
Language and Program Design for Functional Dependencies

Mark P. Jones
Portland State University

mpj@cs.pdx.edu

Iavor Diatchki
Galois, Inc.

iavor.diatchki@gmail.com

Abstract
Eight years ago, functional dependencies, a concept from the theory
of relational databases, were proposed as a mechanism for avoiding
common problems with multiple parameter type classes in Haskell.
In this context, functional dependencies give programmers a means
to specify the semantics of a type class more precisely, and to obtain
more accurate inferred types as a result. As time passed, however,
several issues were uncovered—both in the design of a language to
support functional dependencies, and in the ways that programmers
use them—that led some to search for new, better alternatives.
This paper focusses on two related aspects of design for func-

tional dependencies: (i) the design of language/type system exten-
sions that implement them; and (ii) the design of programs that use
them. Our goal is to clarify the issues of what functional dependen-
cies are, how they should be used, and how the problems encoun-
tered with initial proposals and implementations can be addressed.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; F.3.3 [Logics and Meanings of Programs]: Studies of Pro-
gram Constructs—Type structure

General Terms Design, Languages

Keywords Functional dependencies, Type functions, Type infer-
ence, Relational databases, Qualified types, Haskell

1. Introduction
Since its origins nearly four decades ago, relational database theory
has relied on the use of functional dependencies to document and
characterize the semantic structure of database tables and to for-
malize concepts such as database normalization [1, 6, 7, 8]. More
recently, around eight years ago, the Hugs and GHC implemen-
tations of Haskell introduced experimental support for annotating
type classes with functional dependencies [18], and for using the in-
formation that they provide to “improve” the types obtained by type
inference [16]. This facility allowed programmers to avoid many of
the ambiguities and inaccurate typing problems that plagued early
implementations of multiple parameter type classes and quickly be-
came one of the more widely used extensions of Haskell 98.
Early users reported “Fun with Functional Dependencies” [13],

but there have also been some problems. Confounded by mis-
understandings, awkward notation, and buggy implementations—

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Haskell’08, September 25, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-064-7/08/09. . . $5.00

some resulting from unexplored interactions with other experi-
mental features—the Haskell community began to explore alterna-
tives to functional dependencies. Examples include proposals for a
more ‘functional notation’ [25] and, most recently, for associated
types [4] and type families [26]. If it is any measure of frustration,
there has even been a (light-hearted) call for “Death to functional
dependencies” [21]! As the community looks to the finalization of
a new language standard, currently dubbed Haskell’, there is still
uncertainty in deciding which of the main contenders—functional
dependencies or type families—should be adopted.
It is a mistake, however, to judge functional dependencies by the

original paper [18], or by the mostly widely used implementations,
because these have not been updated to reflect all of the lessons
that have been learned. The goal of this paper is to provide a more
current perspective, with a focus on two aspects of design: (i) the
design of language extensions to support functional dependencies;
and (ii) the design of programs that use functional dependencies.
As part of this, we describe problems with the original proposal
and implementations, and we suggest ways in which they can be
addressed. We hope that this will help to fill some gaps and to
highlight less well-known details so that the strengths and weak-
nesses of different proposals can be better understood. It is not our
intention to advocate for (or against) adoption or use of functional
dependencies in Haskell’, but rather to clarify key issues that arise
in this part of the design space for Haskell-like type systems.
An unusual feature of this paper is the inclusion of two fairly

substantial appendices that provide technical summaries of “Func-
tional Dependencies in Database Theory” (Appendix A) and “Im-
proving Qualified Types” (Appendix B). We include this material
because our experience suggests that users of functional dependen-
cies in Haskell are not always familiar with the technical founda-
tions on which they are based. For example, the authors of one
published paper [27] asserted that “functional dependencies have
never been formalized” and that relational database theory “has al-
most nothing to do with” functional dependencies for Haskell-style
type classes. In fairness, some parts of their paper discuss new ideas
that go beyond the formalization that is provided by the functional
dependencies of database theory or the theory of improvement for
qualified types. Taken at face value, however, their comments are
too strong and potentially confusing to those who are trying to un-
derstand how different proposals relate to one another. We hope
that the appendices, written specifically for this paper, will pro-
vide readers with a review/reference for these foundations without
overly distracting from our main topic.
The remaining sections of this paper are as follows. In Sec-

tion 2, we summarize background material including the develop-
ment of type classes, the problems that led to the introduction of
functional dependencies, and the formalization of a type system
that supports functional dependencies. Some of the biggest prob-
lems that Haskell programmers encounter with functional depen-
dencies have to do with the reliance on a relational notation of con-
straints. In Section 3, we explain a simple, syntactic technique that

can be used to address these problems by providing a lightweight,
functional notation. Other issues that have caused problems with
functional dependencies are summarized in Section 4. In Section 5,
we turn our attention to the construction of programs that use func-
tional dependencies, drawing inspiration from the theory of rela-
tional databases to suggest some guidelines for good design. Fi-
nally, we conclude with some brief comments in Section 6.

2. Background
Two of the original design goals for Haskell were “to reduce un-
necessary diversity in functional programming languages” and to
produce a design “based on ideas that enjoy a wide consensus”
[14, 22]. The Haskell committee, however, quickly realized that
there was no consensus solution for dealing with the so-called ad-
hoc polymorphism that was needed to deal with key features of
the language such as basic arithmetic and comparison operators, as
well as the show function that converts values into printable strings.
The challenge in each of these cases is to find a mechanism that al-
lows the operators to be used with many different (but not necessar-
ily all) types without requiring the use of a different symbol in each
case; in short, what was needed was a principled and systematic
way to support overloading.
The solution came in the form of type classes, following an orig-

inal suggestion by Philip Wadler and then a more formal develop-
ment by Wadler and Blott [28] and Blott [3]. A type class pairs a set
of types, called the instances of the class, with an associated fam-
ily of member operations that are defined for each instance. Using
Haskell syntax, each type class is introduced by a declaration like
the following standard example for the set of equality types:

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y) -- default implementation

This declaration provides a name, Eq, for the class. The parameter,
a, represents an arbitrary instance that is used in the types of the
(==) and (/=) operators to specify the types of the operators that
should be provided for each instance. These instances are specified
separately via a collection of instance declarations that may be
distributed across the source code of a program or library. For
example, the definition of equality on a primitive type like Int
might be implemented by a primitive function called primEqInt,
and wired into the Eq class using a definition like the following:

instance Eq Int where
(==) = primEqInt

For parameterized types, like tuples for example, equality is often
defined in terms of the equality operations on the parameter types:

class (Eq a, Eq b) => Eq (a, b) where
(p,q) == (x,y) = (p==x) && (q==y)

The clause (Eq a, Eq b) => Eq (a, b) in the first line speci-
fies that, if a is an equality type and b is an equality type, then the
tuple type (a,b) will also be an equality type. The second line pro-
vides evidence for this by showing how the equality operation on
pairs (the occurrence of == on the left hand side of the definition)
can be obtained from the equality operations on a and b (the two
occurrences of == on the right hand side, respectively).

2.1 A Semantics for Class and Instance Declarations

A compiler/type checker for Haskell uses declarations like these to
answer (at least) two different kinds of question about a class:

1. Is a given type t an instance of the class?

2. If t is an instance of the class, then what are the corresponding
implementations of the members?

We will identify the first of these questions with the task of provid-
ing a semantics for the name Eq as a set of types, and the second
with the task of providing a semantics for the name (==) as a map-
ping from instances to implementations. Both are important but, in
this paper, we focus on the first activity. For example, a natural way
to give a meaning to Eq given only the declarations shown above is
as the smallest set of types that satisfies the following equation:

Eq = {Int} ∪ { (a,b) | a ∈ Eq, b ∈ Eq }.
Informally, this gives us the following interpretation for Eq:

Eq = { Int, (Int,Int), (Int,(Int,Int)),
((Int,Int),Int), ((Int,Int),(Int,Int)), . . . }.

Alternatively, we can interpret each instance declaration as con-
tributing a rule to a proof system for deriving statements of the
form Eq t to indicate that t is an instance of Eq. For the in-
stance declarations above, we have two proof rules: �� Eq Int and
Eq a, Eq b �� Eq (a,b) These two approaches provide what one
might consider as semantic and syntactic methods, respectively, for
defining the meaning of a type class. Of course, they are closely re-
lated because any demonstration that a type t is an instance of the
set represented by Eq corresponds directly to a proof that �� Eq t.

2.2 Multiple Parameter Classes

Right from the beginning, there was considerable interest in ex-
tending the type class mechanisms of Haskell to support multiple
parameters. Wadler and Blott [28], for example, offered the follow-
ing code fragment as a hint at how multiple parameters might be
used, in this case, to define an overloaded coercion operator:

class Coerce a b where
coerce :: a -> b

instance Coerce Int Float where
coerce = convertIntToFloat

Many examples like this were posted in the early days of the
Haskell mailing list. There was excitement about how they might
be used in practical Haskell programs, and considerable interest
also in modifying one of the nascent Haskell implementations to
support them. Unfortunately, the arrival of the first such imple-
mentation [19] brought with it the disappointing realization that
many of these examples did not work as hoped! For example, the
simple expression coerce 0, which might have been expected to
produce a Float result of 0.0 from its argument 0 of type Int,
instead produced a term of type (Coerce a b, Num a) => b.
This type is verbose and, more seriously, ambiguous because the
type variable a that is mentioned on the left of the => symbol
does not appear on the right-hand side; standard results guarantee-
ing coherence (i.e., a well-defined semantics for overloaded func-
tions) do not hold for functions with ambiguous types [3, 15].
This problem can be traced to the way that Haskell overloads
numeric literals, allowing them to be treated as having any nu-
meric type, and it can be fixed by adding a type annotation to the
original expression to obtain coerce (0::Int). Even with this
modification, however, the most general type of the expression is
(Coerce Int b) => b, which is again more complicated than we
had intended. A further type annotation can fix this: the expression
coerce (0::Int) :: Float will type check with type Float,
but at this point, with all the added type annotations, it would have
been easier simply to have typed convertIntToFloat 0 (or just
(0::Float), of course). In short, based on examples like this, it
seemed that there would be little practical benefit to multiple pa-
rameter type classes because there was too little coupling between
the parameters to obtain useful types without resorting to fairly
heavy use of type annotations.
Experiences like these discouraged wide use of multiple param-

eter type classes, but there were some notable successes. Work

on modular interpreters, for example, used multiple parameter
classes, without problems, to implement a form of subtyping,
and to categorize monads according to the computational features
that they support [20, 23]. The following fragment illustrates this:
MonadState m s indicates that monad m has a state component of
type s that can be modified using the update function:

class Monad m => MonadState m s where
update :: (s -> s) -> m s

In this case, the loose coupling between the two parameters is
entirely appropriate: it is possible that a single monad m may have
multiple state components s, and it is also possible that a single
state component s may be used in multiple monads m1.

2.3 A Semantics for Multiple Parameter Classes

The previous example hints that the MonadState class represents
a relation between monads and state types. In fact, it is natural to
view a general n-parameter type class as an n-place relation on
types, that is, as a set of n-tuples on types. This even handles single
parameter classes like Eq as a special case, identifying individual
instance types with corresponding 1-tuples. For example, consider
the following declarations that define a plus operator for adding
two arguments, each of which may be either an Int or a Float:

class Plus a b c where
plus :: a -> b -> c

instance Plus Int Int Int where ...
instance Plus Int Float Float where ...
instance Plus Float Int Float where ...
instance Plus Float Float Float where ...

As a relation, the resulting Plus class can be viewed either as a set
of 3-tuples, or, equivalently, pictured in a simple tabular form:

{ (Int,Int,Int),
(Int,Float,Float),
(Float,Int,Float),
(Float,Float,Float) }

a b c

Int Int Int

Int Float Float

Float Int Float

Float Float Float

As another example, consider the following (simplified) attempt to
describe “collection types” as a two parameter class; c is the type
of the collection and e is the type of the elements that it contains:

class Elem c e where
insert :: e -> c -> c
toList :: c -> [e]

instance Elem BitVector Char where ...
instance Eq e => Elem [e] e where ...
instance Ord e => Elem (BST e) e where ...

These declarations introduce the class Elem with instances for
BitVector (as a collection of Char values) and for lists and binary
search trees (the type BST e) of elements, provided that the element
types have an associated equality or ordering, respectively. Once
again, we can picture (a fragment of) the resulting relation as a
table, this time with a column for each of the parameters c and e:

1 Readers familiar with the monad transformer libraries in Haskell can
construct a monad with two distinct state components using a type of
the form StateT s1 (StateT s2 m), or two different monads with a
common state type using StateT s m1 and StateT s m2.

c e

BitVector Char

[Int] Int

[[Int]] [Int]

...
...

BST Int Int

BST [Int] [Int]

...
...

We have drawn this table with two gaps. The first is a place holder
for further Elem instances using lists, while the second is for in-
stances using BST (and also leaves open the possibility of extending
the program with further instance declarations).
A complete Haskell program includes many class and instance

declarations, possibly with interesting recursion or dependencies
between them. Together, these define a set of relations (one for each
class) either as the solution of a set of (mutually recursive) equa-
tions or, equivalently, as a proof system generated from the instance
declarations. A key insight here is that this set of relations can be
interpreted, viewed, and manipulated as a relational database. In
particular, this means that we can leverage interesting results and
tools from database theory (such as those in Appendix A) to help
us specify and use multiple parameter type classes more effectively.
We will begin to see the benefits of this approach shortly when

we introduce and apply functional dependencies to Plus and Elem.
We close this section, however, by observing that the tables we
obtain as the semantics of type classes do differ in two respects
from the tables of a conventional relational database—although
neither is significant for the purposes of this paper. First, the values
in each column are type expressions, so they carry some structure
and are not just atomic values. Of course, we can choose to ignore
such structure so that the tables can still be considered to be in
first normal form. Second, even though each such table is generated
from a finite set of instance declarations, the result may still include
infinitely many rows. From that perspective, it would be even more
accurate to characterize the semantics of type classes as a form of
deductive rather than just a simpler, relational database.

2.4 Leveraging Functional Dependencies

The Plus and Elem examples described in the previous section
suffer from the usual problems that we encounter with multiple
parameter classes. For example, a seemingly simple function to add
three numbers, plus3 x y z = plus x (plus y z), receives
a surprisingly complicated and, more seriously, ambiguous type
(because the variable dmentioned on the left of the => symbol does
not appear on the right):

(Plus a d e, Plus b c d) => a -> b -> c -> e

The next definition illustrates difficulties with the Elem class:

insert2 x y c = insert x (insert y c)

This function attempts to insert two values, x and y, into a single
collection, c, and the inferred type that we obtain is as follows:

insert2 :: (Elem c a, Elem c b) => a -> b -> c -> c

The key point is that this allows the two arguments to have different
types. There is nothing fundamentally wrong with that, and it is cer-
tainly possible to define collections that contain more than one type
of value. For example, a [Either Bool Char] list could be used
to represent a collection of Boolean and character values mixed to-
gether, and we might expect to modify such a collection using a
function insert2 True ’a’. On the other hand, it would also be
reasonable to expect that any given collection contains only one
type of value, in which case insert2 True ’a’ should be treated

as a type error. The programmer who created the Elem class may
have had a particular interpretation in mind, but there is no way to
express this in Haskell. Instead, the standard approach has been to
adopt the former, more general interpretation in which multiple pa-
rameter classes can be instantiated to essentially arbitrary relations.
What can be done if this was not the intended interpretation?
As it happens, the tables for Plus and Elem exhibit some in-

teresting structure, and are not just arbitrary relations on types. For
example, we can see that the result type, c, of a plus operation is
uniquely determined by the types, a and b, of its arguments. In a
similar way, the element type, e in each Elem instance is uniquely
determined by the collection type, c. In database terminology, we
might characterize these observations by means of functional de-
pendencies (Section A.2): {a,b} � {c} and {c} � {e}, respec-
tively. The key idea of Jones [18] was to allow dependencies like
these to be stated as annotations on class declarations as follows2:

class Plus a b c | a b -> c where
plus :: a -> b -> c

class Elem c e | c -> e where
insert :: e -> c -> c
toList :: c -> [e]

By writing these annotations, the programmer documents the ex-
pected structure of each class more precisely, and, in so doing, re-
stricts the ways in which the class may be populated. For example,
with the functional dependency annotations in place, the compiler
should now raise an error if we attempt to add the following in-
stance declaration to the four described previously:

instance Plus Int Int Float where ...

The reason that we cannot allow this is because it conflicts with
the previously declared Plus Int Int Int instance. That is, if
we allowed a program to contain both instances, then the table for
Plus would contain two rows with the same a and b entries but
distinct values for c, violating the asserted functional dependency.
This shows that there is a price to pay for annotating a class with

dependencies, both for programmers (because it limits the ways in
which instances can be defined) and for implementations (because
extra checks are required to ensure that dependencies are not vio-
lated). However, there is also a significant payback because infor-
mation about dependencies can also be used to infer more accurate
types. For example, given two predicates Elem c a and Elem c b
with the same collection type, c, we can immediately infer from the
functional dependency that a=b. This simple “improvement” (see
Appendix B) allows us to infer a more specific type for insert2:

insert2 :: (Elem c e) => e -> e -> c -> c

An immediate consequence is that insert2 True ’a’ will now
trigger a type error. Also, while the plus3 function still receives
the same complicated type, it is no longer necessary to consider
it ambiguous. Although d does not appear on the right hand side
of the type, the Plus b c d constraint that appears in the type is
enough to ensure that d will be uniquely determined by b and c,
thanks to the dependency on Plus. It follows that there is no ambi-
guity because both of those variables do appear on the right of the
=> symbol. For example, if we apply plus3 to three arguments of
type Int, then we can infer that d=Int (applying the dependency
to the declared instance Plus Int Int Int and the inferred pred-
icate Plus Int Int d), and hence, by a similar argument, that
e=Int, without any need for further type annotations.

2 There is no syntactic ambiguity in using the -> symbol here to express
dependencies. With hindsight, however, it might be better to use a different
notation so that dependencies are not so easily confused with regular types.

Since their introduction, functional dependencies have been
used in a wide range of examples like these to avoid problems
with ambiguity and imprecise types in practical uses of multiple
parameter classes. The main purpose of a dependency annotation
is to let the designer of a class specify its semantics more precisely.
Neither one of the two definitions that we have shown for Elem,
for example, is intrinsically ‘better’ than the other. However, by in-
cluding support for dependency annotations in the language, we are
allowing designers to consider and document the choice between
different alternatives explicitly as part of the source text.

2.5 Formalizing Functional Dependencies

This section summarizes the formal treatment of functional depen-
dencies for Haskell and assumes familiarity with the notation and
results of Appendices A and B. Readers who are less interested in
theoretical aspects are encouraged to skip directly to Section 2.6.
We begin with some notation. We assume that there is a col-

lection of class names C, each with an associated set of parameter
names/indices, IC, and an associated set of functional dependen-
cies, FC. We also assume that predicates are written in the form C t,
where t is a tuple of types indexed by IC. The notation FC can be
generalized to describe the set of induced functional dependencies,
FP, on the type variables, TV(P), of a predicate set P:

{ TV(tX) � TV(tY) | (C t) ∈ P, (X � Y) ∈ FC }.
This has a straightforward reading: if X � Y, and if the variables
in tX are known, then the components of t at X are also known, and
hence so are the components, and thus the variables, in t at Y .

2.5.1 Validating Instance Declarations

Our first task is to formalize conditions to ensure that the declared
instances for each class C are compatible with the declared depen-
dencies in FC. This has two parts:

• Covering: To ensure that instance P => C t where ... is
valid, we must check that TV(tY) ⊆ (TV(tX))

+
FP
for each

(X � Y) ∈ FC. Intuitively, this ensures that values for any
variables in tY are uniquely determined by the ways in which
the variables in tX are instantiated, either because they appear
in tX directly, or because they can be inferred from variables in
tX using the dependencies induced by P.

• Consistency: Given a second instance Q => C s where ...,
and a dependency (X � Y) ∈ FC, then we must ensure that
tY = sY whenever tX = sX . In fact, on the (reasonable) as-
sumption that the two instances will normally contain type
variables—which could later be instantiated to more specific
types—we will actually need to check that: if tX and sX have a
most general unifier U, then UtY = UsY .

These two properties, taken from Jones [18] where they appeared
without identifying names, are sufficient to guarantee that all of
the declared instances and dependencies are compatible. The rules
are not strictly necessary to ensure compatibility because they do
not take full account of the contexts provided by P and Q. More
specifically, if we can be sure that P is not satisfiable in the cover-
ing condition, or that UP ∪ UQ is not satisfiable in the consistency
condition, then we do not need to enforce covering or consistency,
respectively, to ensure compatibility with declared dependencies.
However, given the open nature of Haskell type classes (i.e., the
ability to extend existing classes using modules that provide new
instances), it is impossible to ensure that a set of predicates will re-
main unsatisfiable. For practical purposes, therefore, we will con-
sider covering and consistency as both necessary and sufficient.
The original statement of covering [18] required only TV(tY) ⊆

TV(tX). That is weaker than the version presented here, which
allows the right hand side to be enlarged by taking its closure

with respect to dependencies induced by P. Soon after the original
paper was written, we realized that its formulation of covering
was too weak to support some interesting applications, and the
generalized version shown here was developed and implemented
in Hugs (with credit to Jeff Lewis). These conditions were also
studied and generalized independently by Sulzmann et al. [27], who
reached the same ultimate conclusion. We have adopted their labels
for these two rules, but with one subtle change. Specifically, we
have renamed their ‘coverage’ condition as ‘covering’; the intent
of this rule is to show that all ‘dependent’ variables are ‘covered’
by ‘determining’ variables, so the ‘cover’ prefix is appropriate, but
it has little to do with standard notions of ‘coverage’.

2.5.2 Improving Inferred Types

There are two ways that a dependency (X � Y) ∈ FC for a class C
can be used to help infer more accurate types:

• Suppose that we have two predicates C t and C s. If tX = sX ,
then tY and sY must be equal.

• Suppose that we have an inferred predicate C t, and an instance
instance . . . => C t′ where If tX = St′X , for some
substitution S (which can be calculated by one-way matching),
then tY and St′Y must be equal.

In both cases, we can use unification to ensure that the equalities are
satisfied. If unification fails, then we have detected and can report
a type error. Otherwise we have obtained an improving substitu-
tion (Section B.4). During type inference, we can apply these two
rules repeatedly until no further opportunities for improvement are
found, appealing to Theorems 1 and 2 in Appendix B for guarantees
of completeness and soundness, respectively.

2.5.3 Detecting Ambiguity

The type checker must reject any program with an ambiguous prin-
cipal type because of potential for semantic ambiguity [3, 15]. The
standard definition [22, Section 4.3.4] labels a type P ⇒ τ as am-
biguous if there is a variable a ∈ TV(P) that is not also in TV(τ);
the intuition here is that, if there is no reference to a in the body of
the type, then there will be no way to determine how it should be
instantiated. More relaxed notions of ambiguity can be used, how-
ever, in situations where the potentially ambiguous variable amight
be resolved by some other means [15, Section 5.8.3]. So, in fact, we
need not insist that every a ∈ TV(P) is mentioned explicitly in τ , so
long as it is uniquely determined by the variables in TV(τ). More
precisely, if we are working with functional dependencies, then the
type P ⇒ τ is ambiguous if, and only if TV(P) �⊆ (TV(τ))+FP .

2.6 Beyond Functional Dependencies

By inspecting the table for the Plus class in Section 2.3, it is not
hard to see that there are other properties of the entries that cannot
be captured by functional dependencies. For example:

• If Plus a a b, then a=b. This translates to an improvement
rule (See Section B.4): [b/a] improves Plus a a b.

• If Plus a b Int, then a=b=Int. This translates to an im-
provement rule: [Int/a, Int/a] improves Plus a b Int.

As can be seen, however, both of these properties can be described
in terms of improvement. These examples demonstrate clearly that
there is potential to go beyond what functional dependencies can
offer, even if we remain within the framework of improvement for
qualified types. To see how these rules might be applied in practice,
consider the following pair of functions, each of which provides a
method for doubling an input argument:

double1 x = plus x x
double2 x = [0..] !! plus x x

For double1, we can initially infer (Plus a a b) => a -> b,
and then improve that to obtain (Plus a a a) => a -> a using
the first rule above. For double2, we can go further (knowing that
the list indexing operation, !!, expects an Int as its right argument,
and that [0..] produces a list of type (Num a) => [a]) and use
the second rule to infer double2 :: (Num a) => Int -> a.
In fact, the original proposal for functional dependencies in

Haskell was conceived as a generalization of the work on para-
metric type classes by Chen et al. [5]. Functional dependencies
were never intended to serve as an ultimate mechanism for im-
proving qualified types, but were just one ‘sweet spot’, hitting a
nice compromise between expressive power and tractability, while
also leveraging results from database theory. The examples de-
scribed above show that it is possible, and perhaps even useful
to go beyond what can be obtained with functional dependencies,
but also raise questions about how these alternative forms of im-
provement might be expressed in source code. One option might
be to explore the possibility of introducing general, user defined
improvement rules along the lines suggested, but not subsequently
developed by Jones [17]. With this approach, we would extend
the language with a new declaration form, improve P using E,
where P is a set of predicates and E is a list of equalities. For
example, the first of the two rules above could be written as
improve (Plus a a b) using a = b. The biggest challenge
here is likely to be in figuring out general, algorithmic techniques to
check for compatibility between sets of declared instances and im-
provement rules. Another—perhaps less expressive but also more
tractable—possibility might be to extend the syntax for annotating
class declarations to capture other forms of improvement beyond
functional dependencies. Adopting a hypothetical syntax for ‘im-
plication annotations’, we can give a revised definition for Plus
that captures all of the properties described previously:

class Plus a b c | (a b -> c),
a=b => b=c,
c=Int => a=Int,
c=Int => b=Int where ...

This idea came out of an email correspondence with Martin Sulz-
mann and Simon Peyton Jones. Indeed it seems that their frame-
work for constraint handling rules [27] may be a good tool to help
explore more advanced applications for improvement like these.

3. Functional Notation
One aspect of functional dependencies in Haskell that has perhaps
caused more difficulty than any other is the apparent reliance on a
relational notation for predicates, which some have even suggested
is inappropriate for a functional programming language. Less sub-
jectively, relational notation can lead to long and obfuscated types.
In their work on bitdata, for example, Diatchki et al. [12] proposed
the following operator for concatenating two bit strings:

(#) :: Add m n p => Bit m -> Bit n -> Bit p

Here, m, n, and p range over natural numbers (technically, over
types of kind Nat); Bit m is the type of bit strings with pre-
cisely m bits; and Add is a three parameter class that is defined
so that Add m n p holds if, and only if m+n=p. In particular, an
Add a b c predicate has a functional dependency {a, b} � {c}.
Already, this notation is awkward because it is not possible to make
sense of the final result type, Bit p, without also considering the
predicate Add m n p. The situation does not improve for functions
like (\x y z -> x # (y # z)), with most general type:

(Add m q r, Add n p q)
=> Bit m -> Bit n -> Bit p -> Bit r

To understand this type, it is necessary to ‘reverse engineer’ the
constraint set. Once we recognize that q is simply a name for n+p,
and that r is, in turn, a name for the sum m+q and hence m+n+p,
then the type becomes reasonably clear. These relationships, how-
ever, are not immediately obvious from a quick glance at the type.
It is not hard to argue that there is a better name for n+p than an

arbitrarily selected, fresh variable name! Because of the functional
dependency on Add, we know that q is uniquely determined as a
function of n and p, so it makes good sense to adopt a correspond-
ingly functional notation. Taking a lead from the name of the class,
we will write Add n p for the unique type q such that Add n p q
(we will return shortly to consider the possibility that there might,
in fact, be no such q). Note that there is no problem in using the
same name, Add, for both a type and a predicate: The definition
of Haskell already places type constructors and type classes in the
same namespace [22, Section 1.4], and we can distinguish between
the two uses of Add from the context in which they appear: In a
class constraint, Add is a three place predicate; in a type expres-
sion, it is an arity two ‘function’ on types. Using this notation, we
can write the type of the (#) operator more succinctly as:

(#) :: Bit m -> Bit n -> Bit (Add m n)

and the type of (\x y z -> x # (y # z)) as:

Bit m -> Bit n -> Bit p -> Bit (Add m (Add n p))

These types are shorter, and easier to understand than the originals,
and provide a strong argument for adopting a functional notation.

3.1 Lightweight Functional Notation

Motivated by examples like these, Schrijvers et al. [26] have pro-
posed an extension of Haskell that adds new syntax and type system
machinery for dealing with open type-level functions. However,
as observed by Diatchki and Jones [11] and subsequently elabo-
rated and implemented by Diatchki [10, Chapter 5], it is possible
to obtain essentially the same functionality without significant ad-
ditions to a type system that supports functional dependencies—
or, more generally, improvement, as in Appendix B—using only
a lightweight syntactic abbreviation. The general case is that, if
C a1 . . . an is an n parameter class and the last parameter, an, is
functionally dependent on (a subset of) the first n − 1 parameters,
then we will allow the use of C t1 . . . tn−1 in type expressions
as a notation for the unique type t such that C t1 . . . tn−1 t. In
practice, this can be implemented by replacing each occurrence
of C t1 . . . tn−1 in a type with a freshly generated type vari-
able a of the appropriate kind, and then adding a new constraint,
C t1 . . . tn−1 a to the context. This, of course, is exactly what pro-
grammers were forced to do by hand in the original system, but now
an implementation can handle the translation automatically instead.
It is important to realize that, so far as the underlying type system
is concerned, this is just a matter of how types are presented to the
user, and not a substantive change. A programmer may write the
type of (#) in the abbreviated form, and the same notation can be
used in types reported to the user, for example, in type error mes-
sages. This should provide a friendlier notation for programming
with functional dependencies in many applications. However, for
the purposes of type inference or checking, types are still handled
exactly as if they were written in the underlying, relational form.
To illustrate how this works in practice, we repeat the definition

of the Elem class from Section 2.3 using the functional notation:

class Elem c e | c -> e where
insert :: Elem c -> c -> c
toList :: c -> [Elem c]

The first line of this declaration still mentions the two class pa-
rameters, but the remaining lines use the expression, Elem c in-

stead of the element type e. If the reader was wondering previously
why we chose to call this class Elem instead of, say, Collects,
then the reason should now be clear: using the functional notation
Elem c is a way of writing the element type of the collection c. For
this particular declaration, the functional notation results in slightly
longer (but, arguably, easier to read) types for each of the members.
A stronger case can be made for the insert2 function from Sec-
tion 2.4 whose type can now be rewritten as follows:

insert2 :: Elem c -> Elem c -> c -> c

Expanding the notation by replacing each occurrence of Elem c
with a fresh type variable we obtain the following type:

insert2 :: (Elem c a, Elem c b) => a -> b -> c -> c

At first glance, this seems wrong because it allows the two argu-
ments to have different types. However, because of the functional
dependency, we can quickly deduce that a=b, and then conclude
that the expanded type is equivalent to the original, qualified form:

insert2 :: (Elem c e) => e -> e -> c -> c

3.2 Comparison with Other Proposals

It is instructive to see how the definition of Elem might look
with other proposals. Using an associated type [4], for example,
a suitable declaration might be as follows:

class Collects c where
type Elem c
insert :: Elem c -> c -> c
toList :: c -> [Elem c]

This syntax trades a functional dependency annotation for an inner
declaration of the Elem type, but is otherwise very similar to the
version in the previous section. One difference is that it introduces
two new names, Collects and Elem, where our version uses only
one. While there is some economy in using only one name, there
may occasionally be reasons to prefer two. We can easily handle
such cases using an extra class:

class Collects c where
insert :: Elem c -> c -> c
toList :: c -> [Elem c]

class Collects c => Elem c e | c -> e

In the associated types proposal, each instance of Collects must
provide a corresponding definition for the Elem type. The same
applies for the version that we have just given using two classes ex-
cept that the definition of an Elem associated type will be replaced
by the definition of an instance of the Elem class.
Using open type functions [26], we again have two names, but

this time Elem denotes a type family (i.e., an open, or extensible
mapping from collection types to element types):

type family Elem c
class Collects c where

insert :: Elem c -> c -> c
toList :: c -> [Elem c]

Again, there is only a small syntactic delta from the definition of
Elem using functional dependencies.
As these examples suggest, the different proposals are notation-

ally very similar, although there are some cases where associated
types or type functions require the introduction of more names than
are needed with functional dependencies. Apart from minor differ-
ences in syntax, however, we believe that these approaches are es-
sentially interchangeable, and that they have the same expressive
power. One disadvantage of associated types and type functions
is that they introduce new language mechanisms whose interaction

with the rest of the type system—including type classes and higher-
kinded polymorphism—must then be explored and documented.
The framework of functional dependencies, by comparison, avoids
this because it is already fully integrated with the type system.

3.3 When Relational Notation Cannot Be Avoided

Although appealing, it is important to note that there are some cases
where functional notation, by itself, is not enough. Consider, for
example, the insx function, as described by Schrijvers et al. [26],
that inserts an ’x’ character into a collection, c:

insx :: (Elem c Char) => c -> c
insx c = insert ’x’ c

There is no way to avoid a relational constraint here because the
collection type is not a function of the element type. Dealing with
this example using type functions is more involved and led Schri-
jvers et al. [26] to introduce a generic, type equality predicate of the
form t1 ~ t2 so that they can give the following type for insx:

insx :: (Collects c, Elem c ~ Char) => c -> c

This approach, however, has two problems. First, it results in a type
that has two predicates where only one is really needed; this is a
result of having defined the Elem type family without reference
to the Collects class. Second, it leads the authors into a much
more complicated framework for solving entailment problems be-
cause it has to deal with all the challenges of automated reasoning
with a reflexive, symmetric, transitive equality operator. For exam-
ple, it becomes necessary to consider how constraints of the form
F a ~ G (F a) should be handled, where both F and G are unary
type functions. The problem here, of course, is that a naive unfold-
ing of the equality could lead to non-termination by rewriting the
type F a to G (F a) and then to G (G (F a)), and so on.
Functional dependencies avoid these kinds of problem by adopt-

ing a much simpler language of constraints. There is no need, for
example, to introduce equality constraints because we already have
the necessary relational notation to fall back on when it is needed.
With functional dependencies, the F a ~ G (F a) constraint be-
comes F a (G (F a)), which then simplifies, by expanding the
abbreviation for Gwith a new variable c, to (F a c, G (F a) c),
and then, by a further expansion, to (F a c, G d c, F a d).
Finally, using the assumed dependency for F, we can conclude
that c=d, and hence obtain the final result (F a c, G c c). No
further expansion is possible at this point, and so the process ter-
minates without further ado.
Although they may be useful for other applications, we do

not believe that fully general equality constraints are needed to
support functional notation. Taking a lead from the work on
type functions, however, it might be worth allowing the notation
C t1 . . . tn−1 ~ a to be used as special syntax for an n-parameter
class in which the last parameter is functionally dependent on
the first (n − 1) parameters. With this notation, we can rewrite
the definition of Elem one more time with the underlying func-
tional dependency being implied by the use of the ~ symbol:
class Elem c ~ e where It should be strongly empha-
sized, however, that this notation does not provide a general equal-
ity constraint. The constraint Elem c ~ e is just another way of
writing Elem c e, and we cannot even assume, for example, that
the expression e ~ Elem c is syntactically well-formed.

3.4 Caveats for Functional Notation

Up to this point, Haskell programmers have always been able to
make sense of type expressions like T a as the application of a type
constructor, T, to a parameter, a, even if they have never seen the
definition of T. This will change, however, if we adopt any one of
the proposals for functional notation discussed previously because

now programmers must be prepared to deal with the additional
possibility that T is actually an associated type, a type family, or a
type class. Moreover, use of these functional notations may conceal
the use of overloading, and of associated partiality. For example,
we can write the type of insert as Elem c -> c -> c, which,
if we assume the original conventions of Haskell, looks like a fully
polymorphic type in which c can be instantiated to any type. The
truth, of course, is that this type will only make sense for certain
choices of c, and that the function is actually overloaded (which, if
forgotten, could result in some puzzling error messages courtesy of
Haskell’s monomorphism restriction). In this respect, the original,
relational version of the type, (Elem c e) => e -> c -> c,
while more verbose, is also more honest because it reflects the
behavior of insert more directly. Although few will regard these
issues as show-stoppers, it is important to recognize that none of
these proposals for functional notation comes without a cost.

3.5 Type Synonyms as a Special Case

Type synonyms are a special kind of type function that have been
supported in Haskell since the first versions of the language. A
typical type synonym declaration takes the form:

type T a1 . . . an = t.

The intention here is that a type expression of the form T t1 . . . tn
is just an abbreviation for the corresponding substitution instance,
[t1/a1, . . . tn/an]t, of the right hand side type, t. Although type
synonyms are simple and natural to use, they can be quite awkward
to implement because of the tension between ease of type checking
and quality of error messages: It would be easy to handle type syn-
onyms if they were fully expanded before type checking, but then
any types appearing in error messages would also be expanded,
which might therefore be harder for programmers to understand.
Perhaps unsurprisingly, we can view type synonyms as a special

case of the functional notation described here. The example above,
for example, corresponds to a pair of declarations, one that defines
T as an (n+ 1)-parameter class:

class T a1 . . . an a | a1 . . . an -> a,

and another that defines a single instance of this class:

instance T a1 . . . an t.

Although this is unlikely to simplify the task of implementing type
synonyms in a significant way, it is helpful to see that there is poten-
tial for sharing implementation costs (and conceptual understand-
ing) for functional dependencies with those for type synonyms.

3.6 Functional Notation without Dependencies

The technique that we have been using to support functional nota-
tion has two components: (1) replacing a ‘partially applied’ predi-
cate in a type with a fresh type variable and a fully applied predicate
in the associated context; and (2) using functional dependencies to
improve the resulting type. In fact, it is possible to decouple these
two pieces, and to allow partially applied predicates in type expres-
sions even if there is no associated dependency. Without practical
experience, it is hard to know whether this will turn out to be a
good idea, or a step too far that will only confuse unsuspecting
newcomers. Nevertheless, we believe that it is interesting enough
to document this possibility here for future consideration.
The basic idea is to allow an expressions like C t1 . . . tn−1 to

be used in type expressions where C is any n-parameter type class.
Each such expression can be replaced with a fresh type variable,
a, so long as we also add a new predicate, C t1 . . . tn−1 a to the
associated context. The difference from what we have described
previously is that we will allow this notation to be used even if
there are no dependencies for the class C. In particular, this includes

standard classes like Eq, Show, and Monad. The following list shows
how the types of some standard Haskell operators appear when
written, more concisely, in this notation:

show :: Show -> String
fromIntegral :: Integral -> Num
fromInteger :: Integer -> Num
ceiling :: RealFrac -> Integral
properFraction :: RealFrac a => a -> (Integral, a)
return :: a -> Monad a
lift :: Monad m => m a -> MonadTrans m a
pi :: Floating

One problem with this notation is that it may be hard for pro-
grammers to understand types like Integral -> Bool because
the range and domain types look so similar, at least from a
purely syntactic perspective. To interpret this type fully, a reader
has to know that Integral is a class while Bool is a regu-
lar type. And, of course, there are many places where this no-
tation cannot be used. For example the type of the equality
operator, Eq a => a -> a -> Bool cannot be abbreviated to
Eq -> Eq -> Bool, which, instead, abbreviates a different type,
(Eq a, Eq b) => a -> b -> Bool). This notation is also not
applicable in types where a single variable is subject to multiple
class constraints, such as (C a, D a) => a -> a.

4. Miscellaneous Further Issues
This section provides a brief summary of the technical problems
with the original proposal/implementation of functional dependen-
cies that are not already discussed elsewhere in this paper.

Type Checking. Although the implementation of functional de-
pendencies in Hugs was based on the type system of SIQT (See
Appendix B), some parts of the implementation were not properly
updated when it was modified to support functional dependencies.
For example, the following code is not accepted by Hugs:

class C a b | a->b where ...
instance C Int Bool where ...

f :: C Int a => a -> a
f x = x && True

According to the theory of SIQT, the declared type for f that
is shown here is perfectly valid, and equivalent to the inferred
type Bool -> Bool. The Hugs implementation, however, uses
an older, purely syntactic algorithm to determine equivalence of
declared and inferred types, without allowing for the possibility of
improvement, and hence rejects the declared type for f. Although
it doesn’t really matter in this case (because a programmer can
substitute the more specific type for f in the source), there are some
situations—for example, in the body of an instance declaration—
where this behavior can cause the type checker to reject valid code.
We consider this to be a bug in Hugs that should be fixed to ensure
compliance with the parts of SIQT theory that it is supposed to
implement! (GHC, by the way, exhibits similar behavior.)

Implied Dependencies. Haskell allows classes to be defined in
a hierarchy, but the design that is used for functional dependency
annotations does not reflect this. The following code, for example,
defines a class called C, and a subclass of C called D.

class C a b | a->b where ...
class C a b => D a b where ...

The class C shown here carries a functional dependency, and it is
not actually possible to define an instance of D that does not also
satisfy the same dependency. However, nothing in the declaration
of D reflects the fact, other than implicitly through the use of C as

a superclass. We consider this to be a design error, and believe that
programs will be easier to understand if every class is annotated
with dependencies that are at least as strong as those implied by its
superclass. For the particular example shown here, this would mean
that the definition of D should be written as:

class C a b => D a b | a -> b where ...

Decidability and Termination. Although it is not strictly re-
quired, it is certainly desirable to ensure that the process of type
checking will terminate (that is, without the need to set some ar-
bitrary bound on complexity within the type checker, and without
relying on user intervention). This can often be accomplished by
imposing restrictions on the syntactic form of class and instance
declarations, albeit at the cost of limiting expressiveness. We do not
address this topic further here, but note that it has already received
careful attention from others, including Sulzmann et al. [27].

Interaction with Other Features. Implementations of Haskell of-
ten support a range of experimental features and extensions to the
type system such as overlapping instances, higher-rank polymor-
phism, existential types, extensible records, and GADTS. Unfortu-
nately, the interactions of these features with functional dependen-
cies have not, to the best of our knowledge, been formally studied.
Although we do not have any particular reason to expect difficul-
ties, some due diligence is required to work through the details.

5. Program Design with Functional Dependencies
When functional dependencies were first introduced, we paid little
attention to explaining how they should be used in program design.
In database systems, functional dependencies are an important tool
for working with large tables because they make it possible to auto-
mate aspects of analysis and schema design. We did not expect that
it would be necessary to spend time on such issues for type classes
where there are typically many fewer columns, and where program-
mers would more naturally gravitate to designs. With hindsight, of
course, these were not realistic expectations, and we now recog-
nize that there is much to be gained from articulating and sharing
principles for good design. In this section, we begin that process, al-
beit briefly, by considering the use of dependencies in two specific
pieces of widely used Haskell code, both of which are available for
download from http://hackage.haskell.org.

Dependencies not required. Version 1.1.0.0 of MTL, the Haskell
Monad Transformer Library, uses multiple parameter type classes
to categorize different families of monad. The MonadState class,
for example, that was discussed in Section 2.2, is one such example,
except that the version in MTL attaches a dependency from the
monad type to the state type. This is unfortunate because it limits
the applicability of MonadState to monads with only a single
state component. It is also ironic because, as described previously,
examples like MonadState were among the few early applications
of multiple parameter type classes that worked well, without any
need for additional type annotations [20, 23]!

Using normal forms. Version 3.0.0 of the Parsec library has been
generalized to allow parsing over multiple monad and token types,
with the following Stream class playing a central role:

class Monad m => Stream s m t | s -> t where
uncons :: s -> m (Maybe (t,s))

From a database perspective, however, the dependency leaves
m completely unconstrained, and we can conclude that Stream
is not in second normal form (A.4). The types of some of the
most commonly used Parsec combinators are also a little unusual.
For example, the following type signature includes a constraint
Stream s m t, but the variable t is not used in the main type:

many :: Stream s m t
=> ParsecT s u m a -> ParsecT s u m [a]

There is no ambiguity here—t is uniquely determined by s—but
we might still interpret this an indicator of potential problems. In
fact, we can obtain second normal form by decomposing Stream
into two separate pieces, as shown by the following pair of class
declarations (and directly reflecting the example in Section A.4):

class (Monad m) => Stream s m
class Tok s t | s -> t where

uncons :: (Stream s m) => s -> m (Maybe (t,s))

We have used this observation to guide a refactoring of the Parsec
codebase to use the two classes shown here in place of the original
three parameter version of Stream. The refactoring goes through
smoothly, and results in simplified types for many of the exported
combinators, including the many function mentioned previously,
where the original Stream s m t is replaced with Stream s m,
appropriately avoiding any mention of t. Although a programmer
may, perhaps, have reasons to adopt a design that is not in normal
form, in this case it appears to result in a program that is easier to
understand (because the types are simpler) and easier to extend (be-
cause we can add instances to either Stream or Token without be-
ing required to add instances to both). This suggests that designers
of classes with dependencies may be able to simplify and improve
their code by taking account of normalization.

6. Conclusions
The original proposal for functional dependencies provided Haskell
programmers with a tool that they could use to work more effec-
tively with multiple parameter type classes. It also provided a boost
to the exploration of programming techniques that rely on a notion
of computation at the level of types. Some aspects, however, have
proved to be difficult to understand, or awkward to apply. The up-
dated design that we have described in this paper addresses those
problems in two key ways, first by emphasizing the use of a simple
functional notation that provides a more comfortable syntax (Sec-
tion 3), and second by providing clearer guidelines on the use (and
potential misuse) of functional dependencies (Section 5). Overall,
the technical changes to the original proposal are relatively minor,
but we believe that they will have a significant impact on usability.
As for the debate over whether the next version of Haskell

should adopt functional dependencies or type functions, we ob-
viously believe that there are very good reasons to adopt the for-
mer, including the direct integration with type classes, and the
lightweight treatment of functional notation that it provides. That
said, if the selection is made carefully, on the basis of accurate in-
formation, and with benefit to the entire Haskell community as the
primary consideration, then we will happily accept any outcome!

Appendices

A. Functional Dependencies in Database Theory
Our treatment of functional dependencies in Haskell is based di-
rectly on ideas that were originally introduced many years ear-
lier in the study of relational databases [1, 6], and that are well-
documented in standard textbooks [2, 24]. Our experience, how-
ever, is that Haskell developers who are using functional depen-
dencies are not always familiar with that material. This appendix
is intended to fill that gap by providing a summary of functional
dependencies in the context of relational databases.

A.1 Relations and Relational Databases

A relational database can be described by a family of relations, each
of which may be drawn as a table with zero or more rows. The

following table, for example, captures the results of a hypothetical
survey of a company’s employees about how they get to work, and
thus corresponds to a relational database with only one table.

SURVEY
Employee Residence Transport
Alice Harbortown Car
Alice Harbortown Walk
Bob Hillville Bike
Bob Hillville Bus
Bob Hillville Car
Carol Hubford Bus
David Hubford Train

This table has three columns and seven rows. Individual rows may
be described by tuples of the form (e, r, t), where e identifies an
employee, r is the town where they live, and t is a method of
transport. More generally, a database may be described by a schema
that gives a name for each table as well as a name (and perhaps also
a type) for each column. From a Haskell programmer’s perspective,
a schema is like a type that describes a set of possible databases.
More formally, a table T is a relation over an indexed family

of sets {Di}i∈I , where I is a set of index values (i.e., column
headings) and Di is the type of values in column i. Our SURVEY
table, for example, can be viewed as a relation indexed by the set
I = {Employee, Residence, Transport}. The elements of such a
table are tuples, each of which is an indexed family of values {ti}i∈I
such that ti ∈ Di for each i ∈ I. Note that, if I = {1, . . . , n}, then
this reduces to the familiar special case where tuples are values
(t1, . . . , tn) ∈ D1 × . . . × Dn. If i ∈ I, then we write ti for the ith

component of t. Similarly, if X ⊆ I, then we write tX , pronounced
“t at X”, for the projection of the tuple t onto the columns in X.
Intuitively, tX just picks out the values of t for the indices appearing
in X, and discards any remaining components.

A.2 Functional Dependencies

A database schema will typically impose certain integrity con-
straints to characterize the permitted structure of individual database
tables more precisely. In the SURVEY table, for example, it is
reasonable to assume that each employee has only one home
town. We can capture this as a functional dependency, written
{Employee} � {Residence}, which asserts that, if two rows in
SURVEY have the same Employee, then they also have the same
Residence. On the other hand, it is clear that there is no such de-
pendency between the Employee and Transport columns because
some employees use more than one method of transport. Adding
dependencies to a schema restricts the ways in which tables can
be populated, and a good database management system will ensure
that the dependencies are maintained as the tables are extended or
updated. For example, if David moves to Hillville, then we could
replace the tuple t1 = (David,Hubford,Train) in SURVEY with a
new tuple t2 = (David,Hillville,Train), but we should not just add
t2 to the existing table because that would violate the dependency.
A particular table may sometimes satisfy ‘accidental’ depen-

dencies that we would not wish to include in the schema. As it
happens, for example, the combination of Residence and Trans-
port is enough to determine a unique Employee in the given SUR-
VEY table. This observation can be captured by the dependency
{Residence,Transport} � {Employee}. It is unlikely, however,
that we would want to assume or enforce this dependency because
that would prevent us from including rows for distinct employees
that happen to have the same Residence and Transport. It is the job
of the database designer, using their knowledge of the application
domain, to identify the set of functional dependencies that should
be associated with a given table.

A.3 Formalizing Functional Dependencies

Formally, if T is a table indexed by a set I, then a functional depen-
dency is a pair of the form X � Y, read as “X determines Y ,” where
X and Y are both subsets of I. If X and Y are known sets of elements,
say X = {x1, . . . , xn} and Y = {y1, . . . , ym}, then we will often
write the dependency X � Y in the form x1 . . . xn � y1 . . . ym.
If a table T satisfies a dependency X � Y , then the values of any
tuple at Y are uniquely determined by the values of that tuple at X.
We formalize this as follows (pronouncing |= as “satisfies”):

T |= X � Y ⇐⇒ ∀t, s ∈ T .(tX = sX) ⇒ (tY = sY).

This also extends to sets of dependencies:

T |= F ⇐⇒ ∀(X � Y) ∈ F.T |= X � Y .

For example, if we take I = {1, 2}, then the tables satisfying
{{1} � {2}} are just the partial functions from D1 to D2, and the
tables satisfying {{1} � {2}, {2} � {1}} are the partial injective
functions from D1 to D2.
It is also possible to reason about functional dependencies using

inference rules for reflexivity, transitivity, and augmentation:

X ⊇ Y

X � Y
X � Y Y � Z

X � Z
X � Y

X ∪ Z � Y ∪ Z
These are sometimes referred to as Armstrong’s Axioms after
William Armstrong [1], who showed that they are correct and com-
plete. These rules can also be extended to sets of dependencies;
we will write F1 � F2 if all of the dependencies in F2 can be de-
duced from the dependencies in F1. If we have both F1 � F2 and
F2 � F1, then the two sets of functional dependencies are equiva-
lent, and we refer to either one as a cover for the other. It is easy
to find algorithms for computing minimal/optimal covers for sets
of functional dependencies in standard textbooks on the theory of
relational databases [2, 24]. Such covers are of practical interest
because they provide the most concise possible characterization of
a set of dependencies.
The closure, J+F , of a set J ⊆ I with respect to a set of functional

dependencies F is another useful, textbook concept from the theory
of relational databases, and is the smallest set such that:

• J ⊆ J+F ; and

• If (X � Y) ∈ F, and X ⊆ J+F , then Y ⊆ J+F .

For example, if I = {1, 2}, and F = {{1} � {2}}, then {1}+
F =

I, and {2}+
F = {2}. Intuitively, the closure J+F is just the set of

indices that are uniquely determined, either directly or indirectly,
by the indices in J and the dependencies in F. Closures are easy to
compute using a simple, fixed point iteration.

A.4 Database Normalization

Although the SURVEY table in Section A.1 may be sufficient for
the original application, it also suffers from some structural prob-
lems. For example, the table duplicates Residence information for
Alice and Bob. As a result, if we want to change the Residence for
Bob, then we must update three distinct rows to ensure that we do
not violate the {Employee} � {Residence} dependency. Another
problem is that we cannot add new tuples unless we have informa-
tion for all three columns. If a new employee, Elly from the town
of Hillville, joins the company, then we cannot add information
for her to the table until we have also determined what methods of
transportation she will be using.
A range of techniques—referred to as database normalization—

have been developed to guide the design of relational database ta-
bles that avoid problems like these. The fact that a given database
is not in normal form is not an absolute indicator of bad design,
but it is a strong hint that a better design might be possible. The

specific problems with SURVEY, for example, are a symptom of
the fact that the table is not in (second) normal form. In this case,
however, it is possible to decompose SURVEY into two distinct
tables, HOMETOWN and COMMUTES, without loss of information:

HOMETOWN
Employee Residence
Alice Harbortown
Bob Hillville
Carol Hubford
David Hubford

(e, r, t) ∈ SURVEY
⇐⇒ (e, r) ∈ HOMETOWN
∧ (e, t) ∈ COMMUTES

COMMUTES
Employee Transport
Alice Car
Alice Walk
Bob Bike
Bob Bus
Bob Car
Carol Bus
David Train

The formula here expresses the relationship between the original
and the normalized versions of the database. In the terminology of
relational databases, it expresses SURVEY as the relational join of
HOMETOWN and COMMUTES. It is clear that the normalized ver-
sion avoids duplication of Residence information because it col-
lects that data independently from Transport values in the HOME-
TOWN table, which includes just one row for each Employee. In ad-
dition, it is possible to add a tuple (Elly,Hillville) to HOMETOWN
without requiring any information about how Elly travels to work.
The first, second, and third normal forms were introduced by

Edgar Codd [6, 7, 8]; several higher normal forms have been in-
troduced subsequently. To be in first normal form (1NF), a table
should correspond directly to a relation; for example, it should not
include duplicate rows. It is also common to require that the val-
ues in each tuple are, in some sense, ‘atomic’, suggesting that set-
valued columns and nested tuples, for example, should not be al-
lowed. All of the tables that we consider in this paper are trivially
assumed to be in 1NF.
To define the second and third normal forms more precisely, it

is helpful to introduce some additional terminology. If T is a table
indexed by I with a set of functional dependencies F, then we say
that a set K ⊆ I is a superkey if K+

F = I; in other words, K is
a superkey if the fields in K are sufficient to identify tuples in T
uniquely. If, in addition, K is minimal (i.e., no proper subset of K
is a superkey), then we say that it is a key for T . An index i ∈ I that
is not part of any key is said to be a non-prime attribute of T . The
keys and non-prime attributes for each of the tables that we have
used here are as follows (in this particular group of examples, all of
the tables have a unique key; it is not difficult, however, to construct
tables that have multiple distinct keys):

Table Key Non-prime attributes
SURVEY {Employee, Transport} Residence
HOMETOWN {Employee} Residence
COMMUTES {Employee, Transport} -

To be in second normal form (2NF), a table must be in 1NF and
every non-prime attribute must be functionally dependent on every
key, but not on any proper subset of a key. The HOMETOWN table
satisfies 2NF because Residence is uniquely determined by Em-
ployee, and the COMMUTES table trivially satisfies 2NF because
there are no no-prime attributes. On the other hand, SURVEY is not
2NF because the non-prime attribute Residence is functionally de-
pendent on a subset of the key.
To be in third normal form (3NF), a table must be in 2NF

and every non-prime attribute must be non-transitively depen-
dent on each key. The latter condition means that, if K is a key,
and i is a non-prime such that K � J and J � {i}, then either
J is a key or else i ∈ K ∪ J. The SURVEY table does satisfy
this latter property, failing to be in 3NF only because it is not in
2NF. As a simple example that is not in 3NF, consider a table

indexed by columns {Person, Hometown, Country} and dependen-
cies {Person} � {Hometown} (every person has a unique home
town) and {Hometown} � {Country} (every town is in a single
country). Once again, we could achieve 3NF for this particular
database by decomposing the three column table into two separate
tables, one for each dependency.

B. Improving Qualified Types
This section contains a summary of the concept of improvement
of the kind introduced in “Simplifying and Improving Qualified
Types” [16], hereafter referred to as SIQT. This provides the theo-
retical foundation for our work on functional dependencies. In fact
SIQT was developed as a general framework of type systems with
constrained polymorphism, covering not only Haskell type classes,
but also subtyping, record types, and other applications. Because
the main topic of this paper has to do with type classes and there
are many examples of that in the body of the paper, we focus here
on an example from a slightly different area—subtyping—so as to
emphasize the general nature of SIQT.

B.1 Interpreting Type Schemes

In a type system with parametric polymorphism, the assignment of
a type scheme ∀a.a → a to the identity function id = λx.x is an
indication that id may be used with any of the types in the set:

[[∀a.a → a]] = { τ → τ | τ ∈ Type }.
More generally, of course, we define:

[[∀a1. . . . ∀an.τ]] = { Sτ | dom S ⊆ {a1, . . . , an} },
where S ranges over substitutions of types for type variables, and
dom S is the set of type variables a for which Sa �= a. Note that
this interpretation induces an ordering between type schemes in
which σ ≥ σ′ if, and only if [[σ]] ⊇ [[σ′]]. In fact, this gives the
same ordering that Damas and Milner [9] used—specifying that σ′

is a generic instance of σ—to demonstrate the existence of most
general, or principal types for programs in ML.

B.2 The Theory of Qualified Types

The theory of qualified types [15] extends the syntax of type
schemes to allow for the inclusion of constraints or predicates
on types. A general type scheme in this setting takes the form
∀a1. . . . ∀an.P ⇒ τ , where P is a set of predicates. The intent of
a qualified type scheme is to restrict, or qualify the way in which
quantified variables are instantiated. As a notational convenience,
we will elide the ∀a1. . . . ∀an and P ⇒ portions of a type scheme if
there are no quantified type variables or no predicates, respectively.
The structure of predicates varies from one application to an-

other. For example, we can write Eq a to specify that a is an equal-
ity type in Haskell, but, in other language settings, we might use
s ⊆ t to specify that s is a subtype of t, or (l : p) ∈ r to indicate
that r should be a record type containing a field labeled l of type
p. The relationships between predicates are typically described by
the definition of an entailment relation, usually written as an infix
��, between sets of predicates. An entailment relation is required to
satisfy three general properties, which we refer to as monotonicity,
transitivity, and closure under substitution:

P ⊇ Q

P �� Q

P �� Q Q �� R

P �� R

P �� Q

SP �� SQ

Beyond these, the specific properties of an entailment relation will
again vary from one application to another. For example, a simple
system of subtyping can be described by defining entailment as the
smallest relation that is closed under the three general rules above
and also includes the axioms ∅ �� {Int ⊆ Real}, ∅ �� {t ⊆ t}, and

{t ⊆ t′, s′ ⊆ s} �� {(t′ → s′) ⊆ (t → s)} for all types t, t′, s, and
s′, the latter being the standard rule for subtyping on functions.
The concept of satisfiability plays an important role in the fol-

lowing sections. In particular, we say that a set of predicates P is
satisfiable if ∅ �� SP for some substitution S. Equivalently, we say
that P is satisfiable if �P� �= ∅, where �P� = { SP | ∅ �� SP } is
the set of satisfiable instances of P.

B.3 Interpreting Qualified Type Schemes

If an expression E has an associated type scheme σ, then we expect
to be able to use E as having any of the types in [[σ]]—except
that now we must generalize the definition of [[σ]] to account for
predicates that appear in σ3:

[[∀a1. . . . ∀an.P ⇒ τ]] = { Sτ | dom S ⊆ {a1, . . . , an}, ∅ �� SP }
For example, if negate :: ∀a.(a ⊆ Real) ⇒ a → a, and assuming
only the rules for subtyping from Section B.2, then we would
expect that negate can be used: (i) as a function of type Int → Int
(because ∅ �� Int ⊆ Real); or (ii) as a function of type Real → Real
(because ∅ �� Real ⊆ Real). These are the only possible types
(i.e., the only elements of [[∀a.(a ⊆ Real) ⇒ a → a]]). As a
more extreme example, if the set of predicates in a scheme σ is not
satisfiable, then [[σ]] is empty, and hence there will be no way to use
a value of that type.
As before, we will use the ordering on type schemes in which

σ ≥ σ′ if, and only if [[σ]] ⊇ [[σ′]]. Note that, if σ or σ′ includes
predicates, then this ordering depends not only on the syntactic
form of σ and σ′ but also on the definition of entailment. For that
reason, and to distinguish it from the purely syntactic ordering of
Damas and Milner, we sometimes refer to this relationship as the
satisfiability ordering on type schemes.

B.4 Improvement

In some cases, a qualified type may suggest a greater degree of
flexibility than is actually present. For example, the type scheme
σ1 = ∀a.(a ⊆ Int) ⇒ a → a appears to be polymorphic but, in
fact, the set [[σ1]] contains only one type, Int → Int. It follows that
σ1 is equivalent to σ2 = Int → Int with respect to the satisfiability
ordering on type schemes. Nevertheless, there is a sense in which
σ2 is better than σ1 because it gives a more ‘honest’ and certainly
more concise characterization of the type.
To formalize this idea, SIQT introduces the idea of an improving

substitution: a substitution S is said to improve a set of predicates P,
written S improvesP, if applying S toP does not change the result-
ing set of satisfiable instances; that is, if, and only if �P� = �SP�.
The identity substitution is a trivial improving substitution for any
set of predicates. However, it is often possible to compute more in-
teresting improving substitutions. According to the preceding def-
inition, for example, it follows that [Int/a] improves {a ⊆ Int}.
To make use of improvement during type inference, SIQT extends
the general algorithm for qualified types with the following rule:4

P |SA �W E : τ S′ improves P

S′P |S′SA �W E : S′τ

3 In the original presentation [16], [[σ]] was written as [[σ]]satP0 to emphasize
the use of information about predicate satisfiability, and to allow the empty
set, ∅, shown here to be replaced with an arbitrary set of predicates P0.
4 The four components of each judgement P |SA �W E : τ are a set of predi-
cates, P, a set of typing assumptions, SA, an expression, E, and a (monomor-
phic) type, τ . We use the �W symbol to distinguish judgements for the type
inference algorithm—a variant of Milner’s algorithm W—from type system
judgements written using the � symbol. The full set of typing rules and
details of the type inference algorithm are presented in SIQT [16].

This allows for the calculation and application of improving substi-
tutions in a non-deterministic fashion at any point during type in-
ference. In practice, a particular implementation would use a more
deterministic strategy, such as choosing to calculate improving sub-
stitutions as part of the generalization step. In fact, if an attempt to
compute an improving substitution discovers that an inferred pred-
icate set is not satisfiable, then it is actually possible for the infer-
ence algorithm to terminate immediately and report an appropriate
type error. This may provide for earlier detection of type errors
than is possible without improvement, and does not compromise
the soundness or completeness theorems described below.
The key results of SIQT are the following pair of soundness and

completeness results for the type inference algorithm with respect
to underlying type system (The results are slightly simplified here
for the purposes of this presentation):

THEOREM 1 (Soundness). If P |SA �W E : τ , then P |SA � E : τ .

THEOREM 2 (Completeness). If ∅ |A � E : σ and [[σ]] �= ∅, then
the type inference algorithm for E in A will not fail, and, for any P
and τ such that P |A �W E : τ , we have Gen(A,P ⇒ τ) ≥ σ.

The completeness result, in particular, tells us that, if an expres-
sion E is well-typed, then the type inference algorithm will com-
pute a principal satisfiable type scheme, Gen(A,P ⇒ τ), that is at
least as general, with respect to the satisfiabilty ordering on type
schemes, as any other (satisfiable) type that can be assigned to E.
This is conceptually similar to the standard result for existence of
principal types in ML, but it is also a little weaker because the sat-
isfiability ordering is coarser than the Damas and Milner ordering,
equating types like σ1 and σ2 above that are distinct in ML. (Note,
however, that the orderings coincide on all unqualified types.)
To get the most benefit from SIQT, we would aim for an algo-

rithm that calculates substitutions that give, in some sense, the best
possible improvement. However, while this is desirable, it is not an
absolute requirement. This is important because the definition of
general predicate systems does not guarantee the existence of ‘op-
timal’ improvements, or of computable algorithms for calculating
them. Instead, SIQT provides a general framework that allows type
system designers to make an appropriate compromise between de-
cidability/termination of type checking and improvement/quality of
inferred types in cases where it is not possible to satisfy both goals.

References
[1] William Ward Armstrong. Dependency structures of data base rela-

tionships. In IFIP Congress, pages 580–583, 1974.

[2] Paolo Atzeni and Valeria De Antonellis. Relational Database Theory.
Benjamin/Cummings, 1993. ISBN 0-8053-0249-2.

[3] Stephen Blott. An Approach to Overloading with Polymorphism. PhD
thesis, Department of Computing, University of Glasgow, December
1992.

[4] Manuel M. T. Chakravarty, Gabriele Keller, Simon L. Peyton Jones,
and Simon Marlow. Associated types with class. In Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2005), pages 1–13, Long Beach,
California, USA, January 2005.

[5] Kung Chen, Paul Hudak, and Martin Odersky. Parametric type classes.
In ACM Conference on LISP and Functional Programming, pages
170–181, 1992.

[6] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[7] E. F. Codd. Normalized data base structure: A brief tutorial. IBM
Research Report, San Jose, California, RJ935, 1971.

[8] E. F. Codd. Further normalization of the data base relational model.
IBM Research Report, San Jose, California, RJ909, 1971.

[9] L. Damas and R. Milner. Principal type schemes for functional pro-
grams. In 9th Annual ACM Symposium on Principles of Programming
languages, pages 207–212, Albuquerque, NM, January 1982.

[10] Iavor S. Diatchki. High-level Abstractions for Low-level Program-
ming. PhD thesis, OGI School of Science & Engineering at Oregon
Health & Science University, May 2007.

[11] Iavor S. Diatchki and Mark P. Jones. Strongly typed memory areas. In
Proceedings of ACM SIGPLAN 2006 Haskell Workshop, pages 72–83,
Portland, Oregon, September 2006.

[12] Iavor S. Diatchki, Mark P. Jones, and Rebekah Leslie. High-level
views on low-level representations. In ICFP 2005: ACM SIGPLAN
International Conference on Functional Programming, 2005.

[13] Thomas Hallgren. Fun with functional dependencies, or (draft) types
as values in static computations in Haskell. In Proceedings of the Joint
CS/CE Winter Meeting, Varberg, Sweden, January 2001.

[14] Paul Hudak, John Hughes, Simon L. Peyton Jones, and Philip Wadler.
A history of Haskell: being lazy with class. In Proceedings of the
Third ACM SIGPLANHistory of Programming Languages Conference
(HOPL-III), San Diego, California, USA, June 2007.

[15] Mark P. Jones. Qualified Types: Theory and Practice. PhD thesis,
Programming Research Group, Oxford University Computing Labora-
tory, July 1992. Published by Cambridge University Press, November
1994.

[16] Mark P. Jones. Simplifying and improving qualified types. In In-
ternational Conference on Functional Programming Languages and
Computer Architecture, pages 160–169, June 1995.

[17] Mark P. Jones. Simplifying and improving qualified types. Research
Report YALEU/DCS/RR-1040, Yale University, New Haven, Con-
necticut, USA, June 1994.

[18] Mark P. Jones. Type classes with functional dependencies. In ESOP
2000: European Symposium on Programming, March 2000.

[19] Mark P. Jones. The implementation of the Gofer functional program-
ming system. Research Report YALEU/DCS/RR-1030, Yale Univer-
sity, New Haven, Connecticut, USA, May 1994.

[20] Mark P. Jones. Functional programming with overloading and higher-
order polymorphism. In First International Spring School on Ad-
vanced Functional Programming Techniques, volume 925. Springer-
Verlag LNCS, Båstad, Sweden, May 1995.

[21] Simon Peyton Jones. Indexed type families in Haskell, and
death to functional dependencies (slides). In AngloHaskell
2007, Cambridge, England, August 2007. Available online at
http://haskell.org/haskellwiki/AngloHaskell/2007.

[22] Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The
Revised Report. Cambridge University Press, 2003.

[23] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers
and modular interpreters. In POPL ’95: Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 333–343. ACM, 1995.

[24] David Maier. The Theory of Relational Databases. Computer Science
Press, 1983. ISBN 0-914894-42-0.

[25] Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael
Sperber. A functional notation for functional dependencies. In Pro-
ceedings of The 2001 ACM SIGPLAN Haskell Workshop, Firenze,
Italy, September 2001.

[26] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open type functions. In Proceedings of
the 13th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2008), Victoria, British Columbia, Canada, Septem-
ber 2008.

[27] Martin Sulzmann, Gregory J. Duck, Simon Peyton Jones, and Peter J.
Stuckey. Understanding functional dependencies via constraint han-
dling rules. Journal of Functional Programming, 17:83–129, 2007.

[28] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism
less ad-hoc. In Proceedings of the 16th ACM Symposium on Princi-
ples of Programming Languages (POPL 1989), pages 60–76, Austin,
Texas, USA, January 1989.

