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Abstract

Qualified types provide a general framework for constrained
type systems, with applications including type class over-
loading, subtyping and record calculi. This paper presents
an extended version of the type inference algorithm used in
previous work, that can take account of the satisfiability of
constraints to obtain more accurate principal types. The
new algorithm is obtained by adding two new rules, one for
simplification and one for improvement of constraint sets. In
particular, it permits a better treatment of the previously
troublesome multiple parameter extensions of Haskell type
classes, generalizing the system of parametric type classes
proposed by Chen, Hudak and Odersky.

1 Introduction

Qualified types provide a general framework for constrained
type systems; typical applications include type class over-
loading, subtyping and record calculi. In previous work, we
have shown how the standard treatment of ML style poly-
morphism can be adapted to support qualified types. In
particular, any well-typed program has a principal type that
can be calculated by an extended version of Milner’s type
inference algorithm. This is useful both for describing the
set of types that can be assigned to a term and for detecting
possible semantic ambiguities.

Unfortunately, while technically correct, the principal types
produced by our algorithm do not take account of the sat-
isfiability of constraints. As a result, they are sometimes
more complicated and less accurate than we might hope.
Even if the additional complexity were not an issue, this
can sometimes cause perfectly reasonable programs to be
rejected when the principal type suggests, wrongly, that the
term does not have a well-defined semantics. In other cases,
the inferred types are too liberal, including unsatisfiable con-
straints and delaying the detection of type errors.

This paper shows how these problems can be avoided by us-
ing a notion of principal satisfiable types and extending the
type inference algorithm with two new rules, one dealing
with simplification, the other with improvement . Our ap-
proach is flexible enough to allow variations between differ-

ent applications of qualified types, offering better principal
types without compromising the decidability of type infer-
ence. In addition to other applications, the new algorithm
permits a better treatment for the previously troublesome
multiple parameter extensions of Haskell type classes. In
particular, we show how improvement can support a form
of parametric type classes [1].

We start, in Section 2, with an overview of the system of
qualified types used in earlier work, including examples of
predicate systems, a description of the type system and an
outline of the type inference algorithm. Section 3 describes
the use of simplification, allowing the constraint set included
in the type of an expression to be replaced by an equivalent,
but simpler, set of constraints. In Section 4, we introduce
the concept of improvement which is the major contribution
of this paper, using information about satisfiability of con-
straints to refine the inferred types. This requires a modifi-
cation to our treatment of type inference, shifting attention
to satisfiable typings and a satisfiability ordering between
type schemes in Section 5. The proofs of soundness and
completeness properties for a type inference algorithm that
uses simplification and improvement are discussed in Sec-
tion 6; detailed proofs of new results are provided elsewhere
[15]. We conclude with a discussion on the use of our new
framework in Section 7.

2 A brief overview of qualified types

To describe the contributions of this paper we need to begin
with a brief description of the framework of qualified types
on which it builds. We make no attempt to repeat the full
details of earlier presentations [11, 10].

2.1 Predicates

The key idea motivating the use of qualified types is the
ability to include predicates in the type of a term, capturing
restrictions on the ways that it can be used. The properties
of predicates themselves are described using an entailment
relation, denoted by the symbol `̀ . If P and Q are finite
sets of predicates, then the assertion that P `̀ Q means
that the predicates in Q hold, whenever the predicates in P
are satisfied. The only assumptions that we make about the
predicate entailment relation are that it is transitive, closed
under substitutions, and such that P `̀ Q whenever Q is a
subset of P .

Simple examples of single predicates that are useful in prac-
tical applications are illustrated in Figure 1. In some cases,
we have taken the liberty of using a slightly different syntax



Predicate Interpretation
t ∈ Eq Values of type t can be tested for equality using the == operator. This usually

includes all types, except those with functional components [21, 7].
t ∈ Num t is a numeric type, for example, the type of integers, or floating point numbers,

and elements of type t can be manipulated using standard arithmetic operators,
for example, + for addition and ∗ for multiplication [21, 7].

t ∈ Collect(s) Values of type t can be used to represent collections of values of type s [1].
t Dual s Values of types t and s represent the elements of dual lattices [9].
s ⊆ t s is a subtype of t ; in practice, this usually means that values of type s can be

treated as values of type t by applying a suitable coercion [16, 17, 4, 3, 19].
r has l : t r is a record type containing an field labelled l of type t [6].
r lacks l r is a record type, not including a field labelled l [6].
r1#r2 The record types r1 and r2 do not have any fields in common [5].

Figure 1: Examples of individual predicates and their informal interpretation

from earlier presentations, in the hope that this will make
the interpretation of some predicates a little more obvious.

2.2 OML—Core-ML with overloading

Working towards an extension of core-ML that supports
qualified types, we adopt a structured language of types
specified by the grammar:

τ ::= t type variables
| τ → τ function types
| . . . other constructed types

ρ ::= P ⇒ τ qualified types
σ ::= ∀T .ρ type schemes

Here, t ranges over a given set of type variables and P and
T range over finite sets of predicates and finite sets of type
variables respectively. The set of type variables appearing
(free) in an expression X is denoted TV (X ) and is defined
in the obvious way.

For programs, we use the term language of core-ML:

E ::= x variable
| EF application
| λx .E abstraction
| let x = E in F local definition

For the purposes of this work, we are only interested in
terms that can be assigned a type using the rules in Fig-
ure 2. These rules use judgements of the form P |A ` E : σ
where P is a set of predicates and A is a type assignment,
i.e. a mapping from term variables to types. Much of the
notation used here is standard, as indeed are most of the
rules. For example, the notation Ax refers to the type as-
signment obtained from A by deleting the type assigned to
x , if any. Only (⇒I ) and (⇒E), moving global constraints
in to, or out of, the type of an object, and the (∀I ) rule for
polymorphic generalization, actually involve the predicate
set P .

We refer, collectively, to the type, term and typing rules
given above as OML, a mnemonic for ‘Overloaded ML’.

2.3 Type inference for OML

An important property of OML is the existence of an al-
gorithm for calculating principal typings for a given term.
More precisely, there is an effective algorithm, taking a term
E and a type assignment A as its input, for calculating the

most general type that can be assigned to E , given the as-
sumptions in A.

To describe what it means for one type to be more gen-
eral than another, we define an ordering between constrained
type schemes, i.e. pairs of the form (P |σ) where σ is a type
scheme and P is a set of predicates. We start by defining
the set of generic instances of a constrained type scheme:

[[P ′ |∀αi .P ⇒ τ ]]
=

{Q ⇒ [νi/αi ]τ | νi ∈ Type, Q `̀ P ′, [νi/αi ]P }.

Using this definition, the required ordering between con-
strained type schemes is specified by law:

(P |σ) ≤ (P ′ |σ′) ⇔ [[P |σ]] ⊆ [[P |σ′]].
In other words, σ ≤ σ′ if and only if every generic instance
of σ is a generic instance of σ′. It follows immediately from
the form of the definition that the ordering is reflexive and
transitive. Furthermore, it is reasonably easy to show that
the ordering is preserved by substitution, i.e. that S(P |σ) ≤
S(P ′ | σ′), whenever (P | σ) ≤ (P ′ | σ′). This is important
because it indicates that the ordering on type schemes is
compatible with our notion of polymorphism, allowing free
type variables to be freely instantiated with arbitrary types.

The type inference algorithm itself is described by the rules
in Figure 3. This presentation, as in previous descriptions
of qualified types, follows Rémy [18], using judgements of
the form Q | TA `W E : ν where A and E are the type
assignment and expression provided as inputs to the algo-
rithm, and Q , T and ν are a predicate set, substitution and
type, respectively, produced as its results. The notation
Gen(A, ρ) used in the rule (let)W indicates the generaliza-
tion of ρ with respect to A, defined as ∀ai .ρ where {ai} is
the set of type variables TV (ρ) \TV (A). As demonstrated
in previous work, the results of the algorithm can be used
to construct a principal type scheme, η, such that:

P |A ` E : σ ⇐⇒ (P |σ) ≤ η.

Assuming, as is often the case for top-level definitions, that
A does not include any free type variables, then the principal
type is just: η = Gen(A,Q ⇒ ν) = (∀ai .Q ⇒ ν), where
{ai} is the set of type variables appearing free in (Q ⇒ ν).

Note that it is also possible for the type inference algorithm
to fail, either because E contains a free variable that is not
bound in A, or because the calculation of a most general



(var)
(x :σ) ∈ A

P |A ` x : σ
(⇒E)

P |A ` E : Q ⇒ ρ P `̀ Q

P |A ` E : ρ

(→E)
P |A ` E : τ ′ → τ P |A ` F : τ ′

P |A ` EF : τ
(⇒I )

P ,Q |A ` E : ρ

P |A ` E : Q ⇒ ρ

(→I )
P |Ax , x :τ ′ ` E : τ

P |A ` λx .E : τ ′ → τ
(∀E)

P |A ` E : ∀α.σ

P |A ` E : [τ/α]σ

(let)
P |A ` E : σ Q |Ax , x :σ ` F : τ

P ,Q |A ` (let x = E in F ) : τ
(∀I )

P |A ` E : σ α 6∈ TV (A) ∪ TV (P)

P |A ` E : ∀α.σ

Figure 2: Typing rules for OML.

unifier, described by the notation τ
U∼ τ ′, fails as a result

of a mismatch between the expected and actual type of a
function argument. In this case, the completeness property
of the type inference algorithm guarantees that there are, in
fact, no derivable typings of the form P |A ` E : σ.

3 Simplification

In this section, we will show how inferred types can be sim-
plified by replacing one predicate set with another, equiva-
lent set of constraints. This is not a new idea; similar tech-
niques are already used in other theoretical work, and in the
implementations of systems like Haskell [7] and Gofer [14].
One of the advantages of the framework used in this paper
is that it allows us to view simplification independently of
other aspects of the type system, revealing opportunities for
specific design decisions that are hidden in other presenta-
tions of constrained type inference.

For convenience, we write P ⇔ Q to indicate the equivalence
of predicate sets P and Q , i.e. that P `̀ Q and Q `̀ P . It
is a straightforward exercise to show that, if P `̀ Q , then:

[[∀ti .P ⇒ τ ]] ⊆ [[∀ti .Q ⇒ τ ]],

and hence that, if P ⇔ Q , then (∀ti .P ⇒ τ) and (∀ti .Q ⇒
τ) are equivalent with respect to the ≤ ordering on type
schemes. Applications of simplification in Haskell include:

• Constant predicates. The Int type is an instance of
the Eq class and hence { Int ∈ Eq } is equivalent to
the empty predicate set, {}.

• Superclass hierarchies. The Eq class is defined as a
superclass of Ord ; static checks are used to ensure that
Ord ⊆ Eq and hence a predicate set of the form { τ ∈
Eq , τ ∈ Ord } can be simplified to just { τ ∈ Ord }.

• Context reduction. The definition of equality on lists
relies on the existence of a definition of equality on the
individual elements of the list. This corresponds to an
equivalence: { t ∈ Eq } ⇔ { [t ] ∈ Eq }. Rules like this
can be used to ensure that all constraints in inferred
types are of the form t ∈ C (t is a type variable), as
required by Haskell.

Simplification is also useful in other applications of qualified
types.

Simplification may be used at any stage during the typing
process. We can extend the algorithm in Figure 3 to allow

this by adding the rule (Simp):

Q |TA `W E : ν P ⇔ Q

P |TA `W E : ν

This gives a non-deterministic type inference algorithm: it
is possible to obtain distinct principal types that are not
equal up to renaming of bound variables. Fortunately, since
these types are equivalent under the ordering ≤ introduced
in Section 2.3, the addition of (Simp) still yields a sound
algorithm that calculates principal type schemes for OML
programs. By adopting a non-deterministic algorithm, we
have the flexibility to allow designers of applications of qual-
ified types to refine the algorithm, choosing to use simplifi-
cation only under certain circumstances or at specific points
during type checking.

We should also comment that, although we have specified
what it means for two predicate sets to be equivalent, we
will not attempt to formalize what it means to say that one
is simpler than another. There are some obvious measures
of complexity that could be used, for example, the number
of predicates or the size of the type expressions involved.
However, we believe that these issues are best dealt with in
the design of specific applications. More directly, while we
use a general and symmetric notion of simplification that
allows any equivalent predicate set Q to be used in place
of P , we would expect that, in a real implementation, Q
will actually be chosen as a simplified version of P in some
appropriate manner.

4 Improvement

A second method for inferring more accurate principal types,
and the most important contribution of this paper, is based
on the concept of improvement. Although some special cases
of this idea have been used in other systems, we are not
aware of any previous work that has either identified the
notion of improvement as an independent concept, or devel-
oped these ideas in the general framework described below.

4.1 Improving records

The central idea is to use information about the satisfiability
of predicate sets to simplify inferred types. As a first exam-
ple, consider a language with a system of records, using a
function:

( .l) :: ∀r .∀t .(r has l : t) ⇒ r → t



(var)W
(x :∀αi .P ⇒ τ) ∈ A βi new

[βi/αi ]P |A `W x : [βi/αi ]τ

(→E)W
P |TA `W E : τ Q |T ′TA `W F : τ ′ T ′τ

U∼ τ ′ → α α new

U (T ′P ,Q) |UT ′TA `W EF : Uα

(→I )W
P |T (Ax , x :α) `W E : τ α new

P |TA `W λx .E : Tα → τ

(let)W
P |TA `W E : τ P ′ |T ′(TAx , x :σ) `W F : τ ′ σ = Gen(TA,P ⇒ τ)

P ′ |T ′TA `W (let x = E in F ) : τ ′

Figure 3: Type inference algorithm W.

to describe the selection of a field l of type t from a record
of type r . Following conventional notation, we treat the ex-
pression e.l as a sugared version of ( .l) e. Now consider the
function f = λr .(r .l , r .l) whose principal type, according to
the algorithm in Section 2.3, is:

∀r .∀a.∀b.(r has l :a, r has l :b) ⇒ r → (a, b).

However, for any particular record type r , the types assigned
to the variables a and b must be identical since they both
correspond to the same field in r . It would therefore seem
quite reasonable to treat f as having a principal satisfiable
type scheme:

∀r .∀a.(r has l :a) ⇒ r → (a, a).

To capture the essence of this example in a more general set-
ting, we introduce the following notation for describing the
satisfiable instances of a given predicate set P with respect
to a predicate set P0:

bPcP0
= {SP | S ∈ Subst , P0 `̀ SP }.

The predicate set P0 used here is arbitrary, although we will
often use P0 = ∅ and we will always assume that TV (P0) =
∅. In practice, the choice of P0 plays a relatively small part
in the following and we will often omit the subscript, writing
just bPc to avoid unnecessary distraction.

It is easy to show that bSPc ⊆ bPc, for any substitution
S , and any predicate set P . The reverse inclusion, bPc ⊆
bSPc, does not always hold, but is more interesting because
it tells us that we can apply the substitution S to P without
changing its satisfiable instances. In particular, taking S as
the substitution [a/b], the argument about the predicates
for record types given above is captured by the equality:

br has l :ac = br has l :a, r has l :bc .

In this case, we will say that the substitution [a/b] improves
the predicate set {r has l :a, r has l :b}. More generally, we
write S improves P if bPc = bSPc and the only variables
involved in S that do not appear in P are ‘new’ variables,
similar to those introduced by the type inference algorithm
in Figure 3.

To make use of improvement during type inference, we ex-
tend the type inference algorithm with the rule (Imp):

Q |TA `W E : ν T ′ improves Q

T ′Q |T ′TA `W E : T ′ν

To get the most benefit from this, we would obviously pre-
fer to use substitutions T ′ that give, in some sense, the best
possible improvement. However, while this is desirable, we
do not make it a requirement of the work described here.
This is important because the definition of general predi-
cate systems does not guarantee the existence of ‘optimal’
improvements, or of computable algorithms for calculating
them. Instead, we provide a general framework that allows
us to compromise between decidability and improvement. In
the simplest case, we can use the identity substitution id as
an improving substitution, which satisfies id improves P for
all predicate sets P . Of course, this just gives the same re-
sults as the previous version of the type inference algorithm,
without improvement1.

In practice, the typing algorithm for a language based on the
ideas presented here might be parameterized by the choice of
an improving function, impr , such that (impr P) improves P
for any predicate set P . The argument above shows that
there is always at least one possible choice for an improv-
ing function, namely impr(P) = id . We will see that it is
also possible to arrange for an improving function to fail,
thereby causing the type inference algorithm to fail, if it is
applied to an unsatisfiable predicate set, i.e. a predicate
set P such that bPcP0

= ∅. This can be used to imple-
ment a type checker that produces only satisfiable typing
judgements, and fails if and only if there are no satisfiable
typings. Of course, this behaviour would not be appropri-
ate for a system in which tests of the form bPcP0

= ∅ are
not decidable. Once again, our framework allows the lan-
guage designer to control these aspects of the type inference
algorithm by choosing a suitable improving function.

4.2 Improving subtyping

To see why it may be necessary to introduce new variables
in an improving substitution, consider a system of subtyping
using predicates of the form τ ⊆ τ ′ to indicate that τ is a
subtype of τ ′ and with an entailment relation that is fully
determined by the following rules:

P `̀ τ ⊆ τ

P `̀ τ ⊆ ν P `̀ ν ⊆ µ

P `̀ τ ⊆ µ

P ⊇ Q

P `̀ Q

P `̀ τ ′ ⊆ τ P `̀ ν ⊆ ν′

P `̀ (τ → ν) ⊆ (τ ′ → ν′)

1Pun intended!



Using an implicit coercion, the function g = λf .λx .1 + f x
has principal type:

∀a.∀b.(a ⊆ (b → Int)) ⇒ a → b → Int .

Taking P0 = {Int ⊆ Float}, i.e. assuming that the only
primitive coercion is from the type Int of integers to the type
Float of floating point numbers, we can use an improving
substitution [(c → d)/a] since:

ba ⊆ (b → Int)c = b(c → d) ⊆ (b → Int)c .

In fact, we can obtain a further improvement by noticing
that this requires d ⊆ Int , which is only possible if d = Int .
Hence the ‘improved’ type for g becomes:

∀b.∀c.((c → Int) ⊆ (b → Int)) ⇒ (c → Int) → b → Int .

Now, as is often the case, improvement exposes new oppor-
tunities for simplification, and we can further refine the type
of g to:

∀b.∀c.(b ⊆ c) ⇒ (c → Int) → b → Int .

Note that improvement can be considered as a generalization
of the use of Mitchell’s MATCH algorithm [16, 17].

4.3 Improving type classes

In this section, we will show how improvement can be used
to support the use of type classes, concentrating in partic-
ular on the proposals by Chen, Hudak and Odersky [1] for
parametric type classes.

Several researchers, including this author, have experimented
with systems of multiple parameter type classes. Think-
ing of standard type classes as sets of types, the simplest
interpretation of a multiple parameter class is as a set of
tuples of types, corresponding to a relation on types. For
example, a two parameter class, Dual , can be used to de-
scribe duality between lattices [9]. Unfortunately, practical
experience with multiple parameter type classes in Gofer [8]
suggests that the standard mechanisms for defining classes
and instances in Haskell are often too weak to define useful
relations between types2.

To illustrate the kind of problems that can occur, suppose
that we use predicates of the form c ∈ Collect(a) to indicate
that values of type c can be used to represent collections of
values of type a. A simple class for operations on collections
can be defined as follows:

class c ∈ Collect(a) where
empty :: c
insert :: a → c → c
member :: a → c → Bool

The empty value represents an empty collection, while the
insert and member functions might be used to add an ele-
ment, or to test whether a particular element is included in
a collection.

There are a number of ways to implement collections. One
of the simplest ways is to use a list, assuming that the values
it holds can be tested for equality so that we can implement
the membership test:

instance (a ∈ Eq) ⇒ [a] ∈ Collect(a) where · · ·
2Interestingly enough, these problems do not seem to occur

for many useful examples involving multiple parameter constructor
classes [13].

A more efficient implementation might be obtained using
binary search trees if we assume that there is an ordering on
the elements held in a collection, captured by the type class
Ord in the following definition:

data BST a = Empty
| Fork a (BST a) (BST a)

instance (a ∈ Ord) ⇒ (BST a ∈ Collect(a)) where · · ·
On the surface, these definitions seem quite reasonable, but
we soon run into difficulty if we try to use them. One of
the first problems is that the type of the empty value is
∀a.∀c.(c ∈ Collect(a)) ⇒ c, which is ambiguous in the sense
that a type variable a appears on the left of the ⇒ symbol,
but is not mentioned on the right. As a result, there is
no general way to determine the intended value of type a
from the context in which empty is used. In general, it is
not possible to use any term with an ambiguous principal
type if we hope to provide a well-defined semantics for the
language [10, 12].

Another problem is that the types assigned to member and
insert are more general than we might expect. For example,
it is possible to define collections that contain different types
of elements and to define functions like:

intOrBool :: ∀c.(c ∈ Collect(Int), c ∈ Collect(Bool))
⇒ c → Bool

intOrBool c = member 1 c || member True c

It is certainly possible that such examples might be useful
in some applications. However, in many cases, we would
prefer to restrict collections to hold values of a single type
only, and to treat function definitions like this as type errors.

The problems described above can be avoided by using para-
metric type classes [1]. This allows us to use the same
class and instance declarations as above, but to extend the
compiler with additional static checks to ensure that, if
P0 `̀ { τ ∈ Collect(ν), τ ∈ Collect(ν′) }, then ν = ν′. In
effect, this means that, for any satisfiable instance of a pred-
icate c ∈ Collect(a), the choice of type a is uniquely deter-
mined by the choice of c. Note that this can also be captured
by an improving function impr such that:

ν
U∼ ν′

impr {τ ∈ Collect(ν), τ ∈ Collect(ν′)} = U

If no unifier exists, then the predicate set is unsatisfiable,
and the improving function may fail. Other useful rules
for improvement can be derived from this general rule. For
example, according to the instance declarations given above,
a predicate of the form [ν] ∈ Collect(ν′) can only be satisfied
if ν = ν′, so we can define:

ν
U∼ ν′

impr {[ν] ∈ Collect(ν′)} = U

Parametric type classes are a good way of avoiding the prob-
lems with ordinary multiple parameter type classes that
were sketched above. Since the choice of a in c ∈ Collect(a)
is uniquely determined by the value of c, there is no need
to treat empty as having an ambiguous type. In addition,
the restrictions on instances of parametric type classes are
exactly the conditions that we need to ensure that the defi-
nition of intOrBool will be treated as a type error.

Improvement is particularly important for Haskell since it
permits, for the first time, a useful treatment of multiple
parameter type classes that generalizes the use of parametric
type classes. At the same time, it is fully compatible with
the Haskell type system, including context reduction, and
with the use of constructor classes.



5 Taking account of satisfiability

Since the types obtained by improvement in the examples
above are obviously instances of the original principal types,
it is no surprise to find that our extended type inference
algorithm is sound, i.e. that the typings it produces are
derivable in the original typing rules given in Figure 2.

Theorem 1 If Q |TA `W E : ν, then Q |TA ` E : ν.

On the other hand, the new algorithm is certainly not com-
plete. Indeed, it is not even well-defined with respect to the
natural equivalence on type schemes induced by the ≤ or-
dering. For example, the two type schemes for the function
f in Section 4.1, either of which could be produced by the
new algorithm, are:

σ1 = ∀r .∀a.(r has l :a) ⇒ r → (a, a),
σ2 = ∀r .∀a.∀b.(r has l :a, r has l :b) ⇒ r → (a, b).

It is easy to show that σ1 ≤ σ2, but these types are not
equivalent because σ2 6≤ σ1. Hence the new type inference
algorithm may give a result type σ1 that is not principal.

Even worse, there are terms that can be typed using the
original rules in Figure 2, but for which the type inference
algorithm may fail to produce a typing. For example, con-
sider the expression:

λr .let (x , y) = f r in (x + 1, not y).

Using the type scheme σ2 for f , we can instantiate the type
variables a and b to Int and Bool , respectively, to obtain a
typing for this term. However, using the type scheme σ1,
the type inference algorithm fails because the types Int and
Bool do not match.

The key to solving this problem is to notice that, although
we can obtain a typing for this term using type scheme σ2,
the corresponding predicate set, {r has l :Int , r has l :Bool},
is not satisfiable. We will see that the problems described
above can be avoided by:

• Proving completeness of the algorithm with respect to
a weaker ordering that identifies type schemes with the
same set of satisfiable instances: Just as the original
ordering on type schemes was defined in terms of the
set of generic instances of a type scheme, we will define
the new ordering in terms of the generic satisfiable
instances of a type scheme with respect to a predicate
set P0. The set of generic satisfiable instances of a
type scheme is defined by:

[[P ′ |∀αi .P ⇒ τ ]]satP0
=

{ [νi/αi ]τ | νi ∈ Type, P0 `̀ P ′, [νi/αi ]P }.
The satisfiability ordering, again with respect to P0,
can now be defined using:

(P |σ) ≤sat
P0

(P ′ |σ′) ⇔ [[P |σ]]satP0
⊆ [[P ′ |σ′]]satP0

.

Clearly, ≤sat is both reflexive and transitive. It is also
quite easy to show that it is weaker than ≤, i.e. that:

(P |σ) ≤ (P ′ |σ′) ⇒ (P |σ) ≤sat
P0

(P ′ |σ′).
On the other hand, unlike ≤, the satisfiability ordering
is not preserved by substitution3.

3As a counter example, consider a predicate a ∈ C for which the
only satisfiable instance is Int ∈ C . Now consider the qualified types
ηi = (ai ∈ C ) ⇒ ai , for i = 1, 2, and let S = [Int/a1]. Then

[[η1]]sat = ∅ = [[η2]]sat , and hence η1 ≤sat η2, but [[Sη1]]sat = {Int}
while [[Sη2]]sat = [[η2]]sat = ∅, so Sη1 6≤ Sη2.

• Restricting our attention to satisfiable typings: A typ-
ing of the form P |A ` E : σ is of no practical use if
the predicates in P do not hold or if there is no way to
satisfy the predicates involved in σ. We can capture
these conditions formally by defining:

P0 sat (P ′ |σ) ⇔ [[P ′ |σ]]satP0
6= ∅.

The following properties of this relationship between
predicate sets and type schemes are easily established
and show that this notion of satisfiability is well-behaved
with respect to polymorphism (i.e. instantiating free
variables), entailment and ordering:

– If P0 sat (P | σ), then SP0 sat S(P | σ) for any
substitution S .

– If P0 sat (P |σ) and Q0 `̀ P0, then Q0 sat (P |σ).

– If P0 sat (P ′ |σ′) and (P ′ |σ′) ≤sat
P0

(P |σ), then

P0 sat (P |σ).

There is one further problem that occurs when an unused
let-bound variable is assigned an unsatisfiable type scheme.
As an illustration, consider the following type assignment
and predicate set:

A = { f :∀α.α ∈ C ⇒ α → α, z :∀α.α ∈ D ⇒ α }
P = { a ∈ C , a ∈ D }

where C and D are disjoint singletons, say C = { Int } and
D = {Bool , }, and hence:

[Int/α] improves {α ∈ C} and [Bool/α] improves {α ∈ D}.
Using the original typing rules for OML, we can construct
a derivation of the form:

(P ′,P) |A ` f : a → a (P ′,P) |A ` z : a

(P ′,P) |A ` f z : a

P ′ |A ` f z : σ P ′ |A, x :σ ` F : τ

P ′ |A ` let x = f z in F : τ

where σ = (∀a.(a ∈ C , a ∈ D) ⇒ a). Clearly σ is not satis-
fiable, but, if the bound variable x does not appear free in F ,
then there is no reason for these unsatisfiable constraints to
be reflected by the predicates in P ′. However, in the type in-
ference algorithm, using improvement immediately after the
introduction of the variables f and z would produce typings
of the form:

Q |A ` f : Int → Int and Q |A ` z : Bool

and the algorithm will fail to infer a type for the expression
f z . The problem here is that, since x 6∈ FV (F ), the use
of generalization in the typing rule for let-expressions allows
us to hide, and then discard unsatisfiable constraints.

We will describe an expression of the form let x = E in F
where x 6∈ FV (F ) as a redundant let-binding. Such bindings
serve no practical purpose because they can be replaced by
the corresponding expression (λx .F )E without a change in
either semantics or typeability. With this observation, it is
reasonable to restrict our attention to terms with no redun-
dant let-bindings. Obviously, if this property holds for a
given term E , then it also holds for all subterms of E , a fact
that can be used implicitly in proofs by induction.

Given the definitions above, we can now state the main com-
pleteness result for a type inference algorithm that supports
both simplification and improvement rules:
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Completeness: Suppose that P |SA ` E : σ. Then Q |TA `W E : ν and there is a substitution R
such that S ≈ RT and (P |σ) ≤ RGen(TA,Q ⇒ ν).

Completenesss : If P |A ` E : σ, then there is
a set of predicates P ′ and a type τ such that
P ′|A`s E :τ and (P|σ) ≤ Gen(A,P ′⇒τ).

CompletenessW: If P | SA `s E : τ , then Q |
TA `W E : ν and there is a substitution R
such that S ≈ RT, τ = Rν and P `̀ RQ.

-

`s

¾Soundnesss : If P |A `s E : τ , then P |A `
E : τ .

SoundnessW: If P | TA `W E : τ , then P |
TA `s E : τ .

Soundness: If P |TA `W E : τ , then P |A ` E : τ .

?
`W

¾

¾

Figure 4: A summary of the original soundness and completeness results.

Theorem 2 Suppose that P | A ` E : σ and P0 sat (P |
σ) where E is a term with no redundant let-bindings and
TV (A) = ∅. Then the type inference algorithm for E in A
will not fail, and, for any Q and ν such that Q |A `W E : ν,
we have:

(P |σ) ≤sat
P0

Gen(A,Q ⇒ ν).

This result indicates that, if a term E has any satisfiable
typings for a set A of typing assumptions, then there is a
principal type η = Gen(A,Q ⇒ ν) which is more general
than every satisfiable typing for E in A. In fact, the principal
type is itself a satisfiable typing for E in A:

• Satisfiability follows directly from the fact that it is
an upper bound of a non-empty set of satisfiable con-
strained type schemes.

• To see that η is a typing for E in A, we can use the
soundness result above (Theorem 1) to show that Q |
A ` E : ν, and then use (⇒I ) and (∀I ) to obtain a
derivation ∅|A ` E : η.

It is also possible to state a more general version of the com-
pleteness theorem without the requirement that TV (A) = ∅.
However, in practice, this special case is usually of most in-
terest, corresponding to the process of calculating the type
for a top-level definition in a Haskell or ML program.

6 Proof of soundness and completeness

The main purpose of this section is to prove the soundness
and completeness results stated in the previous section as
Theorem 1 and Theorem 2, respectively. This is a compli-
cated task that requires careful management and structur-
ing. Fortunately, we can reduce the amount of work involved
by building on the results of previous work. The diagram in
Figure 4 summarizes the main results for the original sys-
tem of qualified types [11, 10], describing the relationship
between typing judgements in three different systems:

• The original typing rules for OML (Figure 2), described
by judgements using the ` symbol.

• The type inference algorithm (Figure 3), described by
judgements using the `W symbol.

• A collection of ‘syntax-directed’ typing rules described
by judgements using the `s symbol. This system pro-
vides a convenient stepping stone between the original
typing rules and the type inference algorithm, and will
be described in more detail below.

Following convention, the results in the top portion of Fig-
ure 4 are described as completeness properties, while those
in the lower portion are referred to as soundness properties.
In each case, the result linking the ` and `W systems can be
obtained from the corresponding properties involving `s .

The original typing rules for OML are not suitable for type
inference: there are many different ways that the rules can
be applied to a given term, but it is not clear which, if any,
will lead to a principal type. In earlier work, following stan-
dard techniques [2], we avoided these problems by defining a
syntax-directed system and proving its equivalence with the
original type system using the theorems labelled Soundnesss

and Completenesss in Figure 4. The most important prop-
erty of the syntax-directed system is that the structure of
every typing derivation is uniquely determined by the syn-
tactic structure of the term involved.

The typing rules for the syntax-directed system are given in
Figure 5 using judgements of the form P |A `s E : τ .

Several useful properties of the syntax-directed system have
been established [11, 10], including:

• If P|A`s E :τ and S is a substitution, then SP|SA`s E :
Sτ .

• If P |A `s E : τ and Q `̀ P , then Q |A `s E : τ .

• If P |A′ `s E : τ and A′ ≤ A, then P |A `s E : τ .

For the purposes of the work described in this paper, the first
two properties are important because they are exactly what
we need to establish soundness of rules (Imp) and (Simp),
respectively, in the proof of Theorem 1 (The remaining cases
are the same as in the original proof of SoundnessW).

The expression A ≤ A′ in the third property indicates that
the two type assignments A and A′ have the same domain
and that A(x ) ≤ A′(x ) for each variable x bound in A. In
the following, we will use the obvious counterpart to describe
when one type assignment A′ is more general than another A



(var)s
(x :σ) ∈ A (P ⇒ τ) ≤ σ

P |A `s x : τ
(→E)s

P |A `s E : τ ′ → τ P |A `s F : τ ′

P |A `s EF : τ

(→I )s
P |Ax , x :τ ′ `s E : τ

P |A `s λx .E : τ ′ → τ
(let)s

P |A `s E : τ P ′ |Ax , x :σ `s F : τ ′ σ = Gen(A,P ⇒ τ)

P ′ |A `s (let x = E in F ) : τ ′

Figure 5: Syntax-directed inference system.

with respect to the satisfiability ordering, written A ≤sat
P0

A′.
The third property plays an important role in the proof of
CompletenessW, i.e. for the original system of qualified types
[10]. Unfortunately, the corresponding result with ≤ re-

placed by ≤sat
P0

does not hold. A simple counterexample can

be obtained from the example in Section 5, since (P ′,P) |
A `s f z : a, and A ≤sat

P0
A′ = { f : (Int → Int), z :Bool },

but there is no derivable typing for the expression f z using
the assignment A′. We avoid this problem in the complete-
ness theorem below by including an assumption of the form
A ≤sat

P0
SA′ as an extra hypothesis. A similar technique is

used in Smith’s thesis [19].

In the remaining part of this section, we will describe a re-
placement for the CompletenessW result in Figure 4 that
allows the use of the rules (Simp) and (Imp) at arbitrary
points during type inference. Combined with Completenesss ,
we will show how this can be used to establish Theorem 2, an
analogue of the Completeness result at the top of Figure 4.

Our first task is to justify the informal comments about
terms with no redundant let-bindings in Section 5. Using the
syntax-directed typing rules, the following theorem shows
that, the class constraints for a variable x appearing free in
an expression E will be reflected by the constraints P on
the use of E itself:

Proposition 3 Suppose that P | A `s E : τ , x ∈ FV (E),
A(x ) = (∀αi .Q ⇒ ν), and that E has no redundant let-
bindings. Then there are types τi such that P `̀ [τi/αi ]Q.

In particular, if we have a satisfiable syntax-directed typing
for a term E with respect to some set of assumptions A, and
if the variable x appears free in E , then the type assigned
to x in A must also be satisfiable:

Corollary 4 Suppose that P |Ax , x :Gen(A,Q ⇒ ν) `s E :
τ , x ∈ FV (E), P0 sat Gen(A,P ⇒ τ), and that E has no
redundant let-bindings. Then:

P0 sat Gen(A,Q ⇒ ν).

Working towards a completeness result for the type inference
algorithm with respect to the syntax-directed type system,
suppose that we have a derivation P |A `s E : τ . Our goal
is to prove that:

• The type inference algorithm will not fail to find a type
for E in A. Since the algorithm may fail if E does not
have any satisfiable typings, it will be necessary to
restrict our completeness result to satisfiable syntax-
directed derivations, i.e. to derivations P |A `s E : τ
such that P0 sat Gen(A,P ⇒ τ).

• If the type inference algorithm produces a typing Q |
TA `W E : ν, then the corresponding type scheme

Gen(TA,Q ⇒ ν) is more general than the type as-
signed to E in the syntax-directed system, i.e. we want
to show that: Gen(A,P ⇒ τ) ≤sat

P0
Gen(TA,Q ⇒ ν).

In fact, to carry out the required proof, it is necessary
to generalize the hypotheses a little, allowing the use
of distinct type assignments, A in the original syntax-
directed typing, and A′ in the type inference algorithm,
related by A ≤sat

P0
SA′ for some substitution S .

Motivated in part by these comments, we use the following
theorem to express the completeness of the type inference
algorithm with respect to the syntax-directed rules, and the
satisfiability ordering, ≤sat

P0
:

Theorem 5 Suppose that P |A `s E : τ , P0 sat Gen(A,P ⇒
τ), A ≤sat

P0
SA′, and that E does not contain any redundant

let-bindings. Then the type inference algorithm will not fail,
and for every Q | TA′ `W E : ν, there is a substitution R
such that RT ≈ S and:

Gen(A,P ⇒ τ) ≤sat
P0

RGen(TA′,Q ⇒ ν).

The proof of this theorem is a little complex; full details are
given elsewhere [15]. However, with this result in hand,
the proof of Theorem 2 is straightforward. Suppose that
P |A ` E : σ and P0 sat (P |σ) where E is a term with no
redundant let-bindings and TV (A) = ∅. By Completenesss ,
we know that P ′ |A `s E : τ ′ for some P ′ and τ ′ such that:

(P |σ) ≤ Gen(A,P ′ ⇒ τ ′).

From the properties of ≤sat
P0

, it follows that (P | σ) ≤sat
P0

Gen(A,P ′ ⇒ τ ′), and hence, since P0 sat (P | σ), that

P0 sat Gen(A,P ′ ⇒ τ ′). Since A ≤sat
P0

A, we can use The-
orem 5 to show that the type inference algorithm will not
fail and that, for each Q |TA′ `W E : ν, there is a substitu-

tion R such that Gen(A,P ′ ⇒ τ ′) ≤sat
P0

RGen(TA,Q ⇒ ν).

Since TV (A) = ∅, we know that Gen(TA,Q ⇒ ν) has no

free variables and that TA = A. Combining the two ≤sat
P0

orderings above, we obtain (P | σ) ≤sat
P0

Gen(A,Q ⇒ ν) as
required.

7 Discussion

The ideas described in this paper provide a general and
modular framework for the design of constrained type sys-
tems, taking advantage of information about satisfiability of
constraints to infer more accurate and informative principal
types.

The design of specific applications of our framework starts
with the choice of a system of predicates and an entailment
relation, as described in Section 2.1. Without any further



work, the original type inference algorithm presented in Fig-
ure 3 can be used to calculate principal typings for the cor-
responding system of qualified types.

Extending the algorithm with rules for simplification and
improvement leads to a non-deterministic type inference al-
gorithm. This allows us to choose how the rules will be com-
bined in particular ways to provide a deterministic algorithm
for use in practical implementations. For a more algorith-
mic flavour, we would normally expect the implementation
of simplification and improvement to be described by (de-
terministic) functions, rather than the more general ‘⇔’ and
‘improves’ relations used by the presentations in Sections 3
and 4, respectively:

• A simplifying function, simp, mapping predicate sets
P to appropriate ‘simplified’ versions, simp P , might
can be used to implement simplification. The only con-
dition that a simplifying function must satisfy is that
P ⇔ (simp P), for all predicate sets P . In this set-
ting, the inference rule (Simp) introduced in Section 3
might be replaced by:

Q |TA `W E : ν P = simp Q

P |TA `W E : ν

For any predicate system, the identity function spec-
ified by simp P = P can be used as a simplifying
function. However, more interesting, and more useful
functions can be used in specific applications.

• In a similar way, an improving function, impr , map-
ping sets of predicates to suitable improving substi-
tutions, can be used to implement improvement, as
described in Section 4.1. The correctness of an im-
proving function can be specified by the requirement
that (impr P) improves P , for all predicate sets P ,
and the (Imp) inference rule introduced in Section 4
can be rewritten to use an improving function:

Q |TA `W E : ν T ′ = impr Q

T ′Q |T ′TA `W E : T ′ν

The trivial improving function, impr P = id can be
used with any system of predicates, but it is often pos-
sible to find more useful definitions.

Note that it is possible to arrange for simplifying or improv-
ing functions to fail if they are applied to an unsatisfiable
predicate set, causing the type inference algorithm to fail as
a result. However, while this may be useful in some appli-
cations, it is not required; in the general case, testing for
satisfiability of a predicate set is undecidable and we would
not be able to guarantee termination of the type inference
algorithm (see the work of Volpano and Smith [20], for ex-
ample). For similar reasons, while we expect the results of
simplifying and improving functions to satisfy certain cor-
rectness conditions, we do not insist that they are ‘optimal’;
in the general case, there may not be any effective way to
find such optimal solutions.

Our approach is to leave the task of finding suitable sim-
plifying and improving functions to the designer of specific
applications of qualified types. In this way, designers retain
control over the balance between making good use of simpli-
fication and improvement, and ensuring that type inference
remains tractable. This is in contrast to earlier work, for
example, by Smith [19], where full tests for satisfiability of

predicate sets are needed and strong restrictions on the def-
inition of predicate entailments are needed to guarantee a
decidable type inference process.

One of the most obvious places to use simplification and
improvement is immediately before generalizing the type of
a let-bound variable. For example, using the rules above,
we can derive the following rule for calculating the type of
a let-expression:

P |TA `W E : ν T ′ = impr P
Q = simp (T ′P) σ = Gen(T ′TA,Q ⇒ T ′ν)

P ′ |T ′′(T ′TAx , x :σ) `W F : τ ′

P ′ |T ′′T ′TA `W (let x = E in F ) : τ ′

Of course, we could have started out with this rule at the
very beginning. However, our approach seems much more
attractive and modular since it allows us to view the typing
of let-expressions and the treatment of simplification and
improvement as independent concerns and to combine them
in ways that are not captured by the rule above.

In their current state, the ideas presented in this paper are
of most use to language designers, not to programmers. For
example, the design of a type inference algorithm for a lan-
guage with parametric type classes can be based on the
framework and algorithms presented here. It would also be
interesting to explore more ambitious language designs that
provide the programmer with the ability to define and ex-
tend simplifying and improving functions. Some first steps
in this direction have been made [15]. In the meantime, the
work described here provides simple correctness criteria for
simplifying and improving functions which can be useful in
the construction of such functions for specific applications of
qualified types. For example, the task of simplifying predi-
cate sets containing subtyping constraints has been studied
in some depth by several researchers [16, 17, 4, 3, 19]. This
paper does not subsume the results of their work. Rather, it
provides a general framework to which their results may be
applied in the design of type systems combining polymor-
phism and subtyping.
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