in the Twenty Third Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
St. Petersburg Beach, Florida, January 21-24, 1996.
Copyright c⃝ 1996 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by oth-
ers than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Publications
Dept., ACM Inc., Fax +1 (212) 869-0481, or ⟨permissions@acm.org⟩.

package that provides a collection of operations:

type Complex c
= {mkCart ,mkPolar :: Float → Float → c;

re, im :: c → Float ;
mag , phase :: c → Float ; . . . }

There are three established methods for packaging a collec-
tion of operations like this together with a suitable imple-
mentation type:

• Existential types (opaque, or weak sums) [23, 5].
In a module of type ∃c.Complex c, the existential
quantifier conceals the identity of the implementation
type c by making it abstract. This approach allows
packages to be treated as first-class values and is fully
compatible with separate compilation. However, for
the purposes of modular programming, existentials are
often too good at hiding implementation types because
they do not allow adequate propagation of type infor-
mation between packages [16].

• Dependent types (transparent, or strong sums)
[18, 16, 21]. A module of type Σc.Complex c is rep-
resented by a pair ⟨τ,M ⟩ containing the type τ used
to represent complex numbers and an implementation
M of type Complex τ for the complex number opera-
tors. The ability to include type components in mod-
ules makes this approach very powerful — too powerful
in fact to permit compile-time type checking without
careful restrictions and extensions to ensure a suitable
phase distinction [7] and to support features like shar-
ing [14]. Even then, it is still not possible to support
true separate compilation [2] or to use modules as first-
class values [22, 12].

• Manifest types (transluscent sums) [6, 13] are
an attempt to bridge the gap between the weak and
strong sum approaches described above. A module
type ∃c = τ .Complex c is much like an existential, ex-
cept that it exposes the fact that a particular imple-
mentation type τ was chosen. An extra rule in the
type system can be used to make the implementation
type abstract by coercing a manifest type to a stan-
dard existential.

We should also mention the treatment of modules in Stan-
dard ML (SML) which provides one of the most powerful
module systems in widespread use. The overall design is of-
ten explained in terms of dependent types, but it is not easy

to discern their use in the formal definition [20]. Instead,
the definition uses a semantics based on freshly generated
tokens called stamps to account for the concepts of sharing
and generativity. This approach works well as a method for
the specification and implementation of a type checker, but
seems too operational for other purposes. In addition, it has
proved to be “remarkably difficult to modify or extend” [6].

The advantages and disadvantages of each of the three
approaches described above will be described in more detail
in the following section. The important point to note for
now is that, in each case, the type of a module, package or
structure is given by an expression of the form Qt .f (t) for
some parameterized signature f (t) and some quantifier Q.
Many of the complications that we have referred to above
are caused by the fact that these quantifiers can be ‘overly
protective’, limiting the ability to propagate type informa-
tion between modules.

In this paper, we show how parameterized signatures
such as Complex c can be used as the types of modules,
treating quantifiers as a separate concern. The result is
a simple, yet powerful type system for modular program-
ming. Of course, we still need a mechanism like existential
quantification to support the definition and use of abstract
datatypes, but this can be dealt with in different ways and
need not be so closely tied to individual modules. Polymor-
phism, represented by universal quantification, is another
important part of the type system that allows us:

• To express sharing constraints and to describe the prop-
agation of type information.

• To reflect the independence of the implementation of a
parameterized module from the implementation of its
parameters.

• To allow the definition of polymorphic modules, a use-
ful feature that is not permitted in SML [11].

We believe that the use of polymorphism is natural and
easy to understand, particularly for programmers who are
already familiar with the type systems of the core languages
of SML, Haskell, or similar languages.

Another important benefit of parameterized signatures
is that they ensure a clear separation between static and
dynamic semantics; the type system allows a programmer
to associate a given module with a particular collection of
types, but module values do not include type components.
As a result, we do not have to worry about the problems of
establishing a phase distinction, and true separate compila-
tion is possible because the way that a module can be used is
completely specified by its signature. This also means that
modules can be treated as first-class values.

The remaining sections of this paper are as follows. We
begin in Section 2 with a more detailed analysis of previ-
ous attempts to provide a type-theoretic basis for modular
programming. This helps to understand the strengths and
weaknesses of the different approaches and to clarify our own
goals in the design of a module system. Section 3 describes
how parameterized signatures fit into the picture and gives
some examples to illustrate their use. A formal presentation
of the type system is presented in Section 4. Concerns about
the suitability of a type system using parameterized signa-
tures as a basis for modular programming are addressed in
Section 5. Finally, Section 6 concludes with pointers to fu-
ture work.

2 Background and motivation

In our introductory comments, we have already mentioned
several previous attempts to provide a type-theoretic foun-
dation for modular programming. In this section, we take
a more detailed look at each of these proposals, explaining
how the design of each system has been motivated by the
strengths and weaknesses of its ancestors. Our aim is to
provide a survey of related work, and motivation for the use
of parameterized signatures.

All of this work rests on fundamental assumptions about
the nature and purpose of module systems. Certainly, it
would be wrong to regard a particular type system as a
basis for modular programming unless it provides some, if
not all, of the following:

• Amechanism to support separate compilation and some
form of namespace management.

• A mechanism to enable the decomposition of large pro-
grams into small, reusable units in a way that is resis-
tant to small changes in the program.

• A mechanism for defining abstractions.

Throughout this paper, we argue that the use of parame-
terized signatures is consistent with such goals. Support for
separate compilation is ensured by maintaining a clear sep-
aration between types and values, while effective program
decomposition is supported by the use of higher-order and
nested polymorphism. Powerful abstractions can be defined
using parameterized structures. The system does not pro-
vide a built-in notion of abstract datatypes but, instead,
allows this to be dealt with using other methods.

2.1 Existential types

One way to formalize the process of hiding the implemen-
tation of an abstract datatype is to use an existential type
[23, 5]:

type ComplexPkg = ∃c.Complex c.

Informally, the existential typing indicates that there is a
type c with operations of type Complex c defined on it.
At the same time, it prohibits a programmer from making
any assumptions about the implementation type. Formally,
the properties of existentials are described by typing rules,
based on standard logical rules for existential quantifiers.
The following rule is often described as an introduction rule
because it introduces a new occurrence of the ∃ quantifier
in the conclusion:

Γ ⊢ M : [τ ′/t]τ

Γ ⊢ M : (∃t .τ)

Note that the implementation type τ ′ for the abstract type is
discarded and does not appear anywhere in the conclusion.

The requirement that N has a polymorphic type in the
following elimination rule ensures that we do not make any
assumptions about the now-hidden implementation type; N
behaves uniformly for all choices of t :

Γ ⊢ M : ∃t .τ Γ ⊢ N : ∀t .τ → τ ′ t ̸∈ TV (τ ′)

Γ ⊢ open M in N : τ ′

2

Existential types completely hide the identity of implemen-
tation types. For example, the types c and c′ in the body of
the following expression cannot be identified, even though
they come from the same term cpx of type ComplexPkg :

open cpx in Λc.λx : Complex c.
open cpx in Λc′.λy : Complex c′.

. . .

To further emphasize this behaviour, suppose that we want
to define a package of complex number arithmetic, con-
structed from an arbitrary implementation of complex num-
bers. The obvious way to describe this is to use a function:

compArith :: ComplexPkg → ArithPkg
compArith cpx = open cpx in Λc.λp : Complex c.

{add=. . . }

where:

type ArithPkg = ∃a.Arith a

type Arith a = { add :: a → a → a;
neg :: a → a; . . . }.

Given an implementation cpx of type ComplexPkg , we can
use the expression compArith cpx to obtain a package for
arithmetic on complex numbers. Unfortunately, this has no
practical use because the typing rules for existentials make
it impossible to construct any values to which the add and
neg functions of the resulting package can be applied! The
type system does not capture the equivalence of the type of
complex numbers used in cpx and the type of values that
can be manipulated by compArith cpx .

An alternative approach to existential typing, using dot
notation in place of the open construct described above,
has been investigated by Cardelli and Leroy [4]. The dot
notation allows us to identify the implementation types of
two packages if they have the ‘same name’. This avoids the
first problem illustrated above, but not the second. Dot
notation is also limited by the unavoidably conservative no-
tions of ‘same name’ that are needed to ensure decidability
of type checking, and is not very well-behaved under simple
program transformations.

2.2 Dependent types

Motivated by problems with existential types, MacQueen
[16] argued that dependent types provide a better basis for
modular programming. In this framework, structures are
represented by pairs ⟨τ,M ⟩ containing both a type compo-
nent τ and a term M whose type may depend on the choice
of τ . Structures of this form can be viewed as elements of a
dependent sum type, described informally by:

Σt .f (t) = { ⟨τ,M ⟩ | M has type f (τ) }.

The typing rules for dependent sums are standard (see [18],
for example) and can be written in the form:

Γ ⊢ M : [τ ′/t]τ

Γ ⊢ ⟨τ ′,M ⟩ : (Σt .τ)
Γ ⊢ M : (Σt .f (t))

Γ ⊢ snd M : f (fst M)

The introduction rule on the left is very similar to the cor-
responding rule for existentials except that the implemen-
tation type, τ ′, is captured in the structure ⟨τ ′,M ⟩ in the

conclusion. The elimination rule on the right indicates that,
if M is a structure of type Σt .f (t), then the second compo-
nent, snd M , of M has type f (fst M), where fst M is the
first component of M . Informally, dependent sums are more
powerful than existentials because of this ability to name the
type component fst M of a structure M . However, this also
means that the type component of a structure is no longer
abstract.

In a sense, a simple treatment of modules using depen-
dent types is actually too powerful for practical systems
because it interferes with separate compilation. More pre-
cisely, it makes it more difficult to separate compile-time
type-checking from run-time evaluation. To illustrate this,
we recast the previous definitions of complex number and
arithmetic types using dependent sums to obtain:

type ComplexPkg = Σcpx .Complex cpx
type ArithPkg = Σa.Arith a

compArith :: ComplexPkg → ArithPkg
compArith c = ⟨fst c, { add = . . . }⟩

The compArith function is an example of a parameterized
module, or a functor in the terminology of SML. At first
glance, this definition suffers from the same problems as the
previous version using existentials; the type ComplexPkg →
ArithPkg does not reflect the fact that the type components
of the argument and result structures are the same. How-
ever, this information can be obtained by carrying out a
limited degree of evaluation during type checking. For ex-
ample, if c = ⟨τ,M ⟩, then:

fst (compArith c) = fst ⟨τ, { add = . . . }⟩ = τ.

To ensure that static type checking is possible, it is im-
portant to distinguish compile-time evaluation of this kind
from arbitrary run-time execution of a program. Unfortu-
nately, treating a functor as a function of type (Σs.f (s)) →
(Σt .g(t)) does not reflect this separation; in general, a type
of this form may include elements in which the type com-
ponent of the result depends on the value component of the
argument. As an alternative, Harper, Mitchell and Moggi
[7, 24] have shown that a suitable phase distinction can be
established by modelling functors from Σs.f (s) to Σt .g(t) as
values of type Σh.(∀s.f (s) → g(h(s))) where h ranges over
functions from types to types, and describes the compile-
time part of the functor.

As the example above shows, it is sometimes necessary to
inspect the implementation of a structure to find the value
of a type component. Not surprisingly, this means that it
is impossible to provide true separate compilation for SML
[2]. Even the smartest recompilation scheme proposed by
Shao and Appel [26] does not permit true separate compi-
lation because it delays some type checking, and hence the
detection of some type errors, to link-time.

The need for type sharing constraints in functor defini-
tions is motivated by similar problems. Formal parameters
cannot be inspected at compile-time because their actual
values are not known until compile time. Instead, identities
between type components must be written explicitly using
sharing equations. Further extensions to the basic theory of
dependent types are needed to deal with this and other ideas
including generativity, polymorphism, abstraction, higher-
order modules, and modules as first-class values.

3

2.3 Manifest types

Recent proposals for translucent sums by Harper and Lillib-
ridge [6] and manifest types by Leroy [13] provide a compro-
mise between existential typing and dependent sums, allow-
ing the programmer to include additional type information
in the signature for a structure. For these systems, we use
an introduction rule of the form:

Γ ⊢ M : [τ ′/t]τ

Γ ⊢ M : (∃t = τ ′.τ)

Notice that, unlike the previous cases, the implementation
type τ ′ appears in the inferred type although this can be
hidden by coercing it to a standard existential type:

Γ ⊢ M : (∃t = τ ′.τ)

Γ ⊢ M : (∃t .τ)

Manifest types provide good support for abstraction and
separate compilation, although the underlying theories seem
quite complex. One of the main technical problems has been
the difficulty in providing sufficiently general and accurate
types to capture the fully transparent behaviour of higher-
order functors that is predicted by operational frameworks
[27, 17]. In recent work, Leroy has shown how a calculus of
manifest types can be modified to avoid this problem [15].
His solution requires an extension of the type language to
include functor application, further blurring the distinction
between types and terms; that is, between static and dy-
namic semantics. This work, and an alternative solution,
are discussed in more detail in the next section.

3 Parameterized Signatures

In each of the approaches described above, the type of a
module is given by an expression of the form Qt .f (t) where
f (t) is a signature, parameterized by t , and Q is a quantifier.
The goal of this paper is to show that we can use parame-
terized signatures like f (t) as building blocks for a module
type system and treat quantifiers as a separate issue.

For practical reasons, it is common to group related func-
tions together in a single structure mapping variables to
values. It follows that a parameterized signature f (t) will
usually be a record type pairing variable names with appro-
priate type schemes. There are two important aspects of
our approach that distinguish it from other attempts to use
record types to explain modular structure (for example, the
work of Aponte [1]):

• Higher-order polymorphism: In the general case,
we will want to use both types and type constructors
as signature parameters. This is easily dealt with using
a kind system as will be discussed in Section 4. There
is no additional burden on the programmer to supply
explicit kind information, because this can be inferred
automatically from a program text. We already have
considerable experience with such systems from work
with constructor classes [10] which uses the same ideas;
we know that they work well in practice.

• Nested polymorphism: In the general case, we will
want to be able to define structures with polymorphic
components and to use these structures as first-class

values; for example, as function arguments. It is well
known that standard techniques for type inference do
not allow function arguments with polymorphic types.
Fortunately, it is fairly easy to deal with this in our
system, first, by allowing the programmer to supply
explicit type information, and second, because the use
of polymorphism is clearly signaled by the presence of
record types. This subject is discussed in more detail
in Section 4.4.

We can illustrate the use of both of these features with the
following signature which provides a representation for mon-
ads [28]:

type Monad m
= { bind :: ∀a.∀b.m a → (a → m b) → m b;

unit :: ∀a.a → m a }

Note that the kind inference mechanisms referred to above
can be used to infer that the parameter m of the Monad
signature is a unary type constructor, while the universally
quantified variables a and b in the type of bind represent
arbitrary types.

3.1 Polymorphism and sharing

With the examples of previous sections in mind, we might
use a structure of type Complex c as an implementation
of complex numbers, and structures with types of the form
Arith a to describe the implementation of arithmetic opera-
tions on values of type a. The compArith function discussed
in some detail above can now be treated as a polymorphic
function:

compArith :: ∀t .Complex t → Arith t
compArith cpx = . . .

Because the same variable, t , appears as a parameter to
both the Complex and Arith signatures, it is clear that the
type of values that the arithmetic operations in the result
can be applied to is the same as the type of complex num-
bers that are provided as an argument; this achieves much
the same result as a type sharing constraint in SML. In ad-
dition, the fact that t is universally quantified ensures that
we do not make any assumptions about the implementation
of complex numbers. Thus polymorphism is useful as a way
of expressing the independence of the implementation of a
module from the implementation of its imports.

Parameterized signatures can also be used to express in-
formation about the propagation of type information in ways
that are not possible with sharing equations in SML. For
example, in his original work on manifest types [13], Leroy
comments on the difficulty of handling a higher-order func-
tor:

signature S = sig type t ; . . . end

functor apply(functor f (x :S):S
structure a:S):S
= f a

The problem here is finding a way to propagate information
about the relationship between the t components of the ar-
gument and result structures of f . This example has been
further addressed in recent work on full transparency and
higher-order modules [3, 15]. Leroy’s solution is to use a

4

manifest type to specify that the t component of a structure
apply f a is the same as the t component of f a; this requires
an extension to allow the use of functor applications in type
expressions.

There is actually another way to solve this problem, as
can be seen using parameterized signatures:

signature S t = sig . . . end

functor apply(functor f (x :S t):S u
structure a:S t):S u
= f a

Here, the t component from the original code is represented
by a parameter of the signature S . The definition of the
apply functor is polymorphic in the variables t and u, and
this captures the desired relationship between the types of
the arguments and result of apply in a direct and concise
manner. As a further comment, notice that, because struc-
tures can now be used as first-class values, there is no need
to make a distinction between functors and ordinary func-
tion definitions. In fact, we could have defined apply as an
ordinary function:

apply :: ∀a.∀b.(a → b) → a → b
apply f x = f x

If we have already defined structures i and b, of types S Int
and S Bool , respectively, then we can use either version of
apply to determine that apply (λx .x) i has type S Int , and
that apply (λx .b) i has type S Bool .

Another advantage of a module system based on param-
eterized signatures is the ability to provide a simple treat-
ment for the definition and use of modules with polymorphic
types. Recent work by Kahrs [11] shows that simple forms
of polymorphism that can be used in the core language of
SML are not permitted in the module language. Kahrs gives
examples to show why polymorphism at the module level is
useful and shows how it can be supported by extending the
language with a new, general construct for describing the
binding position of type variables. (In fact, this same con-
struct could also be used as another alternative to Leroy’s
recent proposals [15] to handle the apply functor discussed
above.) We can illustrate the basic idea by observing that
the type component t in any SML structure matching the
signature:

signature I
= sig

type t
id :: t → t

end

must be fixed to some specific type, t . As a result, it is
impossible to define a structure s that matches I and such
that s.id is the polymorphic identity function.

Fortunately, this problem does not occur in our frame-
work and a direct translation of the example here (and of
those in Kahrs’ paper) yields the desired form of polymor-
phism without any further work. The corresponding param-
eterized signature is just:

type I t = { id :: t → t }

and we can define a structure:

s :: ∀t .I t
s = struct id = λx .x end

Not only does this structure have a polymorphic type —
we can also use the value s.id as a polymorphic identity
function of type ∀t .t → t . For reasons of space, we have been
forced to restrict our attention to a very simple example; we
refer the reader to Kahrs’ paper [11] for more compelling
applications of this form of polymorphism.

3.2 Relationship with manifest types

The use of parameterized signatures is closely related to the
system of manifest types described in Section 2.3. To un-
derstand this comment, we should think of a manifest type
of the form ∃t = τ .τ ′ as a kind of ‘local definition’, much as
if it had been written let t = τ in τ ′, or as a convenient
notation for the result of a substitution [τ/t]τ ′. Now let us
repeat the rule for ∃-introduction and the rule for coercing a
manifest type to an existential, both of which were discussed
in previous sections:

Γ ⊢ M : (∃t = τ ′.τ)

Γ ⊢ M : (∃t .τ)
Γ ⊢ M : [τ ′/t]τ

Γ ⊢ M : (∃t .τ)

From our current perspective, these rules are the same! With
this observation in mind, it might appear that we have noth-
ing to gain by adding manifest types to a type system that
already includes existentials. However, there are two reasons
why such a claim could be considered as misleading:

• For the purposes of the underlying type theory, some
form of quantification is necessary in the proposed cal-
culi for manifest types and transluscent sums to ac-
count for the inclusion of type components in module
values. This is at odds with our approach, which does
not allow modules to contain type components.

• One may argue that the syntax for manifest types
is better suited to modular programming because it
avoids the awkwardness of large numbers of parame-
ters, and may require fewer changes to the source of a
program if a particular module is changed, for exam-
ple, by adding type components. However, as we de-
scribe in Section 5.1, exactly the same benefits can be
obtained in a simple and elegant fashion with param-
eterized signatures by packaging groups of parameters
into record-like structures.

Another advantage, in theory, of the manifest type no-
tation is that a type like ∃t = τ .τ ′ might be much more
concise and readable than the expanded form [τ/t]τ ′ if
τ is a complex type expression or if t appears several
times in τ ′. Again, in practice, this is not a serious
issue because the languages that we are interested in
(for example, SML and Haskell) already include facil-
ities for defining type abbreviations or synonyms, and
these can be used to achieve the desired effect.

3.3 Simple Examples

So far, we have discussed the motivation and theoretical as-
pects of parameterized signatures without many examples to
show how corresponding structures might be defined. Not
surprisingly, there are several different notations that we
might chose from. For the purposes of this paper, and to
facilitate easy comparison, we will adopt a SML-like syn-
tax. However, to emphasize the distinction between static

5

and dynamic semantics, we separate out type declarations
and value definitions, in the style of Haskell. Also, because
structures are first-class values and there is no distinction
between the module and core languages, we can omit the
(now redundant) structure and functor keywords.

It is useful to start with a comparison between local def-
initions (let bindings) and structures:

let decls
in expr

struct
decls

end

The collection of declarations, decls, introduced in each of
these expressions will be type-checked in exactly the same
way. The only difference is that, in a let construct the
declared values are used immediately in the body expr , while
in a structure they are packaged up for later use.

First, here is an implementation of complex numbers us-
ing the standard Cartesian representation:

rectCpx :: Complex (Float ,Float)
rectCpx = struct

mkCart x y = (x , y)
mkPolar r θ = (r cos θ, r sin θ)
re (x , y) = x
. . .

end

As it stands, the implementation type of rectCpx is captured
explicitly in its type. Later, in Section 5.3, we will describe
how to make this type abstract, either completely by us-
ing an existential, or partially by giving it a name without
revealing how it is implemented.

The next example is a fragment of the definition of the
compArith function, which can be used to construct a com-
plex arithmetic package from an arbitrary complex number
package:

compArith :: Complex t → Arith t
compArith c

= struct
plus z1 z2 = c.mkCart (c.re z1 + c.re z2)

(c.im z1 + c.im z2)
. . .

end

Finally, the following definition specifies the structure of
the list monad:

listMonad :: Monad List
listMonad

= struct
unit x = [x]
(x : xs) ‘bind ‘ f = f x++(xs‘bind ‘f)
[] ‘bind ‘ f = []

end

All of the examples given here should seem straightforward—
and, of course, that is just what we want!

4 Formal development

This section provides a brief formal description of the type
system that is put forward in this paper as a basis for mod-
ular programming.

4.1 Kinds and constructors

To support higher-order polymorphism, we need to allow
the use of variables in type expressions to represent, not
just arbitrary types, but also type constructors. Following
standard techniques, we use a system of kinds, κ, to distin-
guish between different forms of type constructor:

κ ::= ∗ the kind of all (mono)types
| κ1 → κ2 function kinds

Intuitively, the kind κ1 → κ2 represents constructors that
take a constructor of kind κ1 and return a constructor of
kind κ2.

For each kind κ, we have a collection of constructors Cκ

(including constructor variables ακ) of kind κ given by:

C κ ::= χκ constants
| ακ variables

| C κ′→κ Cκ′
applications

| {xi ::σi} signatures, κ = ∗
Other than requiring that the function space constructor
→ be included as an element of C ∗→∗→∗, we do not make
any assumption about the constructor constants χκ in the
grammar above.

The symbol σ ranges over the set of type schemes de-
scribed by the grammar:

τ ::= C ∗ monotypes
σ ::= ∀ακ.σ polymorphic types

| τ

Note that this corresponds very closely to the way that most
type expressions are already written in Haskell. For exam-
ple, List a is an application of the constructor constant List
to the constructor variable a. In addition, each constructor
constant has a corresponding kind. For example, writing
(→) for the function space constructor and (,) for pairing
we have:

Int , Float , () :: ∗
List :: ∗ → ∗
(→), (,) :: ∗ → ∗ → ∗

The syntax for constructors also includes expressions of the
form {xi ::σi} of kind ∗, which is intended as a convenient ab-
breviation for record types of the form {x1::σ1; . . . ; xn ::σn}.
These will be used primarily to assign types to structure val-
ues. Note the use of type schemes rather than simple types;
this allows the system to support structures with polymor-
phic components. We should also mention that it would be
possible, in theory, to encode module types as tuples without
introducing the extra syntax for records. However, labelled
tuples are perhaps more convenient in practice, and we have
chosen to reflect this directly in our formulation of the type
system.

Type checker implementations usually include tests to
ensure that type expressions are well-formed, for example,
that a particular constructor is supplied with an appropri-
ate number of arguments. In the current setting, this can
be reformulated as the task of checking that a constructor
expression has kind ∗. The apparent mismatch between the
explicitly kinded constructor expressions specified above and
the implicit kinding used in examples can be resolved by a
process of kind inference; that is, by using standard tech-
niques to infer kinds for user defined constructors without
the need for programmer-supplied kind annotations. The
same approach has been used with considerable success in
both the theory and practice of constructor classes [10].

6

4.2 Terms

For the purposes of this paper, it is sufficient to restrict our
attention to a simple λ-calculus, extended with two con-
structs, one for building structures, and another for selecting
structure components:

M ::= x variables
| M M application
| λx .M abstraction
| let x = M in N local definition
| M .x selection
| struct xi = Mi end structures

The index notation in the last line of this grammar is used
to reflect the fact that a structure may have multiple com-
ponents.

4.3 Typing rules

With the definitions of the previous sections in place, we
can use standard notation to specify the typing rules of our
system in Figure 1. Note the use of the symbols τ and σ
to restrict the application of certain rules to types or type
schemes, respectively. The condition that ακ ̸∈ CV (A) in

(var)
(x :σ) ∈ A

A ⊢ x : σ

(→E)
A ⊢ E : τ ′ → τ A ⊢ F : τ ′

A ⊢ EF : τ

(→I)
Ax , x :τ

′ ⊢ E : τ

A ⊢ λx .E : τ ′ → τ

(let)
A ⊢ E : σ Ax , x :σ ⊢ F : τ

A ⊢ (let x = E in F) : τ

({}E)
A ⊢ E : { xi :: σi }

A ⊢ E .xj : σj

({}I)
A ⊢ Ej : σj for all j

A ⊢ struct xi = Ei end : { xi :: σi }

(∀E)
A ⊢ E : ∀ακ.σ C ∈ C κ

A ⊢ E : [C/ακ]σ

(∀I)
A ⊢ E : σ ακ ̸∈ CV (A)

A ⊢ E : ∀ακ.σ

Figure 1: Typing rules

rule (∀I) is necessary to avoid universal quantification over
a variable that is constrained by the type assignment A; the
expression CV (A) denotes the set of all constructor vari-
ables appearing free in A.

4.4 Type inference

Although it really has little to do with the design of a mod-
ule system itself, some readers may be concerned about the
effects of adding higher-order and nested polymorphism to
the type system of a language that is based on the use of

type inference. In fact, the first of these, does not cause
any difficulty at all because we have used a weak form of
higher-order polymorphism that avoids the undecidability of
higher-order unification. The second, nested polymorphism,
requires some form of explicit type information (although
nothing more than would be required in an appropriate ex-
tension of SML).

4.4.1 Use of explicit type information

The need for explicit type information in programs using
records will already be familiar to SML programmers; the
definition of SML requires that the shape of any record—a
complete list of its fields—can be determined at compile-
time. What we have described here is a natural generaliza-
tion of this; we require not only the names of all of the fields,
but also the types for every field that is referenced.

Type annotations are not necessary in many simple ex-
amples. For example, the following program type checks
without any additional type information:

f x = struct
h z = [z]
u = x

end
v y = m.h (m.h m.u)

where m = f y

In this case, we can calculate the following types for the
components in the structure value in the definition of f :

h :: ∀t .t → [t]
u :: a

where a is the type of the argument x . Thus:

f :: ∀a.a → { h :: ∀t .t → [t]; u :: a }

and it follows that v has type ∀a.a → [[a]].
In practice, explicit type annotations are only required

for the definition of recursive or mutually recursive struc-
tures (which are not permitted by the SML module sys-
tem) or for functions that manipulate structure values (cor-
responding to SML functor definitions where explicit type
information is also required in SML, or to higher-order or
first-class modules which are not supported by SML). For
example, the type signature accompanying the following def-
inition cannot be omitted:

makeUnit :: a → Monad m → m a
makeUnit x u = u.unit x

On the other hand, we are free to store values of some type
Monad m in data structures such as lists and to use many
higher order functions, for example λz .map (makeUnit z),
without further type annotations.

Some may question the need for explicit type information
in a language that is based on a Hindley-Milner type system,
but we do not believe that this will have any significant
impact on programmers:

• Some form of explicit type information is already nec-
essary in many languages based on Hindley-Milner typ-
ing. For example, this includes the overloading mecha-
nisms of Haskell; the treatment of records, arithmetic,
and structures in SML; and the notations used to de-
fine new datatypes in each language.

7

• Explicit type annotations are only required in situa-
tions where they would already be required by pro-
grams using the SML module system, or in programs
that cannot be written with SML modules.

• Despite the fact that it is not necessary, the use of
type annotations in implicitly typed languages like ML
and Haskell is widely recognized as ‘good programming
style’, and many programmers already routinely in-
clude type declarations in their source code. The type
assigned to a value serves as a useful form of program
documentation. In addition, this gives a simple way to
check that the programmer-supplied type signatures,
reflecting intentions about the way an object will be
used, are consistent with the types obtained by type
inference.

It is important to find a formal mechanism that can be
used to describe when additional type information is re-
quired for a given program, and to indicate what form it
should take. This can already be achieved by selecting a
particular implementation of the type inference algorithm.
However, this risks over-specification and we would prefer
to find a more abstract, and less operational alternative.

5 Concerns about modularity

In addition to formal concerns, there are a number of prag-
matic issues that must be addressed in the design of a mod-
ule system. We claim that the system of parameterized
structures presented here is suitable as a module system,
but our current prototype is not sufficiently complete to
have allowed us to obtain practical experience with it on
a large scale programming project. The aim of this section
is to do ‘the next best thing’ by discussing a number of is-
sues that have been suggested as important properties for
module systems, and showing how they are dealt with in the
framework of this paper.

5.1 Signature parameters and sharing

It is easy to find applications of SML that use modules with
fairly large numbers of type components; being forced to
specify a value for every parameter of the corresponding
signature in our framework would be awkward and incon-
venient. The SML notation, and in particular sharing con-
straints, are also more robust in the sense that, if extra type
components are added to a signature, then we do not neces-
sarily have to modify the program as we might, for example,
to add an extra parameter to each use of a parameterized
signature.

In fact, if we package parameters together in records,
then parameterized signatures can offer the same advan-
tages. The only change that we need to make to the formal
development in Section 4 is to add new syntax for records
of constructors:

κ ::= . . .
| {ti ::κi} record kinds

C κ ::= . . .

| C {ti ::κi}.tj selection, if κ = κj
| {ti = Cκi } construction, κ = {ti ::κi}

It is important to understand the difference between records
of constructors {ti = C κi } and signatures {xi ::σi}, both of

which can appear in types; this is reflected by the fact that
the two expressions will be assigned different kinds.

With this approach, sharing constraints can be under-
stood as a form of qualified type [9]:

prog :: (r .x = s.y) ⇒ SIG r → SIG ′ s

The constraint (r .x = s.y) appearing here indicates that the
x and y fields of r and s, respectively, must be equal. Note
that we do not need to mention any other fields of the r and
s records, or even to know that there are any other fields.

Another interesting observation is that the type of prog
does not make any references to term language constructs.
This would not be true in SML where the names of functor
parameters serve an additional role as labels for the signa-
tures appearing in a type. This also helps to explain the
problems of typing the apply functor in Section 3.1 because
there is no obvious label for the signature of the result of
applying f to x in the definition:

functor apply(functor f (x :S):S
structure a:S):S

= f a

With our approach, each signature has an obvious label; the
record of constructors that are used as its parameters. As
we have already seen, this makes it easy to assign a useful
and general type to apply without any extensions to the
language.

5.2 Type components

In the system that we have been describing in this paper,
modules do not include type components. Instead, we use
signature parameters to capture relationships between struc-
ture components and implementation types. This is a signif-
icant departure from some of the previous work, for exam-
ple, in systems based on dependent types where type com-
ponents play a central role. However, we argue that much
can be accomplished without type components. This, we be-
lieve, is also more in the spirit of the Hindley-Milner type
system. For example, in Milner’s original work [19], types
are used as a purely semantic notion, representing subsets
of a semantic domain, not as any concrete form of value.

A key observation is that type definitions within a mod-
ule can be lifted to the top-level. For example, consider the
following SML fragment:

structure s
= struct

type T = Int
data List a = Nil | Cons a (List a)
. . .

end

Despite appearances, the type synonym T and the type con-
structor List are not local to the definition of s. At any point
in the program where s is in scope, these type constructors
can be accessed by the names s.T and s.List , respectively.
Renaming any references to these types and their construc-
tors in the body of s, we can lift these definitions to the
top-level, to obtain the following definitions:

type s.T = Int
data s.List a = s.Nil | s.Cons a (s.List a)
structure s = . . .

8

In effect, all that the datatype definitions in the original
SML program accomplish is to define top-level datatypes in
which the type and value constructor names are decorated
with the name of the structure in which they are defined.

In some situations, renaming is not sufficient to allow
type definitions to be lifted to the top-level. For example,
the List datatype in the following functor definition involves
a ‘free variable’, the type x .T , a component of the argument
structure x :

functor f (x :SIG) : SIG ′

= struct
data List = Nil | Cons x .T List
. . .

end

The solution in this case is to add an extra parameter to
the datatype definition before moving it to the top-level, as
shown in the following code fragment. This is just a form of
λ-lifting [8, 25]:

data f .List t = f .Nil
| f .Cons t f .List

f :: SIG t → SIG ′ (f .List t)
f x = . . .

Notice how the parameterized signatures in the type for f
capture the relationship between the types involved in the
argument x and those involved in the result f x . Because the
form of higher-order polymorphism described in Section 4.1
allows type constructors to be used as both signature and
datatype parameters, the same technique can be used to deal
with type constructor components of functor arguments.

In SML, the two functor definitions above are not equiv-
alent; SML adopts a notion of generativity, producing a new
type constructor each time the functor is applied to an ar-
gument. Thus two definitions:

structure s1 = f (x)
structure s2 = f (x)

will produce structures with incomparable type components.
In truth, when we use an SML functor to ‘generate’ a new
datatype, we are in fact constructing a new instance of a
fixed datatype, which is then hidden, in essence, by a form
of existential quantification. There is no way to express the
List type produced by applying f to an appropriate argu-
ment structure in the notation of SML, so we are forced to
package up instantiation of the actual implementation type,
f .List , and hiding of the resulting type as a single operation.

Lifting type definitions to the top-level allows us to ex-
press the type components of the result of functor applica-
tions; for the example above, if x has type SIG t , then both
s1 and s2 have type SIG ′ (f .List t). We are then free to
treat the question of whether we wish to conceal these im-
plementation types as a separate concern. Various methods
for achieving this are described in the next section.

5.3 Abstraction

In the context of module systems, the term abstraction is
used to to describe the ability to hide information about the
implementation of a module and to protect it against misuse.
This is an important feature in practical systems but the use
of parameterized signatures described in this paper does not
itself provide any way of constructing an abstract datatype.

In fact, we regard this as a distinct advantage because
it allows us to treat the issue of abstraction as a separate
concern. For example, one possibility is to include support
for existential types, perhaps using the approach described
in Section 2.1, or the dot-notation [4], or the combination of
type inference and existential typing that has been explored
by Läufer [12].

However, we have also seen that existential types are not
always appropriate. Fortunately, it is also possible to extend
the language in a modular fashion with constructs that al-
low the programmer to provide a name for a datatype but
to restrict the scope of its constructors and selectors to a
particular collection of bindings. This is essentially what
the abstype construct used in several different languages
achieves, and is closely related to the concept of Skolemiza-
tion in predicate logic. Note that this does not require any
changes to the underlying type theory and is perhaps best
dealt with at the level of compilation units rather than the
core language.

We believe that both of these approaches are useful in
their own right. However, neither coincides exactly with the
form of abstract datatypes provided by generativity in SML
which falls somewhere between the two extremes of named
and existentially quantified abstract datatypes. It seems
unlikely that there is a modular extension of our system
that provides exactly the same form of abstraction as SML.

6 Conclusion

There are a number of proposals for type-theoretic founda-
tions of modular programming. Some of these systems are
very powerful, but require significant and complex extension
and modification to account for features that are useful in
practice.

Our work shows that the ever-increasing complexity that
we have seen in recent work to formalize module systems can
be avoided and that other, simple, expressive, and viable
options are available.

In this paper, we have presented a simple type system
that provides:

• Support for higher-order polymorphism.

• Support for structures with polymorphic components.

• A clear separation between static and dynamic seman-
tics.

This leads to a module system in which:

• Structures are first-class values.

• Higher-order modules (i.e., first-class functors) are ad-
mitted.

• Polymorphic modules and structures may be defined.

• True separate compilation is possible.

• Parametric polymorphism plays a major role, making
the system easier to learn for programmers who are al-
ready familiar with the core languages of SML, Haskell
or similar languages.

By contrast, none of these is possible with the SML module
system.

One of the main topics for future research is to investi-
gate the role of implicit subsumption; that is, the ability to

9

discard elements from a structure as a result of signature
matching in SML. We believe that this can be accomplished
using a simple form of subtyping, guided by type annota-
tions, or otherwise by extending the system with a mech-
anism for controlling the set of bindings that are exported
from a structure.

Acknowledgements

Some of the ideas presented in this paper were developed
while the author was a member of the Department of Com-
puter Science, Yale University, supported in part by a grant
from ARPA, contract number N00014-91-J-4043.

Thanks to Paul Hudak, Sheng Liang, Bob Harper, Colin
Taylor and, in particular, Dan Rabin, Xavier Leroy, and
Graham Hutton for their valuable comments and sugges-
tions during the development of the ideas presented in this
paper. Thanks also to Paul Hudak, Linda Joyce and Chih-
Ping Chen for their help in preparing the original submis-
sion.

References

[1] Maŕıa Virginia Aponte. Extending record typing to
type parametric modules with sharing. In Proceedings
20th Symposium on Principles of Programming Lan-
guages. ACM, January 1993.

[2] Andrew W. Appel and David B. MacQueen. Separate
compilation for Standard ML. In Conference on Pro-
gramming Language Design and Implementation, Or-
lando, FL, June 1994.

[3] Sandip K. Biswas. Higher-order functors with transpar-
ent signatures. In Conference record of POPL ’95: 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, January 1995.

[4] Luca Cardelli and Xavier Leroy. Abstract types and the
dot notation. Technical Report report 56, DEC SRC,
1990.

[5] Luca Cardelli and Peter Wegner. On understanding
types, data abstraction, and polymorphism. Computing
Surveys, 17(4), December 1985.

[6] Robert Harper and Mark Lillibridge. A type-theoretic
approach to higher-order modules with sharing. In Con-
ference record of POPL ’94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 123–137, Portland, OR, January
1994.

[7] Robert Harper, John C. Mitchell, and Eugenio Moggi.
Higher-order modules and the phase distinction. In
Conference record of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages,
pages 341–354, San Francisco, CA, January 1990.

[8] T. Johnsson. Lambda lifting: transforming programs
to recursive equations. In Jouannaud, editor, Proceed-
ings of the IFIP conference on Functional Programming
Languages and Computer Architecture, pages 190–205,
New York, 1985. Springer-Verlag. Lecture Notes in
Computer Science, 201.

[9] Mark P. Jones. Qualified Types: Theory and Prac-
tice. PhD thesis, Programming Research Group, Ox-
ford University Computing Laboratory, July 1992. Pub-
lished by Cambridge University Press, November 1994.

[10] Mark P. Jones. A system of constructor classes: over-
loading and implicit higher-order polymorphism. Jour-
nal of Functional Programming, 5(1), January 1995.

[11] Stefan Kahrs. First-class polymorphism for ML. In
D. Sannella, editor, Programming languages and sys-
tems – ESOP ’94, New York, April 1994. Springer-
Verlag. Lecture Notes in Computer Science, 788.

[12] Konstantin Läufer and Martin Odersky. An exten-
sion of ML with first-class abstract types. In ACM
SIGPLAN Workshop on ML and its Applications, San
Francisco, June 1992.

[13] Xavier Leroy. Manifest types, modules and separate
compilation. In Conference record of POPL ’94: 21st
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 109–122, Portland, OR,
January 1994.

[14] Xavier Leroy. A syntactic theory of type generativity
and sharing. In Record of the 1994 ACM SIGPLAN
Workshop on ML and its Applications, Orlando, FL,
June 1994.

[15] Xavier Leroy. Applicative functors and fully trans-
parent higher-order modules. In Conference record of
POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, Jan-
uary 1995.

[16] David MacQueen. Using dependent types to express
modular structure. In 13th Annual ACM Symposium
on Principles of Programming languages, pages 277–
286, St. Petersburg Beach, FL, January 1986.

[17] David B. MacQueen and Mads Tofte. A semantics for
higher-order functors. In D. Sannella, editor, Program-
ming languages and systems – ESOP ’94, New York,
April 1994. Springer-Verlag. Lecture Notes in Com-
puter Science, 788.

[18] Per Martin-Löf. Constructive mathematics and com-
puter programming. In Logic, Methodology and Philos-
ophy of Science, VI. North Holland, Amsterdam, 1982.

[19] R. Milner. A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences, 17(3),
1978.

[20] Robin Milner, Mads Tofte, and Robert Harper. The
definition of Standard ML. The MIT Press, 1990.

[21] John Mitchell and Robert Harper. The essence of ML.
In Fiftheenth ACM Symposium on Principles of Pro-
gramming Languages, San Diego, CA, January 1988.

[22] John Mitchell, Sigurd Meldal, and Neel Madhav. An
extension of Standard ML modules with subtyping and
inheritance. In Conference record of the Eighteenth An-
nual ACM Symposium on Principles of Programming
Languages, Orlando, FL, January 1991.

10

[23] John C. Mitchell and Gordon D. Plotkin. Abstract
types have existential type. ACM Transactions on Pro-
gramming Languages and Systems, 10(3):470–502, July
1988.

[24] Eugenio Moggi. A category-theoretic account of pro-
gram modules. In Summer conference on category the-
ory and computer science, pages 101–117, New York,
1989. Springer-Verlag. Lecture Notes in Computer Sci-
ence, 389.

[25] S.L. Peyton Jones. The implementation of functional
programming languages. Prentice Hall, 1987.

[26] Z. Shao and A. Appel. Smartest recompilation. In Pro-
ceedings 20th Symposium on Principles of Programming
Languages. ACM, January 1993.

[27] Mads Tofte. Principal signatures for higher-order pro-
gram modules. In Conference record of the Nineteenth
annual ACM SIGPLAN-SIGACT symposium on Prin-
ciples of Programming Languages, January 1992.

[28] P. Wadler. The essence of functional programming (in-
vited talk). In Conference record of the Nineteenth an-
nual ACM SIGPLAN-SIGACT symposium on Princi-
ples of Programming Languages, pages 1–14, Jan 1992.

11

