
MIL, a Monadic Intermediate Language for Implementing
Functional Languages

Mark P. Jones
Portland State University
Portland, Oregon, USA

mpj@pdx.edu

Justin Bailey
Portland, Oregon, USA
jgbailey@gmail.com

Theodore R. Cooper
Portland State University
Portland, Oregon, USA
ted.r.cooper@gmail.com

ABSTRACT
This paper describes MIL, a “monadic intermediate language” that
is designed for use in optimizing compilers for strict, strongly typed
functional languages. By using a notation that exposes the construc-
tion and use of closures and algebraic datatype values, for example,
the MIL optimizer is able to detect and eliminate many unnecessary
uses of these structures prior to code generation. One feature that
distinguishes MIL from other intermediate languages in this area is
the use of a typed, parameterized notion for basic blocks. This both
enables new optimization techniques, such as the ability to create
specialized versions of basic blocks, and leads to a new approach
for implementing changes in data representation.

ACM Reference Format:
Mark P. Jones, Justin Bailey, and Theodore R. Cooper. 2018. MIL, a Monadic
Intermediate Language for Implementing Functional Languages. In Proceed-
ings of the 30th Symposium on Implementation and Application of Functional
Languages (IFL 2018), September 5–7, 2018, Lowell, MA, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3310232.3310238

1 INTRODUCTION
Modern compilers rely on intermediate languages to simplify the
task of translating programs in a rich, high-level source language
to equivalent, efficient implementations in a low-level target. For
example, a compiler may use two distinct compilation steps, with
a front end that translates source programs to an intermediate
language (IL) and a back end that translates from IL to the target:

source
language

front
end

intermediate
language

back
end

target
language

This splits the compilation process in to smaller, conceptually sim-
pler components, each of which is easier to implement andmaintain.
Moreover, with a well-defined IL, it is possible for the front and
back end components to be developed independently and to be
reused in other compilers with the same source or target.

The biggest challenge in realizing these benefits is in identifying
a suitable intermediate language. A good IL, for example, should
retain some high-level elements, allowing a relatively simple trans-
lation from source to IL, and avoiding a premature commitment to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IFL 2018, September 5–7, 2018, Lowell, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7143-8/18/09. . . $15.00
https://doi.org/10.1145/3310232.3310238

low-level details such as data representation and register allocation.
At the same time, it should also have some low-level characteristics,
exposing implementation details that are hidden in the original
source language as opportunities for optimization, but ultimately
also enabling a relatively simple translation to the target.

In this paper, we describe MIL, a “monadic intermediate lan-
guage”, inspired by the monadic metalanguage of Moggi [12] and
the monad comprehensions of Wadler [16], that has been specifi-
cally designed for use in implementations of functional program-
ming languages. MIL bridges the tension between the high-level
and low-level perspectives, for example, by including constructs
for constructing, defining, and entering closures. These objects,
and associated operations, are important in the implementation of
higher-order functions, but the details of their use are typically not
explicit in higher-level languages. At the same time, MIL does not
fix a specific machine-level representation for closures, and does
not specify register-level protocols for entering closures or for ac-
cessing their fields, delegating these decisions instead to individual
back ends. This combination of design choices enables an optimizer
for MIL, for example, to detect and eliminate many unnecessary
uses of closures before the resulting code is passed to the back end.

MIL was originally developed as a platform for experiment-
ing with the implementation and optimization of functional lan-
guages [2]. Since then, it has evolved in significant ways, both in
the language itself—which now supports a type system with multi-
value returns, for example—and its implementation—including an
aggressivewhole-program optimizer and novel representation trans-
formation and specialization components. The implementation can
be used as a standalone tool, but it can also be integrated in to larger
systems. We currently use MIL, for example, as one of several in-
termediate languages in a compiler for the Habit programming
language [15] with the following overall structure:

Habit LC MIL LLVM asm

In the initial stage of this compiler, Habit programs are desugared
to LC, a simple functional language that includes lambda and case
constructs (LC is short for “LambdaCase” and is named for those
two features) but lacks the richer syntax and semantics of Habit.
LC programs are then translated in to MIL, processed by the tools
described in this paper, and used to generate code for LLVM [9, 10],
which is a popular, lower-level IL. There is, for example, no builtin
notion of closures in LLVM, so it would be difficult to implement
analogs of MIL closure optimizations at this stage of the compiler.
However, the LLVM tools do implement many important, lower-
level optimizations and can ultimately be used to generate assembly
code (“asm” in the diagram) for an executable program.

https://doi.org/10.1145/3310232.3310238
https://doi.org/10.1145/3310232.3310238

IFL 2018, September 5–7, 2018, Lowell, MA, USA Mark P. Jones, Justin Bailey, and Theodore R. Cooper

1.1 Outline and Contributions
We begin the remaining sections of this paper with a detailed
overview of the syntax and features of MIL (Section 2). To evaluate
its suitability as an intermediate language, we have built a practical
implementation that uses MIL: as the target language for a simple
front end (Section 3); as a framework for optimization (Section 5),
and as a source language for an LLVM back end (Section 6). Along
the way, we describe new global program transformations tech-
niques for implementing changes in data representation (Section 4).

MIL has much in common with numerous other ILs for func-
tional languages, including approaches based on CPS [1, 8], monads
[12, 16], and other functional representations [5, 11]; these refer-
ences necessarily only sample a very small portion of the literature.
Our work makes some new contributions by exploring, for example,
a parameterized form of basic block, and the new optimizations
for “derived blocks” that this enables (Section 5.5), as well as new
techniques for representation transformations (Section 4). An addi-
tional contribution of our work is the combination of many small
design and engineering decisions that, together, result in a coherent
and effective IL design, scaling to a practical system that can be
used either as a standalone tool or as part of a larger compiler.

2 AN OVERVIEW OF MIL
We begin with an informal introduction to MIL, highlighting fun-
damental concepts, introducing terminology, and illustrating the
concrete syntax for programs. We follow Haskell conventions [14]
for basic syntax—from commenting and use of layout, to lexical
details, such as the syntax of identifiers. That said, while we expect
some familiarity with languages like Haskell, we will not assume
deep knowledge of any specific syntax or features.

2.1 Types in MIL
MIL is a strongly typed language and all values that are manipulated
in MIL must have a valid type. MIL provides several builtin types,
including Word (machine words) and Flag (single-bit booleans).
MIL also supports first class functions with types of the form
[d1,. . . ,dn]↠[r1,. . . ,rm] that map a tuple of input values with
types di to a tuple of results with types rj. (The prefixes d and r
were chosen as mnemonics for domain and range, respectively.)
Curried functions can also be described by using multiple↠ types.
For example, the type [Word]↠[[Word]↠[Flag]] could be used
for a curried function that compares Word values.

MIL programs can also include definitions for parameterized al-
gebraic datatypes, as illustrated by the following familiar examples:

data List a = Nil | Cons a (List a)

data Pair a b = MkPair a b

Each definition introduces a new type name (List and Pair in
these examples) and one or more data constructors (Nil, Cons, and
MkPair). Each data constructor has an arity, which is the number
of fields it stores. For example, Nil has arity 0 and Cons has arity 2.

MIL also supports bitdata types [4] that specify a bit-level
representation for all values of the type. In other respects, however,
values of these types can be used in the same way as values of
algebraic datatypes. With the following definitions, for example:
Every value of type Bool is either False or True, with either option

being represented by a single bit; and a PCI address can be described
by a 16 bit value with subfields of width 8, 5, and 3:

bitdata Bool = False [B0] | True [B1]

bitdata PCI = PCI [bus::Bit 8 | dev::Bit 5 | fun::Bit 3]

Bitdata types allow programmers to match the bit-level represen-
tation of data structures that are used in low-level systems ap-
plications, which is a key domain for Habit. Ultimately, however,
bitdata values are represented by sequences of Word values (Sec-
tion 4.2). For completeness, we mention that MIL also supports
several other builtin types for systems programming, including the
Bit n types seen here that represent bit vectors of width n.

2.2 MIL programs
The core of a MIL program is a sequence of block, closure, and
top-level definitions, as suggested by the following grammar:

prog ::= def1 . . . defn -- program

def ::= b[v1,. . . ,vn] = c -- block

| k{v1,. . . ,vn} [u1,. . . ,um] = c -- closure

| [v1,. . . ,vn] ← t -- top-level

| . . . -- other

The last line here uses “. . . ” as a placeholder for other forms of
definition, such as those introducing new types (see the previous
section). The full details, however, are not central to this paper.

2.3 Blocks
Blocks in MIL are like basic blocks in traditional optimizing compil-
ers except that each block also has a list of zero or more parameters.
Intuitively, these can be thought of as naming the “registers” that
must be loaded with appropriate values before the block is executed.
The syntax of block definitions is reminiscent of Haskell’s monadic
notation (without the do keyword), as in the following schematic
example for a block b with arguments u1,. . . ,un:

b[u1,. . . ,un] = v1 ← t1 -- run t1, capture result in v1
. . .

vn ← tn -- run tn, capture result in vn
e

The body of this block is executed by running the statements
vi ← ti in sequence, capturing the result of each computation
ti in a variable vi so that it can be referenced in later steps. The
expression e on the last line may be either a tail expression (such
as a return or an unconditional jump to another block) or a case
or if construct that performs a conditional jump.

MIL relies on type checking to ensure basic consistency proper-
ties (for example, to detect calls with the wrong number or types of
arguments). The code fragment above assumes that each ti returns
exactly one result but it is possible to use computations that return
zero or more results at the same time, as determined by the type of
ti. In these cases, the binding for ti must specify a corresponding
list of variables, enclosed in brackets, as in [w1,. . . ,wm] ← ti.

2.4 Tail Expressions
MIL allows several different forms of “tail” expressions (each of
which may be used in place of the expressions t1,. . . ,tn in the
preceding discussion), as summarized in the following grammar.

MIL, a Monadic Intermediate Language for Implementing Functional Languages IFL 2018, September 5–7, 2018, Lowell, MA, USA

t ::= return [a1,. . . ,an] -- monadic return

| b[a1,. . . ,an] -- basic block call

| p((a1,. . . ,an)) -- primitive call

| C(a1,. . . ,an) -- allocate data value

| C i a -- select component

| k{a1,. . . ,an} -- allocate closure

| f @ [a1,. . . ,an] -- enter closure

Every tail expression represents a computation that (potentially)
returns zero or more results:
• return [a1,. . . ,an] returns the values a1,. . . ,an immedi-
ately with no further action. The most frequently occurring
form produces a single result, a, and may be written without
brackets as return a.
• b[a1,. . . ,an] is a call to a block bwith the given arguments.
When a block call occurs at the end of a code sequence, it
can potentially be implemented as a tail call (i.e., a jump).
This is why we refer to expressions in the grammar for t as
tail expressions or sometimes generalized tail calls.
• p((a1,. . . ,an)) is a call to a primitive p with the given
arguments. Primitives typically correspond to basic machine
instructions (such as add, and, or shr), but can also be used
to link to external functions. Primitive calls are written with
double parentheses around the argument list so that they
are visibly distinguished from block and constructor calls.
• C(a1,. . . ,an) allocates a data value with constructor C and
components a1,. . . ,an, where n is the arity of C.
• C i a is a selector that returns the ith component of the
value in a, assuming that it was constructed with C. For ex-
ample, having executed v ← C(a1,. . . ,an), a subsequent
C i v call (with 0≤i<n) will return ai+1. (Note that i must
be a constant and that the first component has index 0.)
• k{a1,. . . ,an} allocates a closure (i.e., the representation of
a function value) with a code pointer specified by k and
arguments a1,. . . ,an. This is only valid in a program that
includes a corresponding definition for k. Closures are an im-
portant feature of MIL and are the topic of further discussion
throughout this paper.
• f @ [a1,. . . ,an] is a call to an unknown function, f, with
arguments a1,. . . ,an. For this to be valid, f must hold a clo-
sure for a function that expects exactly n arguments. The pro-
cess of executing an expression of this form is often referred
to as entering a closure. Mirroring the syntax for return,
we write f @ a in the case where there is exactly one argu-
ment. As another special case, an unknown function f can
be applied to an empty list of arguments, as in f @ []; this
can be used, for example, to invoke a (monadic) thunk.

2.5 Atoms
In the preceding examples, the symbols a,a1,. . . ,an, and f rep-
resent arbitrary atoms that are either numeric constants (integer
literals) or variable names. The latter correspond either to tempo-
raries (i.e., local variables holding parameter values or intermediate
results) or to variables defined at the top level (see Section 2.9):

a ::= i -- a constant (i.e., an integer literal)

| v -- a variable name

Atoms are the only form of expression that can be used as argu-
ments in tail expressions. If a program requires the evaluation of a
more complex expression, then it must be computed in steps using
temporaries to capture intermediate results. For example, the fol-
lowing block calculates the sum of the squares of its inputs using
the mul and add primitives for basic arithmetic:

sumSqrs[x,y] = u ← mul((x,x)) -- compute x∗x in u

v ← mul((y,y)) -- compute y∗y in v

add((u,v)) -- return the sum

2.6 Block Types
Blocks are not first class values in MIL, so they cannot be stored
in variables, passed as inputs to a block, or returned as results.
Nevertheless, it is still useful to have a notion of types for describ-
ing the inputs and results of each block, and we use the notation
[d1,. . . ,dn] >>= [r1,. . . ,rm] for this where di and rj are the
types of the block’s inputs and results, respectively. For example,
the type of sumSqrs can be declared explicitly as follows:1

sumSqrs :: [Word,Word] >>= [Word]

Blocks may have polymorphic types, as in the following examples,
the second of which also illustrates a block with multiple results:

idBlock :: forall (a::type). [a] >>= [a]

idBlock[x] = return x

dupBlock :: forall (a::type). [a] >>= [a, a]

dupBlock[x] = return [x, x]

The explicit forall quantifiers here give a precise way to document
polymorphic types but they are not required; those details can be
calculated automatically instead using kind and type inference.

It is important to distinguish block types, formed with >>=, from
the first-class function types using↠ that were introduced in Sec-
tion 2.1. The notations are similar because both represent a kind of
function, but there are also fundamental differences. In particular,
blocks are executed by jumping to a known address and not by
entering a closure, as is done with a first-class function.

2.7 Code Sequences
The syntax for the code sequences on the right of each block defi-
nition is captured in the following grammar:

c ::= [v1,. . . ,vn] ← t; c -- monadic bind

| assert a C; c -- data assertion

| t -- tail call

| if v then bc1 else bc2 -- conditional

| case v of alts -- case construct

alts ::= {alt1;. . . ;altn} -- alternatives

alt ::= C → bc -- match against C

| _ → bc -- default branch

bc ::= b[a1,. . . ,an] -- block call

As illustrated previously, any given code sequence begins with zero
or more monadic bind steps (or statements) of the form vs ← t
(where vs is either a single temporary or a bracketed list). Each
such step describes a computation that begins by executing the tail

1The same block type is also used for the mul and add primitives.

IFL 2018, September 5–7, 2018, Lowell, MA, USA Mark P. Jones, Justin Bailey, and Theodore R. Cooper

t, binding any results to the temporaries in vs, and then continuing
with the entries in vs now in scope. The grammar also includes an
assert construct; its purpose will be illustrated later.

Where space permits, we write the steps in a code sequence
using a vertical layout, relying on indentation to reflect its structure.
However, we will also use a more compact notation, matching the
preceding grammar with multiple statements on a single line:

v1 ← t1; v2 ← t2; . . . ; vn ← tn; e

However they are written, every code sequence is ultimately termi-
nated by an expression e that is either an unconditional jump (i.e.,
a tail expression, t); or a conditional jump (i.e., an if or case con-
struct). Note that, like a traditional basic block, there are no labels
in the middle of code sequences. As a result, we can only enter a
code sequence at the beginning and, once entered, we cannot leave
until we reach the end expression e.

2.8 Conditional Jumps
An if construct ends a code sequence with a conditional jump;
it requires an atom, v, of type Flag as the test expression and
block calls for each of the two branches. Beyond these details, if
constructs work in the usual way. For example, the following two
blocks can be used to calculate the maximum of two values u and v:

b1[u,v] = t ← primGt((u,v)) -- primitive for u>v

if t then b2[u] else b2[v]

b2[x] = return x

Other conditional jumps can be described with a case v of alts
construct, using the value of v—the “discriminant”—to choose be-
tween the alternatives in alts. Specifically, a case construct is
executed by scanning the list of alternatives and executing the
block call bc for the first one whose constructor, C, matches v. The
following code sequence corresponds to an if-then-else construct
for a variable v of type Bool: the code will execute b1[x,y] if v
was built using True(), or b2[z] if v was built using False():

case v of { True → b1[x,y]; False → b2[z] }

We can also write the previous expression using a default branch
(signaled by an underscore) instead of the case for False:

case v of { True → b1[x,y]; _ → b2[z] }

Once again, we often write examples like this with a vertical layout,
eliding the punctuation of semicolons and braces:

case v of

True → b1[x,y]

_ → b2[z]

Each alternative in a case only tests the outermost constructor, C,
of the discriminant, v. If the constructor matches but subsequent
computation requires access to components of v, then they must
be referenced explicitly using C i v selectors, where i is the ap-
propriate field number. The following blocks, for example, can be
used to compute the length of a list:

length[list] = loop[0,list]

loop[n,list] = case list of

Nil → done[n]

Cons → step[n,list]

done[n] = return n

step[n,list] = assert list Cons

tail ← Cons 1 list

m ← add((n,1))

loop[m,tail]

The length block passes the given list to loop, with an initial
(accumulating) parameter 0. The loop block uses a case to examine
the list. A Nil value represents an empty list, in which case we
branch to done and immediately return the current value of n.
Otherwise, list must be a Cons, and we jump to step, which uses
a Cons 1 list selector to find the tail of the list. After calculating
an incremented count in m, step jumps back to examine the rest
of the list. The assert here indicates that list is known to be a
Cons node; this information ensures that the Cons selector in the
next line is valid, and can also be leveraged during optimization.

2.9 Top-level Definitions
MIL programs can use definitions of the form [v1,. . . ,vn] ← t
to introduce top-level bindings for variables called v1,. . . ,vn. Vari-
ables defined in this way are initialized to the values that are pro-
duced by executing the tail expression t. In the common case where
a single variable is defined, we omit the brackets on the left of the
← symbol and write v1 ← t. Note that variables introduced in
a definition like this are not the same as global variables in an im-
perative programming language because their values cannot be
changed by a subsequent assignment operation.

Top-level definitions like this are typically used to provide names
for constants or data structures (including closures, as shown be-
low). For example, the following top-level definitions, each with
a data constructor on the right hand side of the← symbol, will
construct a static list data structure with two elements:

list1 ← Cons(1, list2)

list2 ← Cons(2, nil)

nil ← Nil()

It is possible to specify types for variables introduced in a top-level
definition using declarations of the form v1, . . . , vn :: t. For
example, we might declare types for the list variables defined
previously by writing:

list1, list2, nil :: List Word

However, there is no requirement to provide types for top-level
variables because they can also be inferred in the usual way.

2.10 Closures and Closure Definitions
First-class functions in MIL are represented by closure values that
are constructed using tail expressions of the form k{a1,. . . ,an}.
Here, a1,. . . ,an are atoms that will be stored in the closure and
accessed when the closure is entered (i.e., applied to an argument)
and the code identified by k is executed. For each different k that
is used in a given program, there must be a corresponding closure
definition of the form k{v1,. . . ,vn} [u1,. . . ,um] = t. Here, the
vi are variables representing the values stored in the closure; the
ui are variables representing the arguments that are required when
the closure is entered; and t is a tail expression that may involve
any of these variables. Conceptually, each such closure definition
corresponds to the code that must be executed when a closure is
entered, loading stored values and arguments as necessary in to

MIL, a Monadic Intermediate Language for Implementing Functional Languages IFL 2018, September 5–7, 2018, Lowell, MA, USA

registers before branching to the code as described by t. Following
our usual pattern, in the case where there is just one argument,
u1, the brackets may be omitted and the definition can be written
k{v1,. . . ,vn} u1 = t. The ability to pass multiple (or zero) argu-
ments ui to a closure, however, is important because it allows us
to work with values whose representation may be spread across
multiple components; we will return to this in Section 4.2.

As an example, given the definition k{n} x = add((n,x)), we
can use a closure with code pointer k and a stored free variable n to
represent the function (λx → n + x) that will return the value
n+x whenever it is called with an argument x.

The type of any closure can be written in the form:
{t1,. . . ,tn} [d1,. . . ,dm] ↠ [r1,. . . ,rp]

where the ti are the types of the stored components, the dj are
the types of the inputs (the domain), and the rk are the types of
the results (the range). This is actually a special case of an allo-
cator type {t1,. . . ,tn} t, which corresponds to a value of type
t whose representation stores values of the types listed in the
braces. For example, the type of the closure k defined above is
{Word} [Word] ↠ [Word], while the type of the Cons construc-
tor for lists can be written {a, List a} List a.

2.11 Example: Implementing map in MIL
In this section, we illustrate how the components of MIL described
previously can be used together to provide an implementation for
the familiar map function. In a standard functional language, we
might define this function using the following two equations:

map f Nil = Nil

map f (Cons y ys) = Cons (f y) (map f ys)

Using only naive techniques, this function can be implemented by
the following MIL code (presented here in two columns) with one
top-level, two closure, and three block definitions:

map ← k0{}

k0{} f = k1{f}

k1{f} xs = b0[f,xs]

b0[f, xs] = case xs of

Nil → b1[]

Cons → b2[f,xs]

b1[] = Nil()

b2[f,xs] = assert xs Cons

y ← Cons 0 xs

ys ← Cons 1 xs

z ← f @ y

m ← map @ f

zs ← m @ ys

Cons(z,zs)

This implementation starts with a top-level definition for map, bind-
ing it to a freshly constructed closure k0{}. When the latter is
entered with an argument f, it captures that argument in a new clo-
sure structure k1{f}. No further work is possible until this second
closure is entered with an argument xs, which results in a branch
to the block b0, and a test to determine whether the list value is
either a Nil or Cons node. In the first case, the map operation is
completed by returning Nil in block b1. Otherwise, we execute the
code in b2, extracting the head, y, and tail, ys, from the argument
list. This is followed by three closure entries: the first calculates the
value of f y, while the second and third calculate map f ys, with
one closure entry for each argument. The results are then combined
using Cons(z,zs) to produce the final result for the map call.

The MIL definition of map reveals concrete implementation de-
tails, such as the construction of closures, that are not immediately
visible in the original code. For an intermediate language, this is

exactly what we need to facilitate optimization, and we will revisit
this example in Section 5.4, showing how the code in b2 can be
rewritten to avoid unnecessary construction of closures.

2.12 Notes on Formalization of MIL
Although we do not have space here for many details, we have
developed both a formal type system and an abstract machine for
MIL. The former has served as a guide in the implementation of the
MIL typechecker, which is useful in practice for detecting errors in
MIL source programs (and, occasionally, for detecting bugs in our
implementation). Perhaps the most interesting detail here is the
appearance of a type constructor,M—representing the underlying
monad in which MIL computations take place—in rules like the
following (for type checking bindings in code sequences):

A ⊢ t : M [r1, . . . , rn] A, v1 : r1, . . . , vn : rn ⊢ c : M a

A ⊢ ([v1, . . . , vn] ← t; c) : M a

An interesting direction for future work is to allow the fixed M to be
replaced with a type variable, m, and to perform a monadic effects
analysis by collecting constraints on m.

The design of an abstract machine for MIL has also had practical
impact, guiding the implementation of a bytecode interpreter that
is useful for testing. In the future, the abstract machine may also
provide a formal semantics for verifying the program rewrites used
in the MIL optimizer (Section 5).

3 COMPILING LC TO MIL
In this section, we discuss the work involved in compiling programs
written in LC—a simple, high-level functional language—into MIL.
This serves two important practical goals: First, by using MIL as
the target language, we demonstrate that it has sufficient features
to serve as an intermediate language for a functional language with
higher-order functions, pattern matching, and monadic operations.
Second, in support of testing, it is easier to write programs in LC
and compile them to MIL than to write MIL code directly.2

3.1 Translating LC Types to MIL
The task of translating LC types to corresponding MIL types is
almost trivial: the two languages have the same set of primitive
types and use the same mechanisms for defining new data and
bitdata types. The only complication is in dealing with function
types in LC, which map a single input to a single result, instead of
the tuples of inputs and results that are used in MIL. To bridge this
gap, we define the LC function type, written using a conventional
infix→ symbol, as an algebraic datatype:

data d → r = Func ([d] ↠ [r])

With this definition, we now have three different notions of function
types for MIL:↠ and→ describe first-class function values while
>>= is for block types (Section 2.6). The following definitions show
how all of these function types can be used together in a MIL
implementation of the LC identity function, (λx → x):

2Our implementation actually accepts combinations of MIL and LC source files as
input; this allows users to mix higher-level LC code that is translated automatically
to MIL with handwritten MIL code. The latter is useful in practice for implementing
libraries of low-level primitives that cannot be expressed directly in LC.

IFL 2018, September 5–7, 2018, Lowell, MA, USA Mark P. Jones, Justin Bailey, and Theodore R. Cooper

k :: {} [a] ↠ [a] -- a closure definition for

k{} x = return x -- the identity function

b :: [] >>= [a → a] -- create a closure value and

b[] = c ← k{} -- package it as a → function

Func(c)

id :: a → a -- set top-level name id to the

id ← b[] -- value produced by b[]

A legitimate concern here is that every use of an LC function (→)
requires extra steps to wrap or unwrap the Func constructor around
a MIL function (↠). Fortunately, we will see that it is possible to
eliminate these overheads (Section 4.1).

3.2 Translating LC Code to MIL
There is a large body of existing work on compilation of functional
languages, much of which can be easily adapted to the task of
translating LC source programs in to MIL. As a simple example,
to compile a lambda expression like λx → e with free variables
fvs, we just need to: pick a new closure name, k; add a definition
k{fvs} x = e' to the MIL program (where e' is compiled code for
e); and then use k{fvs} in place of the original lambda expression.
Beyond these general comments, we highlight the following details
from our implementation:
• To simplify code generation, we use a lambda lifting trans-
formation [6] to move locally defined recursive definitions
to the top-level (possibly with added parameters).
• Our code generator is based on compilation schemes for
“compiling with continuations” [8]. As a rough outline (in
pseudo-Haskell notation), it can be described as a function:

compile :: Expr → (Tail → CM Code) → CM Code

The first argument is the LC expression, exp, that we want
to compile. The second argument is a continuation that takes
a MIL tail expression, t, corresponding to exp, and embeds
it in a MIL code sequence for the rest of the program. For
instance, if exp is the lambda expression λx → e in the
example at the start of this section, then t will be the closure
allocator k{fvs}. Note that CM in the type above represents
a “compilation monad”, with operations for generating new
temporaries, and for adding new block, closure, or top-level
definitions to the MIL program as compilation proceeds.
• Continuation based techniques require special care with
conditionals like if c then t else f). In particular, we
need to ensure that the (Tail → CM Code) continuation
is not applied separately to each of the tail expressions for t
and f, which could lead to duplicated code. Fortunately, it is
easy to avoid this in MIL by placing the continuation code in
a new block, serving as a “join point” [11], and then having
the code in each branch end with a jump to that block.

4 REPRESENTATION TRANSFORMATIONS
Although MIL is more broadly applicable, our current implementa-
tion assumes a whole-program compilation model. One benefit of
this is that we can consider transformations that require changes
across many parts of input programs. In the following subsections,

we describe three specific transformations of this kind, all imple-
mented in our toolset, that change the representation of data values
in MIL programs. Each of these typically requires modifications
in both code and type definitions. For example, if a program uses
values of type T that can be more efficiently represented as values of
type T', then implementing a change of representation will require
updates, not only to code that manipulates values of type T, but
also to any type definitions that mention T. Our tools allow these
transformations to be applied in any order or combination, running
the MIL type checker after each pass as a sanity check (although the
original types are not preserved, each transformation is expected
to preserve typeability). In addition, because these transformations
can create new opportunities for optimization, it is also generally
useful to (re)run the MIL optimizer (Section 5) after each pass.

4.1 Eliminating Single Constructor Types
Our first application for representation transformations deals with
‘single constructor’, non-recursive algebraic datatypes with defini-
tions of the form: data T a1 . . . an = C t'. Types like this are
often used to create wrappers that avoid type confusion errors. For
example, by defining data Time = Millis Word, we ensure that
values of type Word are not used accidentally where Time values
are actually required. And, as discussed in Section 3.1, we also use
a type of this form to map between the→ and↠ function types
when compiling LC to MIL. These types are useful because they
can enforce correct usage in source programs. But for compila-
tion purposes, the extra constructors—like Millis and Func—add
unnecessary runtime overhead, and can block opportunities for op-
timization. To avoid this, we can rewrite the MIL program to replace
every tail of the form C 0 a or C(a) with return a (effectively
treating selection and construction as the identity function) and
every case v of C → bc that ‘matches’ on C with a direct block
call bc. In addition, the original definition of T can be discarded, but
every remaining type of the form T t1 . . . tn must be replaced
with the corresponding instance [t1/a1,. . . ,tn/an]t' of t'.

4.2 Representation Vectors
Our second applicationwas initially prompted by the use of bitdata
types in MIL (see Section 2.1) but is also useful with some algebraic
datatypes. In the early stages of compilation, we manipulate values
of bitdata types like Bool or PCI with the same pattern matching
and constructor mechanisms as algebraic datatypes. At some point,
however, the compiler must transition to the bit-level represen-
tation that is specified for each of these types. This means, for
example, that values of type Bool should be represented by values
of type Flag. Similarly, PCI values might be represented using Word
values, with the associated selectors for bus, dev, and fun replaced
by appropriate bit-twiddling logic using shift and mask operations.

To specify representation changes like this, we define a function
that maps every MIL type t to a suitable representation vector: a
list of zero or more types that, together, provide a representation
for t. We use a vector, rather than a single type, to accommodate
types that require multi-word representations. A Bit 64 value, for
example, cannot be stored in one 32 bit word, but can be supported
by using a representation vector [Word,Word] with two Word val-
ues. Similarly, a zero length vector, [], can be used for Bit 0 and,

MIL, a Monadic Intermediate Language for Implementing Functional Languages IFL 2018, September 5–7, 2018, Lowell, MA, USA

indeed, for any other singleton type, such as the standard unit type,
(). This reflects the fact that, if a type only has one possible value,
then it does not require a runtime representation.

The resulting representation vectors can be used to guide a
program transformation that replaces each variable v of a type t
with a list of zero or more variables v1,. . . ,vn, where n is the length
of the representation vector for t. This was the primary technical
motivation for using tuples of values throughout MIL because it
allows us to rewrite tails like f @ a and top-level definitions like
v ← t, for example, as f @ [a1,a2] or [v1,v2] ← t when a
and v are each represented by two words. Of course, additional
rewrites are needed for selectors and primitive calls that use values
whose representation is changed. A convenient way to manage this
is to replace the operations in question with a calls to new blocks
that will be inlined and optimized with the surrounding code.

Support for the representation transformation described here is
a distinguishing features of our toolset: to our knowledge, no other
current system implements a transformation of this kind.

4.3 Specializing Polymorphic Definitions
Our third application, included to satisfy a requirement of the LLVM
backend (Section 6), is a transformation that eliminates polymorphic
definitions and generates specialized code for each monomorphic
instance that is needed in a given program. One problem is that
this transformation cannot be used in some programs that rely on
polymorphic recursion [13]. Another concern is that specialization
has the potential to cause an explosion in code size. In practice,
however, specialization has proved to be an effective tool in domain-
specific [3] and general-purpose functional language compilers [17],
and even in implementations of overloading [7].

Representation transformation is relevant herewhenwe consider
the task of generating code for specific monomorphic instances
of polymorphic functions. As part of this process, our implemen-
tation of specialization also eliminates all uses of parameterized
datatypes. A program that uses a value of type Pair PCI PCI, for
example, might be transformed in to code that uses a value of a new
type data Pair1 = MkPair1 PCI PCI, that is generated by the
specializer. This provides an interesting opportunity for using type-
specific representations. For example, the Pair1 type described here
should hold two 16-bit PCI values, so it could easily be represented
using a single, 32-bit Word with no need for heap allocation. We
have already started to explore the possibility of inferring bit-level
representations for a wide-range of types like this, and expect to
include support for this in a future release of our toolset.

5 OPTIMIZATION
A common goal in the design of an intermediate language is to sup-
port optimization: program transformations that preserve program
behavior but improve performance, reduce memory usage, etc. For
MIL programs, we have identified a collection of rules that describe
how some sections of code can be rewritten to obtain better perfor-
mance. A small but representative set of these rules is presented
in Figure 1. The full set has been used to build an optimizer for
MIL that works by repeatedly applying rewrites to input programs.
Individual rewrites typically have limited impact, but using many

rewrites in sequence can yield significant improvements by reduc-
ing code size, eliminating unnecessary operations, and replacing
expensive operations with more efficient equivalents.

The table in Figure 1 has three columns that provide, for each rule:
a short name; a rewrite; and, in several cases, a set of side conditions
that must be satisfied in order to use the rule. The rewrites are writ-
ten in the form e =⇒ e' indicating that an expression matching
e should be replaced by the corresponding e'. To avoid ambiguity,
we use two variants of this notation with =⇒c for rewrites on code
sequences and =⇒t for rewrites on tails. In the rest of this section,
we will walk through each of the rewrites in Figure 1 in more de-
tail (Sections 5.1–5.5), describe additional optimizations that are
supported by our implementation (Section 5.6), and reflect on the
overall effectiveness of our optimizer for MIL (Section 5.7).

5.1 Using the Monad Laws
The first group of rules are by standard laws for monads (as de-
scribed, for example, by Wadler [16]), but are also recognizable
as traditional compiler optimizations. Rule (1), for example, im-
plements a form of copy or constant propagation, depending on
whether the atom a is a variable or a constant. The notation [a/x]c
here represents the substitution of a for all free occurrences of x
in the code sequence c; concretely, instead of creating an extra
variable, x, to hold the value of a, we can just use that value directly.
Rule (2) corresponds to the right monad law, which can also be
seen as eliminating an unnecessary return at the end of a code
sequence and potentially as creating a new opportunity for a tail
call. Finally, Rules (3) and (4) are based on the associativity law
for monads, but can also be understood as descriptions of function
inlining rules; we use the terms prefix and suffix to distinguish be-
tween cases where the block being inlined appears at the beginning
or the end of the code sequence. To better understand the relation-
ship with the associativity law, note that a naive attempt to inline
the block b in the code sequence v ← b[x]; c, using the defini-
tion of b in the figure, would produce v ← (v0 ← t0; t1); c.
With the previous grammar for MIL code sequences, this is not
actually a valid expression. Using associativity, however, it can be
flattened/rewritten as the code sequence on the right hand side of
the rule. As is always the case, unrestricted use of inlining can lead
to an explosion in code size with little or no benefit in performance.
To avoid such problems, our implementation uses a typical set of
heuristics—limiting inlining to small blocks or to blocks that are
only used once, for example—to strike a good balance between the
benefits and potential risks of an aggressive inlining strategy.

5.2 Eliminating Unnecessary Code
The second group of rewrites in Figure 1 provide ways to simplify
MIL programs by trimming unnecessary code. Rule (5), for example,
uses the results of a simple analysis to detect tail expressions t that
do not return (e.g., because they call a primitive that terminates the
program, or enter an infinite loop). In these situations, any code
that follows t can be deleted without a change in semantics.

Rules (6) and (7) allow us to detect, and then, respectively, to
eliminate code that has no effect. Rule (6), sets the result variable
name for a statement to underscore to flag situations where the
original variable is not used in the following code. A subsequent

IFL 2018, September 5–7, 2018, Lowell, MA, USA Mark P. Jones, Justin Bailey, and Theodore R. Cooper

Name Rewrite Conditions

Using the monad laws, where block b is defined by b[x] = v0 ← t0; t1
1) Left monad law (constant propagation) x ← return a; c =⇒c [a/x]c –
2) Right monad law (tail call introduction) x ← t; return x =⇒c t –
3) Prefix inlining v ← b[x]; c =⇒c v0 ← t0; v ← t1; c –
4) Suffix inlining v ← t; b[x] =⇒c v ← t; v0 ← t0; t1 –

Eliminating unnecessary code
5) Unreachable code elimination v ← t; c =⇒c t t does not return
6) Wildcard introduction v ← t; c =⇒c _ ← t; c v is not free in c
7) Dead tail elimination _ ← t; c =⇒c c t is pure
8) Common subexpression elimination t =⇒t return v {v=t}

Using algebraic identities (focusing here on bitwise and and writing M, N, and P for arbitrary integer constants)
9) Identity laws and((v,0)) =⇒t return 0 –
10) Idempotence and((v,v)) =⇒t return v –
11) Constant folding and((M,N)) =⇒t return (M&N) –
12) Commutativity and((M,v)) =⇒t and((v,M)) –
13) Associative folding and((v,N)) =⇒t and((u,M&N)) {v=and((u,M))}

(u&M)&N = u&(M&N)
14) Distributive folding (1) and((v,N)) =⇒c v' ← and((u,N)) {v=or((u,M))}

(u|M)&N = (u&N)|(M&N) or((v',M&N))
15) Distributive folding (2) or((w,P)) =⇒c v' ← and((u,N)) {v=or((u,M)),

((u|M)&N)|P = (u&N)|((M&N)|P) or((v',(M&N)|P)) w=and((v,N))}

Known structures, where closure k is defined by k{x} y = t
16) Known constructor case v of =⇒c b'[. . .] {c=C(. . .)}

. . . ; C → b'[. . .]; . . .
17) Known closure f @ y =⇒t t {f=k{x}}

Derived blocks, where block b is defined by b[x] = v0 ← t0; t1
18) Known structure b[v] =⇒t b'[y] {v=C(y)}

where b'[y] = x ← C(y); v0 ← t0; t1
19) Trailing enter f ← b[x]; f @ a =⇒c b'[x,a] –

where b'[x,a] = v0 ← t0; f ← t1; f @ a
20) Trailing case v ← b[x]; case v of . . . =⇒c b'[x,. . .] –

where b'[x,. . .] = v0 ← t0; v ← t1; case v of . . .

Figure 1: A representative set of rewrite rules for MIL optimization

use of Rule (7) will then eliminate the statement altogether if the
associated tail expression t has no externally visible effects (for
example, if t is a call to a pure primitive function like add or mul, or
if t is a closure or data allocator). Our presentation of this process
using two separate rules reflects the fact that our optimizer actually
applies these two rules in separate passes over the abstract syntax.

Rule (8) uses a local dataflow analysis to detect situations where
the result of a previous computation can be reused. To implement
this, our optimizer calculates a set of “facts”, each of which is a
statement of the form v=t, as it traverses the statements in each
code sequence. Starting with an empty set, the optimizer will add
(or “generate”) a new fact v=t for every statement v ← t that it
encounters with a pure t. At the same time, for each statement
v ← t, it will also remove (or “kill”) any facts that mention v
because the variable that they reference will no longer be in scope.
The rightmost column in Figure 1 documents the facts that are
required to apply each rewrite. In this case, given v=t, we can

avoid recalculating t and just return the value v that it produced
previously. (In practice, the return introduced here will often be
eliminated later using Rules (1) or (2).)

5.3 Using Algebraic Identities
The next group (Rules (9)–(15)) take advantage of (mostly) well-
known algebraic identities to simplify programs using the builtin
primitives for arithmetic, logic, and comparison operations.We only
show a small subset of the (more than 100) rewrites of this kind that
are used in our implementation, all of which involve the bitwise and
primitive. In combination with additional rewrites involving bitwise
or and shift operations, these rules are very effective in simplifying
the bit-twiddling code that is generated when manipulating or
constructing Habit-style bitdata types [4, 15].

Rules (9), (10), and (11), for example, each eliminate a use of and
in a familiar special case. Rule (12) is not useful as an optimization
by itself, but instead is a first step in rewriting expressions in to

MIL, a Monadic Intermediate Language for Implementing Functional Languages IFL 2018, September 5–7, 2018, Lowell, MA, USA

b2[f,xs] = assert xs Cons

y ← Cons 0 xs

ys ← Cons 1 xs

z ← f @ y

m ← map @ f

zs ← m @ ys

Cons(z,zs)

b2[f,xs] = assert xs Cons

y ← Cons 0 xs

ys ← Cons 1 xs

z ← f @ y

m ← k1{f}

zs ← m @ ys

Cons(z,zs)

b2[f,xs] = assert xs Cons

y ← Cons 0 xs

ys ← Cons 1 xs

z ← f @ y

m ← k1{f}

zs ← b0[f,ys]

Cons(z,zs)

b2[f,xs] = assert xs Cons

y ← Cons 0 xs

ys ← Cons 1 xs

z ← f @ y

zs ← b0[f,ys]

Cons(z,zs)

(a) (b) (c) (d)

Figure 2: An example illustrating the optimization of known closures (Rule (17))

a canonical form that enables subsequent optimizations. In this
case, the rewrite ensures that, for an andwith one constant and one
unknown argument, the constant is always the second argument.
This explains, for example, why we do not need a variant of Rule (9)
for tails of the form and((0,v)), and also why we do not need four
distinct variations of the pattern in Rule (13) where an unknown u is
combined via bitwise ands with two constants M and N. In this case,
we rely on facts produced by the dataflow analysis to determine
that the value of v in and((v,N)) was calculated using a prior
and((u,M)) call. The rewrite here replaces one andwith another, so
it may not result in an immediate program optimization. However,
there are two ways in which this might open up opportunities
for subsequent rewrites: One possibility is that M&N may be zero,
in which case we will be able to eliminate the and using Rule (9).
Another possibility is that, by rewriting the call to and in terms of
u, we may eliminate all references to v and can then eliminate the
statement defining v as dead code using Rules (6) and (7).

In a similar way, Rules (14) and (15) take advantage of standard
distributivity laws to implement more complex rewrites. By using
these rules in combination, we can rewrite any expression involving
bitwise ands and ors of an unknown uwith an arbitrary sequence of
constants into an expression of the form (u&M)|N for some constants
M and N, with exactly one use of each primitive. These rewrites are
potentially dangerous because they increase the size of the MIL
code, replacing one primitive call on the left of the rewrite with
two on the right. In practice, however, these rules often turn the
definitions of the variables v and w that they reference in to dead
code that can be eliminated by subsequent rewrites.

5.4 Known Structures
MIL provides case and @ constructs that work with arbitrary data
values and closures, respectively. But the general operations are
not needed in situations where we are working with known struc-
tures. Rule (16), for example, eliminates a conditional jump if the
constructor, C, that was used to build v is already known: we can
just make a direct jump using the alternative for C (or the default
branch if there is no such alternative), and delete all other parts of
the original case construct.

In a similar way, Rule (17) can be used to avoid a general closure
entry operation when the specific closure is known. To see how this
works in practice, consider the example in Figure 2, with the origi-
nal code for b2 in our implementation of map (Section 2.11) in Col-
umn (a). From the other definitions in this program, we know that

map is a reference to the closure k0{}, and that k0{} f = k1{f}.
By allowing our dataflow analysis to derive the fact map=k0{} from
its top-level definition, we can use Rule (17) to rewrite the tail
defining m, as shown in Column (b). After this transformation, the
local dataflow analysis will reach the definition of zs with a list of
facts that includes m=k1{f}, and so we can apply Rule (17) again
to obtain the code in Column (c). This removes the only reference
to m, and allows subsequent uses of Rules (6) and (7) will eliminate
its definition, producing the code definition in Column (d). This
example shows that the original implementation of mapwould have
allocated a fresh closure, k1{f}, for every element of the input list.
The transformations we have applied here, however, eliminate this
overhead and substitute a more efficient, direct recursive call.

5.5 Derived Blocks
Optimizing compilers often use collections of basic blocks, con-
nected together in control flow graphs, as a representation for
programs. Most of the rules that we have described so far are tradi-
tionally considered local optimizations because they only consider
the code within a single block. While much can be accomplished
using local optimizations, it is also useful to take a more global view
of the program, and to use optimizations that span multiple blocks.
In other words, in addition to the content of individual blocks, we
would also like to account for the context in which they appear.

One interesting way that we have been able to handle this in MIL
is by using the code of existing blocks to generate new versions—
which we refer to as derived blocks—that are specialized for use in
a particular context. The final group of rewrites in Figure 1 cor-
responds to different strategies for generating derived blocks that
we have found to be effective in the optimization of MIL programs.
Of course, adding new blocks to a program increases program size
and does not immediately provide an optimization. But, in practice,
the addition of new derived blocks often opens new opportunities
for optimization—by bringing the construction and matching of
a data value into the same block, for example—and the original
source block often becomes dead code that will be removed from
the program once any specialized versions have been generated.

Rule (18) illustrates one way of using derived blocks to take
advantage of information produced by our local dataflow analysis
and to obtain results that typically require a global analysis. The
techniques that we describe here can be applied very broadly, but,
for this paper, we restrict ourselves to a special case: a call to a
block b that has just one parameter and a very simple definition.

IFL 2018, September 5–7, 2018, Lowell, MA, USA Mark P. Jones, Justin Bailey, and Theodore R. Cooper

In this situation, if the argument, v, to b is known to have been
constructed using a tail C(y), then we can replace the call b[v]
with a call of the form b'[y]. Here, b' is a new block that begins
with a statement that recomputes v ← C(y) and then proceeds in
the same way as the original block b. In theory, this could result
in an ‘optimized’ program that actually allocates twice as many
C(y) objects as necessary; that would obviously not be a good
outcome. In practice, however, this transformation often enables
subsequent optimizations both in the place where the original b[v]
call appeared (for example, the statement that initialized v may
now be dead code) and in the new block, the latter resulting from
a new fact, v=C(y), that can be propagated through the code for
b'. Note that Rule (18) also extends naturally to calls with multiple
parameters and to cases where one or more of those parameters
is a known closure; in that case the process of generating a new
derived block has much the same effect as specializing a higher-
order function to a known function argument.

Rules (19) and (20) deal with situations where a block is called and
its result is immediately used as a closure or data value, respectively.
The code on the left side of these rewrites essentially forces the
allocation of a closure or data object in b, just so that value can
be returned and then, most likely, discarded after one use. The
right sides deal with this by introducing a tail call in the caller and
then turning the use of whatever value is produced in to a ‘trailing’
action in the new block. As in other examples, this does not produce
an immediate optimization. However, these rules generally lead to
useful improvements in practice, enabling new optimizations by
bringing the construction and use of v in to the same context.

5.6 Additional Optimizations
Beyond the rewrites kind described in previous sections, our op-
timizer implements several other program transformations that
help to improve code quality. One of the most important of these
in practice—because it also performs a strongly-connected com-
ponents analysis on the program to prioritize the order in which
rewrites are applied—is a “tree-shaking” analysis. This automati-
cally removes definitions from a program if they are not reachable
from the program’s entry points. In addition to sections of library
code that are not used in a given application, this also helps to clean
up after other optimizations by eliminating single-use blocks whose
definitions have been inlined or blocks that have been replaced with
new derived versions. The optimizer also attempts to recognize and
merge duplicated definitions, and to rewrite block definitions (and
all corresponding uses) to eliminate unused parameters. Unused
stored fields in closure definitions can also be eliminated in this
way, but we cannot remove arguments in closure definitions: even
if they are not used in the code for a particular closure, they must
be retained for compatibility with other closures of the same type.

One other detail in our implementation is that we run the MIL
type checker after every use of the optimizer. This has two practical
benefits: (1) All of our optimizations are required to preserve typing,
so running the type checker provides a quick sanity check and
may help to detect errors in the optimizer. (2) The type checker
will automatically reconstruct type information for each part of
the program, so we do not need to deal with those details in the
implementations of individual rewrites.

5.7 Reflections on Optimization
The design of an optimizer compiler inevitably requires some ju-
dicious compromises. After all, the problem that it is trying to
solve—to generate truly optimal versions of any input program—is
uncomputable, and so, at some point, it must rely instead on heuris-
tics and incomplete strategies. Even if an optimizer delivers good
results on a large set of programs, there is still a possibility that it
will perform poorly on others. Subtle interactions between different
optimization techniques may prevent the use of key transforma-
tions in some situations and instead lead to expanded code size or
degraded performance. With those caveats in mind, we have, so far,
been very satisfied with the performance of our optimizer for MIL.

As a concrete example, the diagrams in Figure 3 outline the
structure of a MIL implementation of the Habit “prioset” example
[15, Section 5]. Part (a) here is for the original MIL implementation,
generated directly from 56 lines of LC code; it is too small to be
readable, but does convey that the original program—910 lines of
MIL code—is quite complex. Part (b) shows the result obtained after
1,217 separate rewrite steps in the MIL optimizer, resulting in 140
lines of MIL code. This version of the program still has non-trivial
control flow, but its overall structure is much simpler and we can
start to see details such as loop structures and a distinction between
the blue nodes (representing blocks) and the red nodes (representing
closure definitions). By comparison, there are red and blue nodes
scattered throughout the diagram in Part (a), which suggests that
our optimizations have been effective in eliminating many uses
of closures in the original program. (The remaining red nodes in
Part (b) are only there because the program exports the definitions
of two functions, insertPriority and removePriority as first-
class values; in a program that only uses fully-applied calls to these
functions, even those nodes would be eliminated.)

The results that we see with this example are representative of
our experience across a range of test programs, and suggest that
the MIL optimizer can work will in practice. That said, we plan to
do more extensive studies, including performance benchmarking,
and to use those results to further tune and refine our implementa-
tion. (As a new language, we do not currently have a pre-existing
set of benchmarks, but we do hope to grow such a library as our
implementation matures and gains users.)

One particularly effective aspect of our implementation that is
already clear is the decision to perform optimization at multiple
levels throughout the compiler pipeline. An initial use of the MIL
optimizer takes care of relatively high-level rewrites, such as inlin-
ing of higher-order functions to eliminate the costs of constructing
closures. It would be harder to apply this kind of optimization at
later stages once the operations for function application and closure
construction have been decomposed in to sequences of lower level
instructions. A subsequent use of the optimizer, after representa-
tion transformations have been applied, enables the compiler to
find newly exposed opportunities for optimization, and to further
simplify the generated MIL code before it is translated in to LLVM,
as described in the next section. Finally, the use of LLVM itself
allows us to exploit the considerable effort that has been invested in
that platform to perform lower-level optimizations, and—although
our focus to date has been on IA32-based systems—also provides a
path for targeting other architectures.

MIL, a Monadic Intermediate Language for Implementing Functional Languages IFL 2018, September 5–7, 2018, Lowell, MA, USA

insertPriority

b112

k54

b111

k53

b110

heapRepairUp

modIx

add

writeRef32readRef32

removePriority

b99

k49

b98

k48

b97

b95

b0

b96 neq

at

readRef8

sub

heapRepairDown b94

b109

b103

b102

prioSet

k52

b108

k51

b107

b101 b106

dec b100 k50

b105

b104 ltlshrreturn

b62

k36

b61

k35

b60

bconv

b40

k22

b39

k21

b38

b127

k60

b126

b124b125 eq

b123NothingJust b50

k28

b49

k27

b48

b93

b81

b80

b82

k47

b92

k46

b91

k45

b90

b72b89

mulleq

unsigned

b71k44

b88

b77

b87

b75b76 gt

b74

b73

b85b86

b84False

b79

b83

b78 b116

k57

b115

k56

b114

k55

b113

writeRef8

writeRef

b56

k32

b55

k31

b54

b20

k9

b19

k8

b18

b122

k59

b121

k58

b120

b118 b119lte

b117

b70

k43

b65

k38

b64

k37

b63

b132

k63

b131

primRet

b11

k3

b10

ret1

b53

k30

b52

k29

b51

btruebfalse

truefalse

b3

k2

b130

k62

b129

k61

b128

b14

k5

b13

k4

b12

readRef

b17

k7

b16

k6

b15

writeRef0

b4

writeRef1

b5

writeRef2

b6

writeRef3

b7

readRef0

b8

readRef1

b9

readRef2

insertPriority

k54

k53

b110

b257

b229

removePriority

k49

k48

b97

b95 b177

b237

b103

b113

b258

b260 b182

b82

b184

b187

b75

func_b237

b237

b258

b113

b260

b182

b184

b187

b75

b82

g10

clos_k48

b97

b95b177

b229b257

clos_k53

b103

b113

clos_k49

b110

b229 b257

b103

b113

clos_k54

insertPriority

removePriority

(a) (b) (c)

Figure 3: Control flow graph examples.

6 COMPILING MIL TO LLVM
In this section, we explain how MIL programs can be translated in
to corresponding LLVM programs, which can then be subjected to
further optimization and used to generate executable binaries. Be-
yond the specific practical role that it serves in our Habit compiler,
this also provides another test for MIL’s suitability as an intermedi-
ate language: it is important, not only that we are able to generate
executable programs from our IL, but also that we are able to do so
without introducing overhead or undoing any of the improvements
that were made as a result of optimizations on the IL.

6.1 Translating MIL Types to LLVM
Before generating LLVM code, we use representation transfor-
mations to provide Word-based implementations for bitdata types
(Section 4.2) and to eliminate polymorphism and parameterized
datatypes (Section 4.3). In the resulting programs, MIL types like
Word and Flag are easily mapped to LLVM types such as i32 and
i1. The only types that require special attention are for functions
(which we cover in this section) and algebraic datatypes (which are
handled in a similar manner).

Every MIL value of type [d1,. . . ,dm] ↠ [r1,. . . ,rn]will be a
closure that can be represented by a block of memory that includes
a code pointer and provides space, as needed, for stored fields:

entry · · ·

We can describe structures of this form using three LLVM types
with mutually recursive definitions:

%clo = type { %fun }

%fun = type {r1, . . . , rn} (%ptr, d1, . . . , dm)

%ptr = type %clo∗

Here, %clo is a structure type that describes the layout of the clo-
sure. Its only component is the code pointer of type %fun: no addi-
tional components are listed because the number and type of fields
is a property of individual closure definitions, not the associated
function type. In the generated code, functions of this type will
be represented by pointers of type %ptr. Given such a pointer, the

implementation can read the code pointer from the start of the
closure and invoke the function, passing in the closure pointer and
the argument values corresponding to the domain types di. If that
function needs access to stored fields, then it can cast the %ptr value
to a more specific type that reflects the full layout for that specific
type of closure. Finally, the function can return a new structure
containing values for each of the range types rj. (If there is only
one result, then it can be returned directly, without a structure; if
there are no results at all, then we can use a void function.)

The techniques described here are standard, but there are still
many details to account for. Among other things, this reinforces the
importance of performing closure optimizations in MIL, rather than
generating LLVM code directly and then hoping, unrealistically,
that the LLVM tools will be able to detect the same opportunities
for improvement. Instead, we divide the responsibilities for opti-
mization betweenMIL and LLVM, with each part making important
contributions to the overall quality of generated code.

6.2 Translating MIL Code to LLVM
The process of translating MIL statements to LLVM instructions is
relatively straightforward. As examples: an and primitive in MIL
maps directly to the (identically named) and instruction in LLVM;
a closure allocation in MIL is implemented by a call to a runtime
library function to allocate space for the closure, followed by a
sequence of store instructions to initialize its fields; and so on. As
such, we will not discuss the fine details of this translation here.

There are, however, some key, higher-level structural mismatches
betweenMIL and LLVM—specifically, parameterization and sharing
of blocks—that do need to be addressed. As we have seen, MIL
programs are collections of (parameterized) basic blocks that are
connected together either by regular block calls or tail calls (in the
middle, or at the end, respectively, of a code sequence). By contrast,
LLVM programs consist of a collection of (parameterized) functions,
each of which has a control flow graph (CFG) comprising a single
(parameterized) entry point, and a body that is made up from a

IFL 2018, September 5–7, 2018, Lowell, MA, USA Mark P. Jones, Justin Bailey, and Theodore R. Cooper

collection of (unparameterized) basic blocks. How then should we
approach the translation of an arbitrary MIL programs into LLVM?

One approach would be to generate an separate LLVM function
for each MIL block (and closure definition). Although LLVM does
provide support for tail calls, those features are difficult to use and
it might be difficult to ensure that the compiled loops, encoded as
tail recursive blocks in MIL, run in constant space.

Our strategy instead is to compile mutually tail recursive blocks
directly into loops, accepting that there will be some (small) dupli-
cation of blocks in the process. In Figure 3(b), for example, there
are several blocks that are reachable from either of the two distinct
entry points at the top of the diagram. Our code generator uses
some simple heuristics to generate a set of LLVM CFG structures
from MIL programs with the following properties: (1) There must
be a distinct CFG for every closure definition and for every block
that is a program entry point or the target of a non-tail call; (2) If
one block is included in a CFG, then all other blocks in the same
strongly connected component (SCC) should also be included in
the same CFG (this ensures that tail calls can be compiled to jumps);
(3) If a single block has multiple entry points from outside its SCC,
then it is a candidate entry point for a new CFG (this attempts to re-
duce duplication of blocks). The result of applying our algorithm to
this particular example is shown in Figure 3(c) and is typical of the
behavior we see in general: there is some duplication of blocks (the
portions highlighted with a yellow background) but the amount of
duplicated code is small and has not been a concern in practice.

Our second challenge is in dealing with the mapping from pa-
rameterized blocks in MIL to unparameterized blocks in LLVM. It
turns out that the number of predecessors is key in determining
how to generate code for the body of each block. To understand
this, consider the following two diagrams:

p
b[r,s]

b

p
b[r,s]

q
b[t,u]

b

In both diagrams, we assume a block b defined by b[x,y] = c
for some code sequence c. For the diagram on the left, there is
exactly one predecessor, p, which ends with a call to b[r,s]. In this
situation, there is actually no need for the parameters to b because
we already know what values they will take at the only point where
b is called. All that it needed is to apply a substitution, replacing
the formal parameters, x and y, with the actual parameters r and s,
respectively, so that we use the code sequence [r/x, s/y]c for the
body of b. (Of course, we also need to account for this substitution
on any edges from b to its successors.) For the diagram on the
right, there are two predecessors, each of which ends by calling b
with (potentially distinct) parameters. In this case, the phi functions
that are part of LLVM’s SSA representation provide exactly the
functionality that we need to ‘merge’ the incoming parameters and
we can generate code of the following form for b:

x = phi [r,p], [t,q]

y = phi [s,p], [u,q]

. . . LLVM code for c goes here . . .

Generating code in SSA form is sometimes considered to be a tricky
or complicated step in the construction of an optimizing compiler.

It is fortunate that the translation is relatively straightforward
and that we are able to take advantage of phi functions—a key
characteristic of the SSA form—quite so directly.

7 CONCLUSIONS
We have described the MIL language and toolset, demonstrating (1)
that it has the fundamental characteristics needed to qualify as an
effective intermediate language for the compilation of functional
languages; and (2) that it can enable new techniques for choosing
efficient data representations. The tools are available from our
source code repository at https://github.com/habit-lang/mil-tools.
The design and implementation of any new intermediate language
requires considerable engineering effort. As we continue to develop
the MIL system ourselves—for example, to explore its potential for
compilation of lazy languages—we hope that it will also serve as
useful infrastructure for other functional language implementors.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their helpful feed-
back. This work was supported in part by funding from the National
Science Foundation, Award No. CNS-1422979.

REFERENCES
[1] Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University

Press, New York, NY, USA.
[2] Justin Bailey. 2012. Using Dataflow Optimization Techniques with a Monadic Inter-

mediate Language. Master’s thesis. Department of Computer Science, Portland
State University, Portland, OR.

[3] Adam Chlipala. 2015. An Optimizing Compiler for a Purely Functional Web-
application Language. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2015). ACM, New York, NY, USA.

[4] Iavor S. Diatchki, Mark P. Jones, and Rebekah Leslie. 2005. High-level views on
low-level representations. In Proceedings of the 10th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2005, Tallinn, Estonia, September
26-28, 2005. ACM, 168–179.

[5] Matthew Fluet and Stephen Weeks. 2001. Contification Using Dominators. In
Proceedings of the Sixth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’01). ACM, New York, NY, USA, 2–13.

[6] Thomas Johnsson. 1985. Lambda Lifting: Transforming Programs to Recur-
sive Equations. In Proceedings of the IFIP conference on Functional Programming
Languages and Computer Architecture (Lecture Notes in Computer Science, 201).
Springer-Verlag, 190–203.

[7] Mark P. Jones. 1994. Dictionary-free Overloading by Partial Evaluation. In
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM ’94).

[8] AndrewKennedy. 2007. Compiling with Continuations, Continued. In Proceedings
of the 12th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’07). ACM, New York, NY, USA, 177–190.

[9] Chris Lattner. 2002. LLVM: An Infrastructure for Multi-Stage Optimization. Mas-
ter’s thesis. Computer Science Dept., University of Illinois at Urbana-Champaign,
Urbana, IL.

[10] LLVM 2018. The LLVM Compiler Infrastructure. http://llvm.org.
[11] Luke Maurer, Zena Ariola, Paul Downen, and Simon Peyton Jones. 2017. Com-

piling without continuations. In ACM Conference on Programming Languages
Design and Implementation (PLDI’17). ACM, 482–494.

[12] E.Moggi. 1989. Computational Lambda-calculus andMonads. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science. IEEE Press, Piscataway,
NJ, USA, 14–23.

[13] Alan Mycroft. 1984. Polymorphic Type Schemes and Recursive Definitions. In
Proceedings of the 6th Colloquium on International Symposium on Programming.
Springer-Verlag, London, UK, UK, 217–228.

[14] Simon Peyton Jones (Ed.). 2003. Haskell 98 Language and Libraries – The Revised
Report. Cambridge University Press.

[15] The Hasp Project. 2010. The Habit Programming Language: The Revised Prelimi-
nary Report. http://github.com/habit-lang/language-report.

[16] Philip Wadler. 1990. Comprehending Monads. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming (LFP ’90). 61–78.

[17] Stephen Weeks. 2006. Whole-program Compilation in MLton. In Proceedings of
the 2006 Workshop on ML (ML ’06). ACM, New York, NY, USA.

https://github.com/habit-lang/mil-tools
http://llvm.org
http://github.com/habit-lang/language-report

	Abstract
	1 Introduction
	1.1 Outline and Contributions

	2 An Overview of MIL
	2.1 Types in MIL
	2.2 MIL programs
	2.3 Blocks
	2.4 Tail Expressions
	2.5 Atoms
	2.6 Block Types
	2.7 Code Sequences
	2.8 Conditional Jumps
	2.9 Top-level Definitions
	2.10 Closures and Closure Definitions
	2.11 Example: Implementing map in MIL
	2.12 Notes on Formalization of MIL

	3 Compiling LC to MIL
	3.1 Translating LC Types to MIL
	3.2 Translating LC Code to MIL

	4 Representation Transformations
	4.1 Eliminating Single Constructor Types
	4.2 Representation Vectors
	4.3 Specializing Polymorphic Definitions

	5 Optimization
	5.1 Using the Monad Laws
	5.2 Eliminating Unnecessary Code
	5.3 Using Algebraic Identities
	5.4 Known Structures
	5.5 Derived Blocks
	5.6 Additional Optimizations
	5.7 Reflections on Optimization

	6 Compiling MIL to LLVM
	6.1 Translating MIL Types to LLVM
	6.2 Translating MIL Code to LLVM

	7 Conclusions
	Acknowledgments
	References

