
A system of constructor classes:
overloading and implicit higher-order polymorphism

Mark P. Jones
Yale University, Department of Computer Science,

P.O. Box 2158 Yale Station, New Haven, CT 06520-2158.
jones-mark@cs.yale.edu

Abstract

This paper describes a flexible type system which combines
overloading and higher-order polymorphism in an implicitly
typed language using a system of constructor classes – a
natural generalization of type classes in Haskell.

We present a wide range of examples which demonstrate
the usefulness of such a system. In particular, we show how
constructor classes can be used to support the use of monads
in a functional language.

The underlying type system permits higher-order polymor-
phism but retains many of many of the attractive features
that have made the use of Hindley/Milner type systems so
popular. In particular, there is an effective algorithm which
can be used to calculate principal types without the need for
explicit type or kind annotations. A prototype implemen-
tation has been developed providing, amongst other things,
the first concrete implementation of monad comprehensions
known to us at the time of writing.

1 An overloaded map function

Many functional programs use the map function to apply a
function to each of the elements in a given list. The type and
definition of this function as given in the Haskell standard
prelude [6] are as follows:

map :: (a → b) → [a] → [b]
map f [] = []
map f (x : xs) = f x : map f xs

It is well known that the map function satisfies the familiar
laws:

map id = id
map f . map g = map (f . g)

A category theorist will recognize these observations as in-
dicating that there is a functor from types to types whose
object part maps any given type a to the list type [a] and
whose arrow part maps each function f :: a → b to the func-
tion map f :: [a] → [b]. A functional programmer will rec-
ognize that similar constructions are also used with a wide

range of other data types, as illustrated by the following
examples:

data Tree a = Leaf a | Tree a :ˆ: Tree a

mapTree :: (a → b) → (Tree a → Tree b)
mapTree f (Leaf x) = Leaf (f x)
mapTree f (l :ˆ: r) = mapTree f l :ˆ: mapTree f r

data Opt a = Just a | Nothing

mapOpt :: (a → b) → (Opt a → Opt b)
mapOpt f (Just x) = Just (f x)
mapOpt f Nothing = Nothing

Each of these functions has a similar type to that of the
original map and also satisfies the functor laws given above.
With this in mind, it seems a shame that we have to use
different names for each of these variants.

A more attractive solution would allow the use of a single
name map, relying on the types of the objects involved to
determine which particular version of the map function is
required in a given situation. For example, it is clear that
map (1+) [1 , 2 , 3] should be a list, calculated using the
original map function on lists, while map (1+) (Just 1)
should evaluate to Just 2 using mapOpt .

Unfortunately, in a language using standard Hindley/Milner
type inference, there is no way to assign a type to the map
function that would allow it to be used in this way. Further-
more, even if typing were not an issue, use of the map func-
tion would be rather limited unless some additional mecha-
nism was provided to allow the definition to be extended to
include new datatypes perhaps distributed across a number
of distinct program modules.

1.1 An attempt to define map using type classes

The ability to use a single function symbol with an in-
terpretation that depends on the type of its arguments is
commonly known as overloading . While some authors dis-
miss overloading as a purely syntactic convenience, this is
certainly not the case in Haskell which has a flexible type
system that supports both (parametric) polymorphism and
overloading based on a system of type classes [13]. One of
the most attractive features of this system is that, although
each primitive overloaded operator will require a separate
definition for each different argument type, there is no need
for these to be in the same module.

Type classes in Haskell can be thought of as sets of types.
The standard example is the class Eq which includes pre-

cisely those types whose elements can be compared using
the (==) function. A simple definition might be:

class Eq a where
(==) :: a → a → Bool

The equality operator can then be treated as having any
of the types in the set { a → a → Bool | a ∈ Eq }. The
elements of a type class are defined by a collection of in-
stance declarations which may be distributed across a num-
ber of distinct program modules. For the type class Eq ,
these would typically include definitions of equality for in-
tegers, characters, lists, pairs and user-defined datatypes.
Only a single definition is required for functions defined ei-
ther directly or indirectly in terms of overloaded primitives.
For example, assuming a collection of instances as above,
the member function defined by:

member :: Eq a ⇒ a → [a] → Bool
member x [] = False
member x (y : ys) = x == y | | member x ys

can be used to test for membership in a list of integers,
characters, lists, pairs, etc. See [5, 13] for further details
about the use of type classes.

Unfortunately, the system of type classes is not sufficiently
powerful to give a satisfactory treatment for the map func-
tion; to do so would require a class Map and a type ex-
pression m(t) involving the type variable t such that S =
{m(t) | t ∈ Map } includes (at least) the types:

(a → b) → ([a] → [b])
(a → b) → (Tree a → Tree b)
(a → b) → (Opt a → Opt b)

(for arbitrary types a and b). The only possibility is to take
m(t) = t and choose Map as the set of types S for which
the map function is required:

class Map t where
map :: t

instance Map ((a → b) → ([a] → [b])) where
. . .

instance Map ((a → b) → (Tree a → Tree b)) where
. . .

instance Map ((a → b) → (Opt a → Opt b)) where
. . .

This syntax is not permitted in the current syntax of Haskell
but even if it were, it does not give a sufficiently accurate
characterization of the type of map. For example, the prin-
cipal type of map j . map i would be

(Map (a → c → e), Map (b → e → d)) ⇒ c → d

where a and b are the types of i and j respectively. This is
complicated and does not enforce the condition that i and
j have function types. Furthermore, the type is ambiguous
(the type variable e does not appear to the right of the ⇒
symbol or in the assumptions). Under these conditions, we
cannot guarantee a well-defined semantics for this expression
(see [8], for example). Other attempts to define the map
function, for example using multiple parameter type classes,
have also failed for essentially the same reasons.

1.2 A solution using constructor classes

A much better approach is to notice that each of the types
for which the map function is required is of the form:

(a → b) → (f a → f b).

The variables a and b here represent arbitrary types while f
ranges over the set of type constructors for which a suitable
map function has been defined. In particular, we would
expect to include the list constructor (which we will write as
List), Tree and Opt as elements of this set which, motivated
by our earlier comments, we will call Functor . With only a
small extension to the Haskell syntax for type classes this
can be described by:

class Functor f where
map :: (a → b) → (f a → f b)

instance Functor List where
map f [] = []
map f (x : xs) = f x : map f xs

instance Functor Tree where
map f (Leaf x) = Leaf (f x)
map f (l :ˆ: r) = map f l :ˆ: map f r

instance Functor Opt where
map f (Just x) = Just (f x)
map f Nothing = Nothing

Functor is our first example of a constructor class. The fol-
lowing extract (taken from a session with the Gofer system
which includes support for constructor classes) illustrates
how the definitions for Functor work in practice:

? map (1+) [1,2,3]
[2, 3, 4]
? map (1+) (Leaf 1 :^: Leaf 2)
Leaf 2 :^: Leaf 3
? map (1+) (Just 1)
Just 2

Furthermore, by specifying the type of map function more
precisely, we avoid the ambiguity problems mentioned above.
For example, the principal type of map j . map i is simply
Functor f ⇒ f a → f c provided that i has type (a → b)
and that j has type (b → c).

1.3 The kind system

Each instance of Functor can be thought of as a function
from types to types. It would be nonsense to allow the type
Int of integers to be an instance of Functor , since the type
(a → b) → (Int a → Int b) is obviously not well-formed.
To avoid unwanted cases like this, we have to ensure that
all of the elements in any given class are of the same kind.

Our approach to this problem is to formalize the notion of
kind writing ∗ for the kind of all types and κ1 → κ2 for
the kind of a constructor which takes something of kind κ1

and returns something of kind κ2. This choice of notation
is motivated by Barendregt’s description of generalized type
systems [1]. Instead of type expressions, we use a language
of constructors given by:

C ::= χ constants
| a variables
| C C ′ applications

This corresponds very closely to the way that most type
expressions are already written in Haskell. For example,
Opt a is an application of the constructor constant Opt to
the constructor variable a. Each constructor constant has
a corresponding kind. For example, writing (→) for the
function space constructor and (,) for pairing we have:

Int , Float , () :: ∗
List :: ∗ → ∗
(→), (,) :: ∗ → ∗ → ∗

The kinds of constructor applications are described by the
rule:

C :: κ′ → κ C ′ :: κ′

C C ′ :: κ

The task of checking that a given type expression is well-
formed can now be reformulated as the task of checking
that a given constructor expression has kind ∗. In a similar
way, all of the elements of a constructor class must have the
same kind; for example, a constructor class constraint of the
form Functor f is only valid if f is a constructor expression
of kind ∗ → ∗.
The language of constructors is essentially a system of com-
binators without any reduction rules. As such, standard
techniques can be used to infer the kinds of constructor
variables, constructor constants introduced by new datatype
definitions and the kind of the elements held in any partic-
ular constructor class. The important point is that there is
no need – and indeed, in our current implementation, no op-
portunity – for the programmer to supply kind information
explicitly. We regard this as a significant advantage since it
means that the programmer can avoid much of the complex-
ity that might otherwise result from the need to annotate
type expressions with kinds. The process of kind inference
is described in more detail in Section 4.

The use of kinds is perhaps the most important aspect of
our system, providing a loose semantic characterization of
the elements in a constructor class. This is in contrast to
the system of parametric type classes described by Chen,
Hudak and Odersky [3] which addresses similar issues to this
paper but relies on a more syntactic approach that involves a
process of normalization. Note also that our system includes
Haskell type classes as a special case; a type class is simply
a constructor class for which each instance has kind ∗.

2 Monads as an application of constructor classes

Motivated by the work of Moggi [10] and Spivey [12], Wadler
[14, 15] has proposed a style of functional programming
based on the use of monads. While the theory of monads
had already been widely studied in the context of abstract
category theory, Wadler introduced the idea that monads
could be used as a practical method for modeling so-called
‘impure’ features in a purely functional programming lan-
guage. The examples in this section illustrate that the use
of constructor classes can be particularly convenient for pro-
gramming in this style.

2.1 A framework for programming with monads

The basic motivation for the use of monads is the need to
distinguish between computations and the values that they

produce. If m is a monad then an object of type (m a) rep-
resents a computation which is expected to produce a value
of type a. These types reflect the fact that the use of partic-
ular programming language features in a given calculation
is a property of the computation itself and not of the result
that it produces.

Taking the approach outlined in [15] we introduce a con-
structor class of monads using the definition:

class Functor m ⇒ Monad m where
result :: a → m a
bind :: m a → (a → m b) → m b
join :: m (m a) → m a

x ‘bind ‘ f = join (map f x)
join x = x ‘bind ‘ id

The expression Functor m ⇒ Monad m defines Monad as
a subclass of Functor ensuring that, for any given monad,
there will also be a corresponding instance of the overloaded
map function. The use of a hierarchy of classes enables us
to capture the fact that not every instance of Functor can
be treated as an instance of Monad in a natural way.

By including default definitions for bind and join we only
need to give a definition for one of these (in addition to
a definition for result) to completely define an instance of
Monad . This is often quite convenient. On the other hand,
it would be an error to omit definitions for both operators
since the default definitions are clearly circular. We should
also mention that the member functions in an instance of
Monad are expected to satisfy a number of laws which are
not reflected in the class definition above. See [15] for further
details.

The following declaration defines the standard monad struc-
ture for the list constructor List which can be used to de-
scribe computations producing multiple results, correspond-
ing to a simple form of non-determinism:

instance Monad List where
result x = [x]
join = foldr (++) []

Another interesting use of monads is to model programs that
make use of an internal state. Computations of this kind can
be represented by functions of type s → (a, s) (often referred
to as state transformers) mapping an initial state to a pair
containing the result and final state. In order to get this into
the appropriate form for the system of constructor classes
described in this paper, we introduce a new datatype:

data State s a = ST (s → (a, s))

The functor and monad structures for state transformers are
as follows:

instance Functor (State s) where
map f (ST st) = ST (\s → let (x , s ′) = st s

in (f x , s ′))
instance Monad (State s) where

result x = ST (\s → (x , s))
ST m ‘bind ‘ f = ST (\s → let (x , s ′) = m s

ST f ′ = f x
in f ′ s ′)

Notice that the State constructor has kind ∗ → ∗ → ∗ and
that the declarations above define State s as a monad and

functor for any state type s (and hence State s has kind
∗ → ∗ as required for an instance of these classes). There is
no need to assume a fixed state type as in Wadler’s papers.

From a user’s point of view, the most interesting properties
of a monad are described, not by the result , bind and join
operators, but by the additional operations that it supports.
The following examples are often useful when working with
state monads. The first can be used to ‘run’ a program
given an initial state and discarding the final state, while
the second might be used to implement an integer counter
in a State Int monad:

startingWith :: State s a → s → a
ST m ‘startingWith‘ v = fst (m v)

incr :: State Int Int
incr = ST (\s → (s, s + 1))

To illustrate the use of state monads, consider the task of
labeling each of the nodes in a binary tree with distinct
integer values. One simple definition is:

label :: Tree a → Tree (a, Int)
label tree = fst (lab tree 0)
where lab (Leaf n) c = (Leaf (n, c), c + 1)

lab (l :ˆ: r) c = (l ′ :ˆ: r ′, c′′)
where (l ′, c′) = lab l c

(r ′, c′′) = lab r c′

This uses an explicit counter (represented by the second
parameter to lab) and great care must be taken to ensure
that the appropriate counter value is used in each part of
the program; simple errors, such as writing c in place of c′

in the last line, are easily made but can be hard to detect.

An alternative definition, using a state monad and following
the layout suggested in [15], can be written as follows:

label :: Tree a → Tree (a, Int)
label tree = lab tree ‘startingWith‘ 0
where

lab (Leaf n) = incr ‘bind ‘ \ c →
result (Leaf (n, c))

lab (l :ˆ: r) = lab l ‘bind ‘ \ l ′ →
lab r ‘bind ‘ \ r ′ →
result (l ′ :ˆ: r ′)

While this program is perhaps a little longer than the pre-
vious version, the use of monad operations ensures that the
correct counter value is passed from one part of the program
to the next. There is no need to mention explicitly that a
state monad is required: The use of startingWith and the
initial value 0 (or indeed, the use of incr on its own) are suf-
ficient to determine the monad State Int needed for the bind
and result operators. It is not necessary to distinguish be-
tween different versions of the monad operators bind , result
and join as in [15] or to rely on the use of explicit type
declarations.

2.2 Monad comprehensions

Several functional programming languages provide support
for list comprehensions, enabling some common forms of
computation with lists to be written in a concise form resem-
bling the standard syntax for set comprehensions in mathe-
matics. In [14], Wadler made the observation that the com-
prehension notation can be generalized to arbitrary mon-
ads, of which the list constructor is just one special case. In

Wadler’s notation, a monad comprehension is written using
the syntax of a list comprehension but with a superscript to
indicate the monad in which the comprehension is to be in-
terpreted. This is a little awkward and makes the notation
less powerful than might be hoped since each comprehen-
sion is restricted to a particular monad. Using the over-
loaded operators described in the previous section, we have
implemented a more flexible form of monad comprehension
which relies on overloading rather than superscripts. At the
time of writing, this is the only concrete implementation of
monad comprehensions known to us.

In our system, a monad comprehension is an expression of
the form [e | gs] where e is an expression and gs is a list
of generators of the form p ← exp. As a special case, if
gs is empty then the comprehension [e | gs] is written as
[e]. The implementation of monad comprehensions is based
on the following translation of the comprehension notation
in terms of the result and bind operators described in the
previous section:

[e] = result e
[e | p ← exp, gs] = exp ‘bind ‘ \ p → [e | gs]

In this notation, the label function from the previous section
can be rewritten as:

label :: Tree a → Tree (a, Int)
label tree = lab tree ‘startingWith‘ 0
where

lab (Leaf n) = [Leaf (n, c) | c ← incr]
lab (l :ˆ: r) = [l ′ :ˆ: r ′ | l ′ ← lab l , r ′ ← lab r]

Applying the translation rules for monad comprehensions to
this definition yields the previous definition in terms of result
and bind . The principal advantage of the comprehension
syntax is that it is often more concise and, in the author’s
opinion, sometimes more attractive.

2.3 Monads with a zero

Anyone familiar with the use of list comprehensions will
know that it is also possible to include boolean guards in
addition to generators in the definition of a list comprehen-
sion. Once again, Wadler showed that this was also possible
in the more general setting of monad comprehensions, so
long as we restrict such comprehensions to monads that in-
clude a special element zero satisfying a small number of
laws. This can be dealt with in our framework by defining
a subclass of Monad :

class Monad m ⇒ Monad0 m where
zero :: m a

For example, the List monad has the empty list as a zero
element:

instance Monad0 List where
zero = []

Note that not there are also some monads which do not have
a zero element and hence cannot be defined as instances of
Monad0 . The State s monads described in Section 2 are a
simple example of this.

Working in a monad with a zero, a comprehension involving
a boolean guard can be implemented using the translation:

[e | guard , gs] = if guard then [e | gs] else zero

Notice that, as far as the type system is concerned, the
use of zero in the translation of a comprehension such as
[e | x ← xs, b] automatically captures the restriction to
monads with a zero. There is no need to introduce any
additional mechanism to deal with this.

The inclusion of a zero element also allows a slightly different
translation for generators in comprehensions:

[e | p ← exp, gs] = exp ‘bind ‘ f
where f p = [e | gs]

f = zero

This corresponds directly to the semantics of list comprehen-
sions in the current version of Haskell. The only time when
there is any difference between this and the translation in
Section 2.2 is when p is a refutable pattern which may not al-
ways match values generated by exp. For example, using the
original translation, the expression [x | [x] ← [[1], [], [2]]]
evaluates to [1]++⊥, whereas the corresponding list com-
prehension gives [1 , 2]. To preserve the Haskell semantics
for list comprehensions, the current implementation always
uses the second translation to implement a generator con-
taining a refutable pattern. Cases where a refutable pattern
is required without being restricted to monads with a zero
are easily dealt with by rewriting the generator as˜p ← exp.
(In Haskell, any pattern p can be treated as an irrefutable
pattern by rewriting it as ˜p.) An alternative approach that
we experimented with in earlier versions of this work [9] is
to use a slightly different syntax for monad comprehensions
so that there is no clash with the semantics of Haskell list
comprehensions.

2.4 Generic operations on monads

The combination of polymorphism and constructor classes
in our system makes it possible to define generic functions
which can be used on a wide range of different monads. A
simple example of this is the Kleisli composition for an arbi-
trary monad, similar to the usual composition of functions
except that it also takes care of ‘side effects’. The general
definition is as follows:

(@@) :: Monad m ⇒ (b→m c)→(a→m b)→(a→m c)
f @@ g = join . map f . g

For example, in a monad of the form State s, the expression
f @@g denotes a state transformer in which the final state of
the computation associated with g is used as the initial state
for the computation associated with f . More precisely, for
this particular kind of monad, the general definition given
above is equivalent to:

(f @@g) a = ST (\s0 → let ST g ′ = g a
(b, s1) = g ′ s0
ST f ′ = f b
(c, s2) = f ′ s1

in (c, s2))

The biggest advantage of the generic definition is that there
is no need to construct new definitions of (@@) for every
different monad. On the other hand, if specific definitions
were required for some instances, perhaps in the interests
of efficiency, we could simply include (@@) as a member
function of Monad and use the generic definition as a default
implementation.

Generic operations can also be defined using the compre-
hension notation:

mapl :: Monad m⇒(a→m b)→([a]→m [b])
mapl f [] = [[]]
mapl f (x :xs) = [y : ys | y ← f x , ys ← mapl f xs]

The expression mapl f xs represents a computation whose
result is the list obtained by applying f to each element of
the list xs, starting on the left (i.e. moving from the front to
the back of the list). Unlike the normal map function, the
direction is significant because the function f may produce
a ‘side-effect’. The mapl function has applications in several
kinds of monad with obvious examples involving state and
output.

The comprehension notation can also be used to define a
generalization of Haskell’s filter function which works in an
arbitrary monad with a zero:

filter :: Monad0 m ⇒ (a → Bool) → m a → m a
filter p xs = [x | x ← xs, p x]

There are many other general purpose functions that can
be defined in the current framework and used in arbitrary
monads. Unfortunately, space prohibits the inclusion of any
further examples here.

2.5 A family of state monads

We have already described the use of monads to model pro-
grams with state using the State datatype in Section 2. The
essential property of any such monad is the ability to update
the state and we might therefore consider a more general
class of state monads given by:

class Monad (m s) ⇒ StateMonad m s where
update :: (s → s) → m s s

An expression of the form update f denotes the computation
which updates the state using f and returns the old state as
its result. For example, the incr function described above
can be defined as update (1+) in this more general setting.
Operations to set the state to a particular value or return
the current state are easily described in terms of update.

The StateMonad class has two parameters; the first should
be a constructor of kind (∗ → ∗ → ∗) while the second gives
the state type (of kind ∗); both are needed to specify the
type of update. The implementation of update for a monad
of the form State s is straightforward and provides us with
our first instance of StateMonad :

instance StateMonad State s where
update f = ST (\s → (s, f s))

A rather more interesting family of state monads can be
described using the following datatype definition:

data StateM m s a = STM (s → m (a, s))

Note that the first parameter to StateM has kind (∗ → ∗), a
significant extension from Haskell where all of the arguments
to a type constructor must be types. This is another benefit
of the kind system.

The functor and monad structure of a StateM m s construc-
tor are given by:

instance Monad m ⇒ Functor (StateM m s) where
map f (STM xs)

= STM (\s → [(f x , s ′) | (̃x , s ′) ← xs s])

instance Monad m ⇒ Monad (StateM m s) where
result x = STM (\s → [(x , s)])
STM xs ‘bind ‘ f

= STM (\s → xs s ‘bind ‘ \ (xs, s ′) →
let STM f ′ = f x
in f ′ s ′)

Note the condition that m is an instance of Monad in each of
these definitions. The definition of StateM m as an instance
of StateMonad is also straightforward:

instance StateMonad (StateM m) s where
update f = STM (\s → [(s, f s)])

Support for monads like StateM m s seems to be an im-
portant step towards solving the problem of constructing
monads by combining features from simpler monads, in this
case combining the use of state with the features of an ar-
bitrary monad m.

2.6 Monads and substitution

The previous sections have concentrated on the use of mon-
ads to describe computations. Monads also have a useful
interpretation as a general approach to substitution. This
in turn provides another application for constructor classes.

Taking a fairly general approach, a substitution can be con-
sidered as a function s :: v → t w where the types v and
w represent sets of variables and the type t a represents a
set of terms, typically involving elements of type a. If t is
a monad and x :: t v , then x ‘bind ‘ s gives the result of
applying the substitution s to the term x by replacing each
occurrence of a variable v in x with the corresponding term
s v in the result. For example:

instance Monad Tree where
result x = Leaf x
Leaf n ‘bind ‘ s = s n
(l :ˆ: r) ‘bind ‘ s = (l ‘bind ‘ s) :ˆ: (r ‘bind ‘s)

With this interpretation in mind, the Kleisli composition
(@@) in Section 2.4 is just the standard way of composing
substitutions, while the result function corresponds to a null
substitution. The fact that (@@) is associative with result
as both a left and right identity follows from the standard
algebraic properties of a monad.

3 A formal treatment of the type system

Having outlined a number of different examples motivating
the use of constructor classes, this section provides a more
formal description of the underlying type system. In partic-
ular, we show how the use of constructor classes is suitable
for use in a language where type inference is used to replace
the need for explicit type annotations. This is particularly
interesting from a theoretical point of view since the type

system includes both higher-order polymorphism (for ex-
ample, allowing universal quantification over constructors
of kind ∗ → ∗) and overloading.

For reasons of space, many of the technical details have been
omitted from this presentation. However, the definitions and
overall approach used here are very closely based on our ear-
lier work with qualified types except that we allow predicates
over type constructors in addition to predicates over types.
This previous work is described in [7] and documented more
fully in [8].

3.1 Constructors, substitutions and predicates

In order to work more formally with the use of constructor
classes it is convenient to explicitly annotate each construc-
tor expression with its kind. Thus for each kind κ, we have
a collection of constructors C κ (including constructor vari-
ables ακ) of kind κ given by the grammar:

Cκ ::= χκ constants
| ακ variables

| Cκ′→κ Cκ′ applications

The apparent mismatch between these explicitly kinded con-
structors and the implicit kinding used in the preceding sec-
tions will be addressed in Section 4. Note that, other than
requiring that the function space constructor → be included
as an element of C ∗→∗→∗, we do not make any assumption
about the constructor constants χκ in the grammar above.

A substitution is a mapping from variables to constructors.
Any such function can be extended in a natural way to give
a mapping from constructors to constructors. For the pur-
poses of this work, we will restrict ourselves to the use of
kind-preserving substitutions which map each variable to a
constructor of the same kind. A simple induction shows that
each of the collections Cκ is closed with respect to such sub-
stitutions.

A constructor class represents a set of constructors or, more
generally, when the class has multiple parameters, a rela-
tion between constructors. The kinds of the elements in
the relations for a given class P are specified by a tuple of
kinds (κ1, . . . , κn) called the arity of P . For example, any
standard type class has arity (∗), the Functor and Monad
classes have arity (∗ → ∗) and the StateMonad class has
arity (∗ → ∗, ∗). A predicate (or class constraint) is an ex-
pression of the form P C1 . . . Cn (where each Ci ∈ Cκi)
representing the assertion that the constructors C1,. . . ,Cn

are related by P .

The properties of predicates are captured abstractly by an
entailment relation P `̀ Q between finite sets of predicates.
For our purposes, the `̀ relation must be transitive, closed
under substitution and monotonic in the sense that P `̀ Q
whenever P ⊇ Q . The precise definition of entailment is de-
termined by the class and instance declarations that appear
in a given program. The following examples are based on
the definitions given in the preceding sections:

P `̀ {Functor List , Monad List}
{Monad m∗→∗} `̀ {Functor m∗→∗}
{StateMonad m∗→∗ s∗} `̀ {Monad (m∗→∗ s∗)}

In practice, some restrictions on the definition of `̀ will
be needed to ensure decidability of type checking. We will
return to this point in Section 3.5.

3.2 Types and terms

Following the definition of types and type schemes in ML
we use a structured language of types, with the principal re-
striction being the inability to support functions with either
polymorphic or overloaded arguments:

τ ::= C ∗ types
ρ ::= P ⇒ τ qualified types
σ ::= ∀T .ρ type schemes

(P and T range over finite sequences of predicates and con-
structor variables respectively).

It will also be convenient to introduce some abbreviations
for qualified types and type schemes. In particular, if ρ =
(P ⇒ τ) and σ = ∀T .ρ, then we write π ⇒ ρ and ∀α.σ as
abbreviations for ({π} ∪ P) ⇒ τ and ∀({α} ∪ T).ρ respec-
tively.

Terms are written using the standard language based on
simple untyped λ-calculus with the addition of a let con-
struct to enable the definition and use of polymorphic (and
in this case, overloaded) terms:

E ::= x | EF | λx .E | let x = E in F .

The symbol x ranges over a given set of (term) variables.

3.3 Typing rules

A type assignment is a (finite) set of pairs of the form x :σ in
which no term variable x appears more than once. If A is a
type assignment, then we write dom A = { x | (x :σ) ∈ A },
and if x is a term variable with x 6∈ dom A, then we write
A, x :σ as an abbreviation for the type assignment A ∪ {x :
σ}. The type assignment obtained from A by removing any
typing statement for the variable x is denoted Ax .

A typing is an expression of the form P | A ` E : σ rep-
resenting the assertion that a term E has type σ when the
predicates in P are satisfied and the types of free variables
in E are as specified in the type assignment A. The set of all
derivable typings is defined by the rules in Figure 1. Note
the use of the symbols τ , ρ and σ to restrict the application
of certain rules to specific sets of type expressions.

Most of these are similar to the usual rules for the ML type
system; only the rules (⇒I) and (⇒E) for dealing with qual-
ified types and the (∀I) rule for polymorphic generalization
involve the predicate set. An expression of the form CV (X)
is used to denote the set of all the constructor variables ap-
pearing free in X . For example, in rule (∀I), the condition
ακ 6∈ CV (A) ∪ CV (P) is needed to ensure that we do not
universally quantify over a variable which is constrained ei-
ther by the type assignment A or the predicate set P .

3.4 Type inference

The rules in Figure 1 are useful as a means of explaining and
understanding the type system, but they are not suitable
as a basis for a type inference algorithm: There are many
different ways in which the rules might be applied to find the
type of a given term and it is not always clear which (if any)
will give the best result. An alternative set of rules which
avoids these problems is presented in Section 3.4.2 following
a preliminary description of unification for constructors in
Section 3.4.1.

(var)
(x :σ) ∈ A

P |A ` x : σ

(→E)
P |A ` E : τ ′ → τ P |A ` F : τ ′

P |A ` EF : τ

(→I)
P |Ax , x :τ ′ ` E : τ

P |A ` λx .E : τ ′ → τ

(let)
P |A ` E : σ Q |Ax , x :σ ` F : τ

P ∪Q |A ` (let x = E in F) : τ

(⇒E)
P |A ` E : π ⇒ ρ P `̀ {π}

P |A ` E : ρ

(⇒I)
P ∪ {π}|A ` E : ρ

P |A ` E : π ⇒ ρ

(∀E)
P |A ` E : ∀ακ.σ C ∈ Cκ

P |A ` E : [C/ακ]σ

(∀I)
P |A ` E : σ ακ 6∈ CV (A) ∪ CV (P)

P |A ` E : ∀ακ.σ

Figure 1: ML-like typing rules for constructor classes

3.4.1 Unification of constructor expressions

Unification algorithms are often required in type inference
algorithms to ensure that that the argument type of a func-
tion coincides with the type of the argument that it is ap-
plied to. In the context of this paper, we need to deal with
unification of constructors which is a little more tricky than
unification of simple types since we need to keep track of
the kinds of the constructors involved. Nevertheless, the
following presentation follows the standard approach (as in-
troduced by Robinson [11]) extended to deal with the use of
kind-preserving substitutions.

We begin with two fairly standard definitions. A kind-
preserving substitution S is a unifier of two constructors
C ,C ′ ∈ Cκ if SC = SC ′. A kind-preserving substitu-
tion U is called a most general unifier for the constructors
C ,C ′ ∈ Cκ if:

• U is a unifier for C and C ′, and

• every unifier S of C and C ′ can be written in the form
RU for some kind-preserving substitution R.

Writing C
U∼κC ′ for the assertion that U is a unifier of the

constructors C ,C ′ ∈ Cκ, the rules in Figure 2 define a uni-
fication algorithm that can be used to calculate a unifier for
a given pair of constructors. It is straightforward to verify
that any substitution U obtained using these rules is indeed
a unifier for the corresponding pair of constructors.

Notice that there are two distinct ways in which the unifi-
cation algorithm may fail; first in the rules (bindVar) and
(bindVar’) where unification would result in an infinite con-
structor (i.e. producing a regular tree). Second, the unifi-
cation of a constructor of the form CC ′ with another con-

(idVar) α
id∼κα

(idConst) χ
id∼κχ

(bindVar) α
[C/α]∼ κC α 6∈ CV (C)

(bindVar’) C
[C/α]∼ κα α 6∈ CV (C)

(apply)

C
S∼κ′→κD SC ′S ′∼κ′SD ′

CC ′S ′S∼ κDD ′

Figure 2: Kind-preserving unification

structor of the form DD ′ is only possible if C and D can be
unified which in turn requires that these two constructors
have the same kind, which must be of the form κ′ → κ.
This is a consequence of the fact that there are non non-
trivial equivalences between constructor expressions. This
property would be lost if we had included abstractions over
constructor variables in the language of constructors requir-
ing the use of higher-order unification and ultimately leading
to undecidability in the type system.

Given these observations, we can use standard techniques to
prove the following theorem:

Theorem 1 If there is a unifier for two given constructors

C ,C ′ ∈ C κ, then C
U∼κC ′ using the rules in Figure 2 for

some U and this substitution is a most general unifier for C
and C ′. Conversely, if no unifier exists, then the unification
algorithm fails.

The rules in Figure 2 require that the two constructors in-
volved at each stage in the unification must have the same
kind. In practice however, it is only necessary to check
that the constructor C has the same kind as the variable
α in the rules (bindVar) and (bindVar’) (in other words, to
ensure that the substitution [C/α] in these rules is kind-
preserving).

The process of finding the kind of the constructor C to com-
pare with the kind of the variable α to which it will be
bound can be implemented relatively efficiently. Suppose
that C = H C1 . . . Cn where H is either a variable or a
constant. Since C is a well-formed constructor, H must
have kind of the form κ1 → . . . → κn → κ where κi is the
kind of the corresponding constructor Ci . It follows that
C has kind κ. Thus the only information needed to find
the kind of C is the kind of the head H and the number of
arguments n that it is applied to. There is no need for any
more sophisticated form of kind inference in this situation.

The need to check the kinds of constructors in this way cer-
tainly increases the cost of unification. On the other hand,
we would expect that, in many cases, this would be signif-
icantly less than that of the occurs check – α 6∈ CV (C) –
which will typically involve a complete traversal of C .

3.4.2 A type inference algorithm

The rules in Figure 3 provide an alternative to those of Fig-
ure 1 with a single rule for each syntactic construct in the
language of terms. Each judgement is an expression of the
form P |TA `W E : τ where P is a set of predicates, T is a
(kind-preserving) substitution, A is a type assignment, E is
a term and τ is an element of C ∗.
These rules can be interpreted as an algorithm for calcu-
lating typings. Starting with a term E and an assignment
A we can use the structure of E to guide the calculation
of values for P , T and τ such that P | TA `W E : τ . The
only way that this process can ever fail is if E contains a
free variable which is not mentioned in A or if one of the
unifications fails.

The type inference algorithm has several important proper-
ties. First of all, the typing that it calculates is valid with
respect to the original set of typing rules:

Theorem 2 If P |TA `W E : τ , then P |TA `E : τ .

Given a term E and an assignment A it is particularly useful
to find a concise characterization of the set of pairs (P |
σ) such that P | A ` E : σ. This information might, for
example, be used to determine if E is well-typed (i.e. if
the set of pairs is non-empty) or to validate a programmer
supplied type signature for E .

Following the approach of Damas and Milner [4], this can be
achieved by defining an ordering on the set of all pairs (P |σ)
to describe when one pair is more general than another. We
can then show that the set of all (P | σ) for which a given
term is well-typed is equal to the set of all pairs which are
less than a principal type, calculated using the type inference
algorithm. This allows us to establish the following theorem:

Theorem 3 Let E be a term and A an arbitrary type as-
signment. The following conditions are equivalent:

• E is well-typed under A.

• P | TA `W E : τ for some P and τ and there is a
substitution R such that RTA = A.

• E has a principal type under A.

The definition of the ordering between pairs (P |σ) and the
full proof of the above theorem are essentially the same as
used in [7, 8] to which we refer the reader for further details.

3.5 Coherence and decidability of type checking

Upto this point, we have not made any attempt to discuss
how programs in the current system of constructor classes
might be implemented. One fairly general approach is to
find a translation for each source term in which overloaded
functions have additional evidence parameters which make
the use of overloading explicit. Different forms of evidence
value can be used. For example, in theoretical work, it might
be sensible to use predicates themselves as evidence, while
practical work might benefit from a more concrete approach,
such as the use of dictionaries as proposed by Wadler and
Blott [13].

In order to justify this approach, it is important to show
that any two potentially distinct translations of a given
term are semantically equivalent. Following [2], we refer

(var)W
(x :∀ακi

i .P ⇒ τ) ∈ A

[β
κi
i /α

κi
i]P |A `W x : [β

κi
i /α

κi
i]τ

β
κi
i new

(→E)W
P |TA `W E : τ Q |T ′TA `W F : τ ′ T ′τ

U∼∗τ ′ → α∗

U (T ′P ∪Q) |UT ′TA `W EF : Uα∗
α∗ new

(→I)W
P |T (Ax , x :α∗) `W E : τ

P |TA `W λx .E : Tα∗ → τ
α∗ new

(let)W
P |TA `W E : τ P ′ |T ′(TAx , x :Gen(TA,P ⇒ τ)) `W F : τ ′

P ′ |T ′TA `W (let x = E in F) : τ ′
where Gen(A, ρ) = ∀(CV (ρ) \ CV (A)).ρ

Figure 3: Type inference algorithm W

to this as a coherence property of the type system. As we
hinted in Section 1.1, the same problem occurs in Haskell
unless we restrict our attention to terms with unambiguous
type schemes. Fortunately, the same solution works for the
system described in this paper; we can show that, if the
principal type scheme ∀αi .P ⇒ ρ of a given term satisfies
{αi} ∩ CV (P) ⊆ CV (ρ), then all translations of that term
are equivalent.

This restriction also simplifies the conditions needed to en-
sure decidability of type checking. In particular, we can
show that type checking for terms with unambiguous prin-
cipal types is decidable if and only if, for each choice of P
and Q , the task of determining whether P `̀ Q is decidable.
Simple syntactic conditions on the form of instance decla-
rations can be used to guarantee this property (the same
approach is used in the definition of Haskell [6]).

Once again, we refer the reader to [8] for further details and
background on the issues raised in this section.

4 Kind inference

The biggest difference between the formal type system de-
scribed in Section 3 and its ‘user interface’ described in the
opening sections of the paper is the need to annotate con-
structor variables with their kinds. As we have already in-
dicated, we regard the fact that the programmer does not
supply kind information explicitly as a significant advantage
of the system. At the same time, this also means an imple-
mentation of this systems needs to be able to determine:

1. The kind of each user-defined constructor χ,

2. the arity of each constructor class P , and

3. the kind of each universally quantified variable in a
type scheme, needed to generate new variables of the
appropriate kind when a type scheme is instantiated
using (var)W.

Fortunately, given the simple structure of the languages of
constructors and kinds, it is relatively straightforward to
calculate suitable values in each of these cases using a pro-
cess of kind inference. Treating the set of constructors as
a system of combinators, we can use standard techniques
– analogous to type inference – to discover constraints on

the kinds of each object appearing in a given (unannotated)
constructor expression and then solve these constraints to
obtain the required kinds.

Item (1) will be dealt with more fully in Sections 4.1 and 4.2.
To illustrate the basic ideas for an example involving items
(2) and (3), recall the definition of the constructor class
Functor from Section 1.2:

class Functor f where
map :: (a → b) → (f a → f b)

Using the fact that (→) :: ∗ → ∗ → ∗, and that both a and
b are used as arguments to → in the expression (a → b),
it follows that both of these variables must have kind ∗. By
a similar argument, f a also has kind ∗ and hence f must
have kind ∗ → ∗ as expected. Thus map has type:

∀f ∗→∗.∀a∗.∀b∗.Functor f ⇒ (a → b) → (f a → f b)

and the Functor class has arity (∗).

4.1 Datatype definitions

Many programs include definitions of new datatypes and
it is important to determine suitable kinds for the corre-
sponding type constructors. The general form of a datatype
declaration in Haskell is:

data χ a1 . . . am = constr1 | . . . | constrn

This introduces a new constructor χ that expects m argu-
ments, represented by the (distinct) variables a1 , . . . , am .
Each constr on the right hand side is an expression of the
form F τ1 . . . τn which allows the symbol F to be used
as a function of type τ1 → . . . → τn → χ a1 . . . am to
construct values of the new type.

In our more general setting, we can treat χ as a constructor
of kind:

κ1 → . . . → κm → ∗
where κ1 ,. . . ,κm are appropriate kinds for a1 , . . . , am re-
spectively that can be determined by a process of kind in-
ference.

We have already seen several examples above for which the
kind of the type constructor may be determined by this pro-
cess. In some cases, the definition of a type constructor does

not uniquely determine its kind; just as some λ-terms can
be assigned polymorphic types, some type constructors can
be treated as having polymorphic kinds. For example, given
the definition:

data Fork a = Prong | Split (Fork a) (Fork a)

we can infer that Fork has kind κ → ∗ for any kind κ.
In the current implementation, we avoid the need to deal
with polymorphic kinds by replacing any unknown part of
an inferred kind with ∗. Hence the Fork constructor will
actually be treated as having kind ∗ → ∗. This is consistent
with the interpretation of datatype definitions in Haskell
where all variables are expected to have kind ∗.

4.2 Synonym definitions

In addition to defining new datatypes, it is common for a
program to introduce new names for existing types using a
type synonym declaration of the form:

type χ a1 . . . am = rhs

The intention here is that any type expression of the form
χ C1 . . . Cm abbreviates the type obtained from rhs by
replacing each occurrence of a variable ai with the corre-
sponding constructor Ci . The current implementation does
not allow the use of a type synonym constructor χ to be
used without the full number of arguments. This ensures
that we do not invalidate the conditions needed to establish
the coherence property described in Section 3.5. In addi-
tion, following the definition of Haskell, it is not permitted
to define mutually recursive type synonyms without an in-
tervening datatype definition. These conditions guarantee
that it is always possible to expand any given type expres-
sion to eliminate all type synonyms. However, for practical
purposes, it is sensible to calculate a kind for each synonym
constructor χ and hence avoid the need to expand types
involving synonyms during the kind inference process. For
example, given the synonym definitions:

type Church a = (a → a) → (a → a)
type Subst t v = v → t v

we find that, for the purposes of kind inference:

Church :: ∗ → ∗
Subst :: (∗ → ∗) → ∗ → ∗.

5 Additional comments

Based on the examples in this paper and our initial expe-
rience with the prototype implementation, we believe that
there are many useful applications for a system of construc-
tor classes. Of course, since the use of constructor classes
is likely to lead to a greater use of overloading in typical
programs, further work to investigate new techniques for
the efficient implementation of type and constructor class
overloading would be particularly useful.

The decision to exclude any form of abstraction from the
language of constructors is essential to ensure the tractabil-
ity of the whole system. At the same time, this also results
in some limitations for the programmer. For example, hav-
ing defined:

data State s a = ST (s → (a, s))

we were able to define State as a functor in its second ar-
gument. This would not have been possible if the two pa-
rameters s and a on the left hand side been written in the
reverse order. Of course, this problem can always be avoided
by defining a new data type. Indeed, this was precisely the
motivation for introducing the State data type since the con-
structor expression s → (a, s) is not in a suitable form.

References

[1] H. Barendregt. Introduction to generalized type sys-
tems. Journal of Functional Programming, volume 1,
part 2, 1991.

[2] V. Breazu-Tannen, T. Coquand, C.A. Gunter and A.
Scedrov. Inheritance and coercion. In IEEE Symposium
on Logic in Computer Science, 1989.

[3] K. Chen, P. Hudak, and M. Odersky. Parametric type
classes (Extended abstract). ACM conference on LISP
and Functional Programming, San Francisco, Califor-
nia, June 1992.

[4] L. Damas and R. Milner. Principal type schemes for
functional programs. In 8th Annual ACM Symposium
on Principles of Programming languages, 1982.

[5] P. Hudak and J. Fasel. A gentle introduction to Haskell.
ACM SIGPLAN notices, 27, 5, May 1992.

[6] P. Hudak, S.L. Peyton Jones and P. Wadler (eds.). Re-
port on the programming language Haskell, version 1.2.
ACM SIGPLAN notices, 27, 5, May 1992.

[7] M.P. Jones. A theory of qualified types. In European
symposium on programming. Springer Verlag LNCS
582, 1992.

[8] M.P. Jones. Qualified types: Theory and Practice. D.
Phil. Thesis. Programming Research Group, Oxford
University Computing Laboratory. July 1992.

[9] M.P. Jones. Programming with constructor classes
(preliminary summary). In Draft Proceedings of the
Fifth Annual Glasgow Workshop on Functional Pro-
gramming, Ayr, Scotland, July 1992.

[10] E. Moggi. Computational lambda-calculus and monads.
IEEE Symposium on Logic in Computer Science, Asilo-
mar, California, June 1989.

[11] J.A. Robinson. A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12, 1965.

[12] M. Spivey. A functional theory of exceptions. Science
of Computer Programming, 14(1), June 1990.

[13] P. Wadler and S. Blott. How to make ad-hoc polymor-
phism less ad-hoc. In 16th ACM annual symposium on
Principles of Programming Languages, Austin, Texas,
January 1989.

[14] P. Wadler. Comprehending Monads. ACM conference
on LISP and Functional Programming, Nice, France,
June 1990.

[15] P. Wadler. The essence of functional programming. In
19th Annual Symposium on Principles of Programming
Languages, Santa Fe, New Mexico, January 1992.

